
Component Architecture Debug
Interface

Version 2.0

Developer Guide

Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved.
ARM 100963_0200_00_en

Component Architecture Debug Interface
Developer Guide
Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 31 May 2014 Non-Confidential New document for Fast Models v9.0, from DUI0444L for v8.3.

B 30 November 2014 Non-Confidential Update for v9.1.

C 28 February 2015 Non-Confidential Update for v9.2.

D 31 May 2015 Non-Confidential Update for v9.3.

E 31 August 2015 Non-Confidential Update for v9.4.

F 30 November 2015 Non-Confidential Update for v9.5.

G 29 February 2016 Non-Confidential Update for v9.6.

H 31 May 2016 Non-Confidential Update for v10.0.

I 31 August 2016 Non-Confidential Update for v10.1.

J 11 November 2016 Non-Confidential Update for v10.2.

K 17 February 2017 Non-Confidential Update for v10.3.

0200-00 31 May 2017 Non-Confidential Update for v11.0. Document numbering scheme has changed.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.

 Component Architecture Debug Interface

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2
Non-Confidential

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © 2014–2017, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Component Architecture Debug Interface

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3
Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php
http://www.arm.com

Contents
Component Architecture Debug Interface
Developer Guide

Preface
About this book 7

Chapter 1 Introduction
1.1 About the Component Architecture Debug Interface 1-10
1.2 Class hierarchy .. 1-11
1.3 CADI classes used to connect to a simulation 1-14

Chapter 2 Target Connection Mechanism
2.1 About the target connection mechanism 2-18
2.2 Requirements for the target connection mechanism 2-20
2.3 Connecting to a simulation 2-25
2.4 Using GetSimulationFactories() 2-27
2.5 Getting existing CADI simulations 2-31
2.6 Getting a target interface 2-34
2.7 Disconnecting from a target 2-36

Chapter 3 Using the CADI Interface Methods from a Debugger
3.1 CADI accesses from a debugger 3-41
3.2 CADIReturn_t return values 3-43
3.3 Target connection and configuration .. 3-45
3.4 Register access 3-53

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 4
Non-Confidential

3.5 Memory access 3-56
3.6 Execution control 3-58
3.7 Application loading 3-66
3.8 CADI Disassembler 3-67
3.9 Using the semihosting API 3-71
3.10 Profiling .. 3-73

Chapter 4 CADI Extension Mechanism
4.1 Overview of the extension mechanism .. 4-75
4.2 Extending the target side 4-76
4.3 Obtaining a custom interface 4-81

Appendix A Class Reference
A.1 CAInterface class Appx-A-83
A.2 CADIBroker class Appx-A-85
A.3 CADISimulationFactory class Appx-A-88
A.4 CADIErrorCallback class Appx-A-90
A.5 CADISimulationCallback class Appx-A-91
A.6 CADISimulation class Appx-A-92
A.7 CADICallbackObj class .. Appx-A-94
A.8 CADI class Appx-A-98
A.9 CADIDisassemblerCB class Appx-A-121
A.10 CADIDisassembler class Appx-A-123
A.11 CADIProfilingCallbacks class Appx-A-127
A.12 CADIProfiling class .. Appx-A-128

Appendix B Data Structure Reference
B.1 Factory simulation startup and configuration Appx-B-138
B.2 Registers and memory Appx-B-145
B.3 Breakpoints and execution control Appx-B-154
B.4 Pipelines Appx-B-160
B.5 Disassembly Appx-B-161
B.6 Semihosting and message output Appx-B-162
B.7 Profiling and tracing Appx-B-164

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 5
Non-Confidential

Preface

This preface introduces the Component Architecture Debug Interface Developer Guide.

It contains the following:
• About this book on page 7.

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 6
Non-Confidential

 About this book
This document describes the class hierarchy and programming interfaces for version 2.0 of the
Component Architecture Debug Interface (CADI). It is intended for users writing applications and debug
tools that use the CADI interface.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter introduces the document.

Chapter 2 Target Connection Mechanism
This chapter describes the target connection mechanism.

Chapter 3 Using the CADI Interface Methods from a Debugger
This chapter describes how a debugger uses the CADI interface to control the target.

Chapter 4 CADI Extension Mechanism
This chapter describes the CADI extension mechanism that adds interfaces to a target and the
modifications that are required on both the caller side and the target side.

Appendix A Class Reference
This appendix describes the classes that create, initialize, and communicate with a simulation.

Appendix B Data Structure Reference
This appendix describes the data structures that CADI uses.

 Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

 Preface
 About this book

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 7
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Component Architecture Debug Interface Developer Guide.
• The number ARM 100963_0200_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• ARM Developer.
• ARM Information Center.
• ARM Technical Support Knowledge Articles.
• Support and Maintenance.
• ARM Glossary.

 Preface
 About this book

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 8
Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Introduction

This chapter introduces the document.

It contains the following sections:
• 1.1 About the Component Architecture Debug Interface on page 1-10.
• 1.2 Class hierarchy on page 1-11.
• 1.3 CADI classes used to connect to a simulation on page 1-14.

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 1-9
Non-Confidential

1.1 About the Component Architecture Debug Interface
The Component Architecture Debug Interface (CADI) is a C++ API that enables convenient and accurate
debugging of complex System-on-Chip (SoC) simulation platforms.

It enables a caller, typically a debugger, to:

• Connect to an existing simulation or instantiate a new simulation.
• Attach to one of the simulation targets.
• Control the execution of a connected target.
• Observe and manipulate simulated hardware resources.
• Display the contents of registers and memory in the simulation targets.
• Obtain valuable disassembly or profiling information.

 Note

CADI can be used with simulation targets at any level of abstraction such as, for example, instruction-
accurate simulation or cycle-accurate simulation platforms.

Because CADI is widely used within ARM solutions, developers can:

• Integrate ARM models into their own design methodologies.
• Benefit from analyzing their simulation platforms with ARM development tools such as Development

Studio (DS-5) or Model Debugger for Fast Models.

CADI enables interaction with a third-party debugger to:
• Integrate a processor model with established user base for an existing debugger.
• Support an architecture that has only a limited range of native debuggers.

A CADI implementation provides many technical benefits such as:

Retargetability
The interface exposes sufficient information on a target to enable describing its behavior and
hardware resources. The caller does not require additional description files to analyze or
visualize hardware components.

Semihosting
Semihosting calls establish a channel for input to and output from an application running on the
target. This enables callers to:
• Interact with the target.
• Redirect target input and output to the host system the simulation platform is running on.

Callbacks
Callback methods enable the use of asynchronous method calls to the target that minimize the
impact on the behavior of the target. The target is blocked by a single caller for only a short
period.

Synchronous calls through the interface lock out other callers until the call has ended. This is
often undesirable behavior, If, for example, one debugger is executing a command on the target,
another debugger is blocked from stopping the target.

Compiler support
The design of CADI v2.0 classes and data types avoids method calls that pass the ownership of
heap memory objects between the caller and the target. This enables interaction between tools
and models compiled with different compilers.

Optional implementation
Functionally separated parts of CADI can be optionally implemented. This applies to both single
method calls of the common CADI interface and to those in independent classes of the CADI
class hierarchy.

1 Introduction
1.1 About the Component Architecture Debug Interface

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 1-10
Non-Confidential

1.2 Class hierarchy
This section describes the CADI class interface.

 Note

• This guide distinguishes references to the Component Architecture Debug Interface (CADI) as a
whole from references to the individual CADI class by using a monospace font for the CADI class.

• A CADI simulation is the simulation of a platform that can be accessed by using an implementation
of the CADI interface. Typically at least one platform component exposes an implementation of class
CADI. This component can be referred to as a CADI target.

• The methods in the top-level classes are pure virtual. The methods of the lowest-level user classes
implement the component-specific behavior.

MySystemCADICallbackObj
(user class)

CAInterface

CADISimulationFactory

CADIBroker

CADISimulation

CADIErrorCallback

CADISimulationCallback

CADICallbackObj
Semihosting API
Execution API
Extension API

MySystem_factory
(user class)

MySystemCADI
(user class)

MyTargetCADI
(user class)

Optional
classes

CADI
Setup API

Breakpoint API
Execution API

Register API

Virtual memory API
Cache API

Parameter API

Reverse Semihosting API
Extension API

Memory API

Figure 1-1 CADI class hierarchy overview

Most of the CADI functionality is exposed through these classes:

CADI
The CADI object handles the requests from the outside world into the target.

The models implement CADI objects.

A pointer to the CADI object can be obtained from the GetTarget() method of the
CADISimulation class.

1 Introduction
1.2 Class hierarchy

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 1-11
Non-Confidential

CADICallbackObj
The CADICallbackObj handles the calls from the target to the debugger to, for example, indicate
state changes in the model.

The debugger must implement CADICallbackObj objects. Register them with the target.

The CADICallbackObj is also used for semihosting requests. Instead of requiring the simulation
of a full operating system, CADI provides the option to forward the console operations from the
target to the host operating system.

You could poll the state of the target model each cycle through the regular CADI interface. It is more
efficient however to have the target use the CADICallbackObj callbacks as required. Using callbacks
eliminates the large overhead that results from frequent polling calls.

The model can call the callback methods at any time during simulation. ARM recommends, however,
that the callback handlers do as little processing as possible and, for example, only set flags for later
processing. The debugger can do the remaining processing without delaying the simulation.

There are several conceptually distinct parts of the CADI interface:

CAInterface class
This class is the base class for all CADI classes and enables creation and use of software models
that are built around components and interfaces.

Simulation and factory classes
These classes provide the mechanism for creating and running simulations:
• CADIBroker class.
• CADISimulationFactory class.
• CADIErrorCallback class.
• CADISimulationCallback class.
• CADISimulation class.

CADI class
The methods in this class provide the main interfaces for configuring and running the target. Use
these methods to:
• Set up the target.
• Control target execution.
• Set breakpoints.
• extent the standard interface.
• Access registers.
• Access memory.
• Access cache.

CADICallbackObj class
The methods in this callback class enable the target to communicate with the debugger and:
• Provide semihosting I/O.
• Notify the debugger of a change in execution mode in the target.
• Support extensions to the standard interface.

CADI disassembler classes
If the component supports disassembly, the disassembly interface can obtain the disassembly
during a simulation.
• CADIDisassemblerCB class.
• CADIDisassembler class.

1 Introduction
1.2 Class hierarchy

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 1-12
Non-Confidential

CADI profiling classes
The profiler class enables you to record and monitor profile information about the debugging
session.
• CADIProfilingCallbacks class.
• CADIProfiling class.

 Note

The Fast Models processor components do not support the CADI profiling classes. This guide,
therefore, contains only a high-level overview of the profiling classes.

 Note

See the CADITypes.h file for definitions of enumerations and data structures that CADI uses.

Related references
Appendix A Class Reference on page Appx-A-82.
A.1 CAInterface class on page Appx-A-83.
A.2 CADIBroker class on page Appx-A-85.
A.3 CADISimulationFactory class on page Appx-A-88.
A.4 CADIErrorCallback class on page Appx-A-90.
A.5 CADISimulationCallback class on page Appx-A-91.
A.6 CADISimulation class on page Appx-A-92.
A.7 CADICallbackObj class on page Appx-A-94.
A.8 CADI class on page Appx-A-98.
A.9 CADIDisassemblerCB class on page Appx-A-121.
A.10 CADIDisassembler class on page Appx-A-123.
A.11 CADIProfilingCallbacks class on page Appx-A-127.
A.12 CADIProfiling class on page Appx-A-128.
Appendix B Data Structure Reference on page Appx-B-137.

1 Introduction
1.2 Class hierarchy

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 1-13
Non-Confidential

1.3 CADI classes used to connect to a simulation
This section describes the CADI classes used to connect to a simulation.

This section contains the following subsections:
• 1.3.1 About the CADI classes used to connect to a simulation on page 1-14.
• 1.3.2 CADI classes used to control the simulation target on page 1-15.
• 1.3.3 Optional implementation on page 1-15.

1.3.1 About the CADI classes used to connect to a simulation

This section describes the interface class, the CADIBroker class, CADISimulation class, and the
CADISimulationCallback and CADIErrorCallback callback classes.

Model library

Debugger
(interface for connecting to a simulation)

CADIBroker

CADISimulationFactory

CADISimulation

CADISimulationCallback CADIErrorCallback

Register
callbacksCreate new simulation or

connect to existing one

Figure 1-2 Relationship between CADI interface classes used to connect to a target

Each interface class is derived from CAInterface to enable compatibility checks and the extension
mechanism.

The CADIBroker class manages the connection to a CADI simulation and consequently to a target. It
provides a CADI simulation by either:
• Returning an existing simulation that can be connected to. A CADISimulation object is directly

returned.
• Obtaining a CADI simulation factory that instantiates a CADI simulation. A pointer a

CADISimulationFactory object is selected and obtained. If a CADI factory creates a simulation, it
transfers the pointer to the new simulation to the broker

The CADISimulation class interacts with the CADISimulationCallback and CADIErrorCallback
callback classes. An object of each of these classes must be registered to it. Pointers to the callback
objects are forwarded to the simulation and used for asynchronous communication between the target
and debugger.

It is necessary to unregister the callback before ending the simulation. This avoids problems that might
result from disconnecting from a simulation without shutting it down.

Related references
A.1 CAInterface class on page Appx-A-83.

1 Introduction
1.3 CADI classes used to connect to a simulation

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 1-14
Non-Confidential

1.3.2 CADI classes used to control the simulation target

The CADISimulation method GetTarget() returns a pointer, of type CAInterface, to the required
target component. After calling its ObtainInterface() method to validate interface compatibility, the
target can convert the pointer to the wanted interface type.

The standard CADI interfaces that can be obtained from the target pointer are CADI, CADIDisassembler,
CADIProfiling, or a type that corresponds to a custom extension. The type is typically CADI or
CADIDisassembler. These interfaces might not, however, be implemented for a target.

You can add interface extensions, alongside the standard types. Dedicated callback objects must be
registered. Communication is typically asynchronous into both directions, but the caller must manage
synchronization of calls and any associated callbacks.

Simulation

Debugger
(interface for connecting to a target component)

Target

CADIProfiling

Get pointer to target

Target component interface

CADI

CADIDisassembler

Object derived from
CADIDisassemblerCB

Object derived from
CADICallbackObj

Object derived from
CADIProfilingCallbacks

Get CADI
pointer

Get
CADIProfiling

pointer

Get
CADIDisassembler

pointer

Register

Register

Register

CADI classes for target
connection mechanism

Figure 1-3 Targeted interface acquisition, showing the relationship between CADI classes for
target interface. All of the objects shown derive from CAInterface.

Related references
1.3.3 Optional implementation on page 1-15.
Chapter 4 CADI Extension Mechanism on page 4-74.

1.3.3 Optional implementation

A given CADI target might only implement a subset of the CADI interface methods. For API
implementation details for the CADI targets of a specific model, see the model documentation.

A target for a memory model, for example, only requires the Memory API and does not require the
Register API or the Disassembly API.

1 Introduction
1.3 CADI classes used to connect to a simulation

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 1-15
Non-Confidential

The disassembler and profiler classes are optional.

CADIDisassemblerCB

CADIDisassembler

Optional
MyTargetProfiler

(user class)

CAInterface

CADIProfiling

CADIProfilingCallbacks

Optional
MyTargetDisassembler

(user class)

Standard classes
that are provided in
all implementations

Standard classes that might not be implemented

Custom
classes

Figure 1-4 Optional CADI classes

The Breakpoint and Execution APIs might not be implemented by all processor models. Unimplemented
methods that never return successfully return CADI_STATUS_CmdNotSupported.

1 Introduction
1.3 CADI classes used to connect to a simulation

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 1-16
Non-Confidential

Chapter 2
Target Connection Mechanism

This chapter describes the target connection mechanism.

It contains the following sections:
• 2.1 About the target connection mechanism on page 2-18.
• 2.2 Requirements for the target connection mechanism on page 2-20.
• 2.3 Connecting to a simulation on page 2-25.
• 2.4 Using GetSimulationFactories() on page 2-27.
• 2.5 Getting existing CADI simulations on page 2-31.
• 2.6 Getting a target interface on page 2-34.
• 2.7 Disconnecting from a target on page 2-36.

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-17
Non-Confidential

2.1 About the target connection mechanism
This section describes the target connection mechanism.

CADI 2.0 provides two well-defined mechanisms for creating a connection to a target:

• Connecting to an existing simulation that was, for example, started from another tool.
• Instantiating a simulation and connecting to one or more of its components.

The interface also provides a clean way to disconnect from a target.

The connection mechanism consists of a set of interface classes that must be implemented.

Advantages of the CADI 2.0 connection mechanism over previous CADI versions are the ability to:
• Create multiple instances of the same CADISimulation.
• Fully configure and instantiate a simulation platform before connecting to one of its components.
• Obtain an extension interface.

Debugger

Broker detects
simulations and

returns list to
debugger

Exposed
interfaces

CADIDisassembler
(target 1)

CADIDisassembler
(target n)

... Custom interfaces
(target n)

...
CADI

(target 1)

CADI
(target n)

...

CADISimulation 3

CADISimulation 1

CADISimulation 2

CADIBroker

CADISimulation 4

One of the existing
simulations is selected by

the debugger

Debugger uses pointer
to a specific target in

the selected
simulation

simulation * simulation_list[]
broker *

cadi_target * target_info_list[]

Detects

Detects
Detects

Detects
A the pointer to the

simulation is used to
get a list of targets

Custom interface
(target 1)

Figure 2-1 Connection sequence for existing simulation

2 Target Connection Mechanism
2.1 About the target connection mechanism

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-18
Non-Confidential

Debugger

Exposed
interfaces

Instantiates

CADISimulationFactory
 1

CADIDisassembler
(target 1)

Factory obtained
from broker

Ownership of simulation
passes from factory to broker

CADIDisassembler
(target n)

...

Custom interfaces
(target n)

...CADI
(target 1)

CADI
(target n)

...

Owns

simulation * factory_list[]
broker *

CADIBroker
Pointer to the

simulation is used
to get a target

CADISimulationFactory
 n

Owns

...

CADISimulation

Debugger uses pointer
to a specific target in
the new simulation

cadi_target * target_info_list[]

Broker returns list
of factories to

debugger

Custom interface
(target 1)

Figure 2-2 Connection sequence for new simulation

2 Target Connection Mechanism
2.1 About the target connection mechanism

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-19
Non-Confidential

2.2 Requirements for the target connection mechanism
Implementing the target side of the CADI target connection mechanism requires one global function, and
the corresponding interface classes and their methods. There are specific requirements for the
implementation of each class. This section describes them.

This section contains the following subsections:
• 2.2.1 CADIBroker on page 2-20.
• 2.2.2 CADISimulationFactory on page 2-21.
• 2.2.3 CADISimulation on page 2-22.
• 2.2.4 ObtainInterface() on page 2-23.
• 2.2.5 Callback objects on page 2-23.

2.2.1 CADIBroker

The CADIBroker is is the central element of the target connection mechanism. It establishes the
connection to existing simulations and the instantiation of new simulations. This section describes it.

CADIBroker creation

The CreateCADIBroker() function in a model library indicates the presence of a CADI interface. The
function returns a pointer to a CADIBroker object.

You can implement the function in one of two ways depending on how the broker is implemented in the
addressed library:
• The CADI broker is a singleton object and the call returns a pointer to it.
• A new CADI broker object is instantiated and the call returns a pointer to it.

Example 2-1 Obtaining a pointer from a new CADIBroker object

CADI_WEXP eslapi::CADIBroker* CreateCADIBroker()
{
 return (new MyCADIBroker());
}

CADI simulation connection

This section describes mechanisms for connecting to a simulation.

Connect to an existing simulation
The broker returns details of all running simulations. This information is used to create a
connection to an existing simulation.

Create a simulation and connect to it
The broker returns a list of simulation factories. This information is used to instantiate a new
simulation.

For both connection methods, the debugger must cleanly disconnect from running simulations.
Disconnection is required for:
• Shutting down a simulation because of an event in the simulation or debugger.
• Ending the debugger session, but keeping alive the simulation for other current or future debug

connections.

Connect to an existing simulation: simulation selection and connection

The SelectSimulation() method receives two pointers to callback objects (CADISimulationCallback
and CADIErrorCallback) and an array containing the enable vector for CADISimulationCallback.
These callback objects might be used during the SelectSimulation() call if, for example, the
simulation wants to shut down at the same moment that the debugger starts connecting to it.

2 Target Connection Mechanism
2.2 Requirements for the target connection mechanism

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-20
Non-Confidential

SelectSimulation() also forwards the callback objects to the returned CADI simulation.

The CADISimulationCallback object provides the CADISimulation object with a mechanism to
guarantee a clean disconnect of the debugger.

This way of connecting is typically associated with a server-client technique where a CADI broker
represents the client. The server might be, for example, directly embedded into a simulation platform or
implemented within an environment that runs the simulation.

Create a simulation and connect to it: simulation factory list retrieval and simulation
instantiation

The broker returns a list of pointers to the available simulation factories. The broker controls the
simulation factory objects. It must destroy them before it is released.

After a CADI simulation factory is obtained, it is used to establish a connection to a newly instantiated
CADI simulation:
1. The simulation is instantiated.
2. The new simulation returns a pointer to the corresponding CADISimulation object.
3. The pointer is used to select a target in the simulation and connect to it.

In addition to managing the simulation factories, the CADI broker is also responsible for the CADI
simulation objects (especially if the broker directly owns the simulation objects).

Related references
2.2.2 CADISimulationFactory on page 2-21.

Preprocessor define settings

This section describes the preprocessor define settings.

Example 2-2 Obtaining a pointer from a new CADIBroker object

CADI_WEXP eslapi::CADIBroker* CreateCADIBroker()
{
 return (new MyCADIBroker());
}

The MyCADIBroker class implements the CADI broker. The macro CADI_WEXP preceding the function
prototype is only relevant for exporting this symbol from a Windows DLL:
• Setting the preprocessor define EXPORT_CADI sets CADI_WEXP to __declspec(dllexport) that makes

the CreateCADIBroker() function call to be an exported symbol for the built model DLL.
• Not setting the preprocessor defines EXPORT_CADI and NO_IMPORT_CADI causes CADI_WEXP to be set

to __declspec(dllimport). This makes the CreateCADIBroker() function call an imported symbol
for the built model DLL.

• Not setting the preprocessor define EXPORT_CADI, but setting the preprocessor define
NO_IMPORT_CADI, defines CADI_WEXP to be empty.

For more information on these settings, see the CADICommon.h file.

A similar scheme applies to the macro ESLAPI_WEXP and the preprocessor defines EXPORT_ESLAPI and
NO_IMPORT_ESLAPI. This macro declares the symbol attributes for CAInterface. Because CADI is
derived from CAInterface, these preprocessor defines must be set if building a model DLL that exposes
a CADI interface.

2.2.2 CADISimulationFactory

The CADISimulationFactory creates a new CADI simulation.

The simulation factory:

2 Target Connection Mechanism
2.2 Requirements for the target connection mechanism

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-21
Non-Confidential

• Provides basic information (name and a brief description) about the simulation associated to it.
• Exposes information on the available instantiation time parameters.

 Note

During the process of creating a CADI simulation, you can either configure:
— All of the instantiation-time parameters for the entire platform.
— Only the components in the simulation.

A typical platform is hierarchical in design and contains multiple components. The name of a parameter
indicates its ownership of a dedicated subcomponent. A dedicated specifier represents each hierarchical
level and its corresponding component:

• The identifier is typically the name of the component at that level.
• The levels are separated by dots.
• The last element of a specification string is the parameter name itself.

For example, the size parameter for a memory component named mem in the processor component of a
system named socsystem is socsystem.core.mem.size.

 Note

In this guide, the term target is typically used instead of component. Both terms describe a subsystem, or
a single component, in a platform.

During instantiation of a CADI simulation, the corresponding interface method receives the parameters:

• It is not mandatory to set all parameters.
• If the caller does not provide a value for a parameter, the simulation factory uses the default value

retrieved from the parameter information.
• Parameters forwarded to the simulation during instantiation are not required to be in the same order

as the received parameter list.
• The forwarded parameter list is not required to be complete.
• The caller must signal the end of a list by adding an additional terminating item with the parameter

ID 0xFFFFFFFF.
 Note

The terminating ID of 0xFFFFFFFF is the same as static_cast<uint32_t>(-1).

As with SelectSimulation(), the Instantiate() method can receive pointers to
CADISimulationCallback and CADIErrorCallback objects. The pointers are registered to the CADI
simulation returned to the caller. These callbacks are used, for example, to send messages from the
factory to the caller during instantiation.

 Caution

A CADI simulation factory is intended to exist only temporarily. As soon as the required CADI
simulation is created, the Release() method must be called to release the factory.

Because of the temporary existence of the factory, CADIBroker becomes the owner of the simulation.

2.2.3 CADISimulation

The CADISimulation class represents the connection to a simulated platform and provides information
about platform targets that expose a CADI interface.

Querying this object returns a list with an element for each target. The descriptions include:

2 Target Connection Mechanism
2.2 Requirements for the target connection mechanism

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-22
Non-Confidential

• The target ID that must be used for interaction between the caller and CADI simulation related to this
target.

• Fundamental properties that might have a major impact on the behavior of an attached debugger (for
example if the target is able to execute software).

The caller uses the returned information to select a target. To retrieve a pointer to the corresponding
target, call the GetTarget() method of the CADISimulation. The returned pointer is to CAInterface in
the base class of the CADI interface.

As with other classes in the target connection mechanism, CADISimulation contains a Release()
method to disconnect the caller from a simulation. After Release() is called, an attached debugger must
not address the simulation or a target previously obtained from the simulation. Calling a released
simulation might raise an access violation because the connected target or simulation, and the associated
CADI object, might already be destroyed. The CADI simulation object owns all target interfaces
associated with the simulation and is therefore responsible for their creation and destruction.

A major difference between the Release() call of CADISimulation and those of the other classes is the
shutdown parameter:
• If true, the implementation for this method must manage shutting down the connected simulation.

Shutdown includes informing other connected callers about the shutdown and waiting for them to
acknowledge the request by calling Release() themselves.

• If false, a simulation might be kept alive after disconnection. This might be the case if the debugger
is one of multiple callers and there is no requirement to enforce a shutdown on disconnect.

Typically, a CADISimulationCallback object and a CADIErrorCallback object are registered to a
CADISimulation through the corresponding methods that established the connection. Dedicated methods
are provided to add additional callback objects to the simulation.

2.2.4 ObtainInterface()

This section describes the ObtainInterface() method.

ObtainInterface() must be implemented for all of the CADI classes used in the target connection
mechanism. ObtainInterface() identifies the availability of a specific interface and the version of the
interface. It performs a compatibility check for the caller:
• The implementation first compares the interface name and revision number with those forwarded

through the method call.

If no compatible interface is found, the same checks are performed for base classes if they are
available.

• If the checks are successful and the requested interface is available, a CAInterface pointer is
returned. The pointer type must be converted to the interface class that was actually requested.

• If no compatible interface is found, a NULL pointer is returned.

Related references
4.2 Extending the target side on page 4-76.

2.2.5 Callback objects

This section describes the callback classes that the target connection mechanism of CADI uses.

CADIErrorCallback
CADIErrorCallback is primarily used to report errors from a simulation to the registered caller.
This manages errors occurring during the target connection phase and during the simulation
itself.

2 Target Connection Mechanism
2.2 Requirements for the target connection mechanism

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-23
Non-Confidential

CADISimulationCallback
CADISimulationCallback is required for system-wide communication from a CADI simulation
to the caller.
Callback methods of this class are of special importance for the CADI interface because they are
required to guarantee a clean disconnection of a caller from a target or simulation and, if
required, a clean shutdown of the simulation. A shutdown requires the simShutdown() and
simKilled() methods:
• simShutdown() indicates to a caller that the simulation is shutting down. That might be the

result of a simulation being requested to shut down by an internal event or by another
attached debugger receiving this callback.

A caller must unregister all callback objects and release all obtained interface pointers
acquired during target connection.

• If it is not possible to cleanly disconnect and shut down the simulation, the simKilled()
callback must be called. This tells the caller that the interface no longer exists because of, for
example, a hardware failure or memory access error.

After simKilled() is received, a caller must not access the corresponding simulation pointer
or objects owned by the simulation.

Related references
2.7 Disconnecting from a target on page 2-36.

2 Target Connection Mechanism
2.2 Requirements for the target connection mechanism

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-24
Non-Confidential

2.3 Connecting to a simulation
This section describes in detail how to connect to a CADI target and how to use the required factory
mechanism.

This section contains the following subsections:
• 2.3.1 Opening the model library on page 2-25.
• 2.3.2 Creating the CADIBroker on page 2-25.

2.3.1 Opening the model library

The first step to establish a connection to a CADI simulation is opening the dynamic library that
implements the CADI interface. This is not necessarily the same library that implements the simulation
itself.

If remotely connecting to a simulation, the opened dynamic library must translate the calls arriving at the
CADI interface into a format that can be transferred through a common interface such as, for example,
TCP.

2.3.2 Creating the CADIBroker

After opening the library, the next step in establishing a target connection is calling
CreateCADIBroker(). This call instantiates a new broker and returns a pointer to it.

If the library implements the broker as a singleton object, CreateCADIBroker() returns a pointer to the
singleton object.

1. Open model library Dynamic model
library

Debugger

CADIBroker *

2. Call CreateCADIBroker()

4. Return pointer to CADIBroker

5. Call ObtainInterface()

6. Receive pointer to CAInterface and perform a
static_cast to convert to specific interface
pointer

CADIBroker

3. Instantiate
 CADIBroker

Figure 2-3 Creating a CADIBroker

The ObtainInterface() method from the returned broker must be called to verify compatibility with
the caller. The obtained CAInterface pointer must be converted back to a CADIBroker pointer using a
static_cast.

2 Target Connection Mechanism
2.3 Connecting to a simulation

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-25
Non-Confidential

Creating a CADIBroker

//get "CreateCADIBroker" symbol from dynamic library "dll"
void* entry = lookup_symbol(dll, "CreateCADIBroker");
CADIBroker* cadi_broker =
 ((*eslapi::CreateCADIBroker_t)entry)();
//compatibility check
CAInterface* ca_interface;
if_name_t ifName = "eslapi.CADIBroker2";
if_rev_t minRev = 0;
if_rev_t actualRev = 0;
ca_interface = cadi_broker->ObtainInterface(ifName,
 minRev,
 &actualRev);
if (ca_interface == NULL)
{
 //something went wrong, handle it...
}
else
{
 cadi_broker = static_cast<CADIBroker*>(ca_interface);
}
 ...

 Note

Unless otherwise specified, the instructions apply to either:
• Connecting to an existing simulation.
• Instantiating a new simulation.

Alternatives for connecting to a simulation are:
• Get the simulation factories owned by the broker.
• Get the currently running simulations.

Related references
2.4 Using GetSimulationFactories() on page 2-27.
2.5 Getting existing CADI simulations on page 2-31.

2 Target Connection Mechanism
2.3 Connecting to a simulation

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-26
Non-Confidential

2.4 Using GetSimulationFactories()
One way to establish a connection to a simulation target within CADI is to instantiate a CADI simulation
and to connect to one of its targets.

To retrieve the list of available CADI simulation factories, the caller must execute the
GetSimulationFactories() method in the CADI broker. The result of this call is an array of
CADISimulationFactory pointers.

The list of simulation factories is static for a CADI broker, therefore it is only required to retrieve the list
once at the beginning of a debug session.

 Note

The caller is responsible for releasing, but not deleting, all obtained simulation factory objects. It is not
sufficient to release only those objects that have been used to instantiate a simulation.

1. GetSimulationFactories()

Dynamic model libraryDebugger

CADIBroker *

2. Return list of simulation
 factories in target

CADIBroker

Static list of
simulation
factories

CADISimulationFactory ** CADISimulationFactory

Figure 2-4 Getting the CADI simulation factories

After retrieving the list of available simulation factories, the next step is to call the ObtainInterface()
method of the CADI broker to check the compatibility of the requested factory. A static_cast() is
required for the interface, to create the CADI broker.

After obtaining the appropriate CADI simulation factory, the caller must prepare the configuration of the
targeted platform. This preparation includes retrieving the available parameters and their settings.

Call the GetParamterInfos() method of CADISimulationFactory to retrieve the parameter
information. It returns a list with descriptions of the configurable parameters (that is of data type
CADIParameterInfo_t). This list includes information such as the parameter ID for later reference, the
parameter type, and the default value.

The caller can create a list of parameter values (of type CADIParameterValue_t) that are used for
configuration of the platform. This list must end with an extra element that has the parameter ID
0xFFFFFFFF. It is required to add this element because not all parameters require setting and the order of
the parameters within the list is undefined.

 Note

Parameters that are not part of the value list that the caller sends are set to their default value.

2 Target Connection Mechanism
2.4 Using GetSimulationFactories()

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-27
Non-Confidential

The ID 0xFFFFFFFF is equal to static_cast<uint32_t>(-1).

1. Instantiate CADISimulation
 with CADISimulationFactory

Dynamic model libraryDebugger

CADISimulation *

CADISimulationFactory*

CADISimulationFactory 3

CADISimulationFactory 2

CADISimulationFactory 1

2. Return pointer to simulation Instantiate
CADISimulation

CADISimulation 2

Figure 2-5 Instantiating a CADI simulation

The list of parameter values is forwarded to the Instantiate() method of the simulation factory. This
call creates the actual CADI simulation. It might also receive a pointer to a CADIErrorCallback object
and a pointer to a CADISimulationCallback object. These objects are automatically registered to the
newly instantiated CADI simulation. The caller must provide them.

The result of the simulation instantiation is a pointer to a CADISimulation object. A compatibility check
consisting of its ObtainInterface() method and calling static_cast() must be performed.

After the CADI simulation is created, the simulation factory is no longer required. The pointer to the
corresponding CADISimulationFactory can therefore be released. This release can be safely done for
these reasons:
• The CADI broker manages the CADI simulation.
• The simulation factory can be retrieved again from the broker if necessary.

2 Target Connection Mechanism
2.4 Using GetSimulationFactories()

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-28
Non-Confidential

Getting the simulation factory

// Having already obtained a pointer to the CADIBroker before
// which is called cadi_broker.
// Callback objects will be registered to CADISimulation.
MyCADIErrorCallback errorCallbackObject;
MyCADISimulationCallback simulationCallbackObject;
// Enable vector for MyCADISimulationCallback.
char simulationCallbacksEnable[eslapi::CADI_SIM_CB_Count];
// Enable all callbacks of MyCADISimulationCallback.
memset(simulationCallbacksEnable,
 1, eslapi::CADI_SIM_CB_Count * sizeof(char));
// Preparing parameters for GetSimulationFactories().
uint32_t desiredNumberOfFactories = 10; // Arbitrarily chosen, must be large
 // enough to get all factories.
uint32_t startFactoryIndex = 0;
uint32_t actualNumberOfFactories = 0;
// Array of CADISimulationFactory pointers to store the broker's factories.
eslapi::CADISimulationFactory** factoryList =
 new eslapi::CADISimulationFactory*[desiredNumberOfFactories]();
eslapi::CADIReturn_t status;
status = cadi_broker->GetSimulationFactories(startFactoryIndex,
 desiredNumberOfFactories,
 factoryList,
 &actualNumberOfFactories);
if (status != eslapi::CADI_STATUS_OK)
{
 // GetSimulationFactories() failed.
}
// ...decide which entry in factory list to use,
// Let's assume we chose the second (index '1'!!)...
// Check compatibility of factory.
eslapi::if_name_t ifNameFactory = "eslapi.CADISimulationFactory2";
eslapi::if_rev_t minRevFactory = 0;
eslapi::if_rev_t actualRevFactory = 0;
if (factoryList[1]->ObtainInterface(ifNameFactory,
 minRevFactory,
 &actualRevFactory) == NULL)
{
 // Factory is incompatible.
}
// Continue with instantiation of a simulation...
uint32_t desiredNumberOfParameterInfos = 20; //Arbitrarily chosen, must
 // be large enough to store all parameter infos.
uint32_t startParameterInfoIndex = 0;
uint32_t actualNumberOfParameterInfos = 0;
eslapi::CADIParameterInfo_t* parameterInfoList = new
eslapi::CADIParameterInfo_t[desiredNumberOfParameterInfos]();
status = factoryList[1]->GetParameterInfos(startParameterInfoIndex,
 desiredNumberOfParameterInfos,
 parameterInfoList,
 &actualNumberOfParameterInfos);
if (status != eslapi::CADI_STATUS_OK)
{
 // GetParameterInfos() failed.
}
eslapi::CADIParameterValue_t* parameterValues =
 new eslapi::CADIParameterValue_t[actualNumberOfParameterInfos + 1]();
 // + additional "terminating" element
// ...fill the parameter values accordingly...
// Set terminating element.
parameterValues[actualNumberOfParameterInfos].parameterID =
 static_cast<uint32_t>(-1);
cadi_simulation = factoryList[1]->Instantiate(parameterValues,
 &errorCallbackObject,
 &simulationCallbackObject,
 simulationCallbacksEnable);
if (cadi_simulation == NULL)
{
 //instantiation failed
}
// Check compatibility of simulation.
eslapi::if_name_t ifNameSimulation = "eslapi.CADISimulation2";
eslapi::if_rev_t minRevSimulation = 0;
eslapi::if_rev_t actualRevSimulation = 0;
if (cadi_simulation->ObtainInterface(ifNameSimulation,
 minRevSimulation,
 &actualRevSimulation) == NULL)
{
 // Interface incompatible.
}
// No longer needed.
// Release CADISimulationFactories, no longer needed.
for (uint32_t i = 0; i < actualNumberOfFactories; i++)

2 Target Connection Mechanism
2.4 Using GetSimulationFactories()

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-29
Non-Confidential

 factoryList[1]->Release();
// No longer needed, destroy just the array.
delete[] factoryList;
// Continue with obtaining the CADI interface from simulation...

Related references
2.3.2 Creating the CADIBroker on page 2-25.

2 Target Connection Mechanism
2.4 Using GetSimulationFactories()

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-30
Non-Confidential

2.5 Getting existing CADI simulations
If the caller connects to a running CADI simulation, it must retrieve information on this simulation by
calling the GetSimulationInfos() method of the CADI broker. This call returns an internal list of
available simulations that the broker maintains.

The number of elements that are retrieved depends on:

• The size of the buffer that is used to fetch the list.
• The number of simulations that are available.
• The specified start index into the internal buffer in the broker.

The list of simulations that the broker holds can change dynamically. Consider updating this list regularly
to detect the creation or destruction of CADI simulations.

1. Call
GetSimulationInfos()

Dynamic model libraryDebugger

CADISimulationInfo_t *

CADIBroker*

3. Return list of
 running simulations

2. Get info on
 running simulations

CADIBroker

Detecting running
simulations

Figure 2-6 Getting information on existing CADI simulations

Based on the acquired information, the caller uses SelectSimulation() to select a simulation to attach
to. To specify a simulation, its ID (as part of the simulation info) must be used.

SelectSimulation() can receive pointers to a CADIErrorCallback object and a
CADISimulationCallback object. These objects are automatically registered to the requested simulation.
The caller must provide these objects.

 Note

It is not required that a specific simulation ID matches the corresponding index for the simulation within
the internal list that the broker holds.

2 Target Connection Mechanism
2.5 Getting existing CADI simulations

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-31
Non-Confidential

Get pointer to running CADI
simulation based on content of
CADISimulationInfos

Dynamic model libraryDebugger

CADISimulationInfo_t *

CADISimulation * Detecting running
simulations

Figure 2-7 Getting an existing CADI simulation

The result of SelectSimulation() is a CADISimulation pointer to the requested simulation. The
ObtainInterface() method and the static_cast scheme must be applied to check validity.

A typical implementation for getting an existing CADI simulation

// Having already obtained a pointer to the CADIBroker before
// which is called cadi_broker.
MyCADIErrorCallback errorCallbackObject;
MyCADISimulationCallback simulationCallbackObject;
char simulationCallbacksEnable[eslapi::CADI_SIM_CB_Count];
memset(simulationCallbacksEnable,
 1, eslapi::CADI_SIM_CB_Count * sizeof(char)); // Enable all callbacks.
uint32_t desiredNumberOfSimulations = 10;
uint32_t startSimulationInfoIndex = 0;
uint32_t actualNumberOfSimulations = 0;
eslapi::CADISimulationInfo_t* simulationList = new
 eslapi::CADISimulationInfo_t[desiredNumberOfSimulations]();
eslapi::CADIReturn_t status;
status = cadi_broker->GetSimulationInfos(startSimulationInfoIndex,
 desiredNumberOfSimulations,
 simulationList,
 &actualNumberOfSimulations);
if (status != eslapi::CADI_STATUS_OK)
{
 // GetSimulationInfos() failed.
}
// ...
// decide which simulation to connect to,
// for this example using the second one (index '\1'!!)
// ...
CADISimulation* cadi_simulation
 = cadi_broker->SelectSimulation(simulationList[1].id,
 &errorCallbackObject,
 &simulationCallbackObject,
 simulationCallbacksEnable);
if (cadi_simulation == NULL)
{
 // Connection to simulation failed.
}
// Check compatibility.
eslapi::if_name_t ifNameSimulation = "eslapi.CADISimulation2";
eslapi::if_rev_t minRevSimulation = 0;
eslapi::if_rev_t actualRevSimulation = 0;
if (cadi_simulation->ObtainInterface(ifNameSimulation,
 minRevSimulation,
 &actualRevSimulation) == NULL)

2 Target Connection Mechanism
2.5 Getting existing CADI simulations

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-32
Non-Confidential

 Note

The size of eslapi::CADISimulationInfo_t is 8kB. When allocating arrays of this object on the stack,
do not to exceed the stack allocation limits.

2 Target Connection Mechanism
2.5 Getting existing CADI simulations

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-33
Non-Confidential

2.6 Getting a target interface
After obtaining a CADISimulation pointer, an individual target can be connected to. The steps are the
same for connecting to an existing simulation or for instantiating a new one.

1. Collect target information from
 components in simulation

Dynamic model libraryDebugger

CADISimulation *

CADI
(component 4)CADI

(component 3)CADI
(component 2)CADI

(component 1)

CADISimulation

2. GetTarget()

3. Return CAInterface pointer to
 the interface of component 1

CAInterface *
(to target component)

Figure 2-8 Getting a target interface

The CADISimulation class holds information on the contained target components that can be retrieved
using the GetTargetInfos() method. This information includes the ID and properties of the target that
might be important for a debugger such as, for example, whether the target executes software.

The caller can decide which target to connect to based on the retrieved information. The required
component is specified by its ID. The ID is forwarded as a parameter to the GetTarget() method in a
later call.

The result of the GetTarget() call is a CAInterface pointer to the implementation of the CADI
interface in the target component. This pointer is then used to obtain the required interface in
combination with a compatibility check by calling ObtainInterface(). Typically, the requested
interface is of type CADI, but other interfaces such as CADIDisassembler, CADIProfiling, or a custom
extension, can also be requested.

After acquiring another non-NULL CAInterface pointer, the caller must perform a static_cast to the
appropriate type to access its full functionality.

2 Target Connection Mechanism
2.6 Getting a target interface

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-34
Non-Confidential

1. ObtainInterface()

Dynamic model libraryDebugger

CAInterface *
(to target component)

CADI *

CADI
(interface of target

component)

2. Return CAInterface base class pointer
 of requested interface

3. Perform static_cast to convert
 CAInterface *
 to specific interface pointer
 (for this example, a CADI pointer)

CAInterface *

Figure 2-9 Getting a CADI interface

Typical implementation for getting a CADI interface

// Having already obtained a CADISimulation pointer called
// cadi_simulation.
uint32_t desiredNumberOfTargetInfos = 20; // Arbitrarily chosen, must be
 // large enough to get all targets.
uint32_t startTargetInfoIndex = 0;
uint32_t actualNumberOfTargetInfos = 0;
eslapi::CADITargetInfo_t *targetInfoList =
 new eslapi::CADITargetInfo_t[desiredNumberOfTargetInfos]();
status = cadi_simulation->GetTargetInfos(startTargetInfoIndex,
 desiredNumberOfTargetInfos,
 targetInfoList,
 &actualNumberOfTargetInfos);
if (status != eslapi::CADI_STATUS_OK)
{
 // GetTargetInfos() failed.
// ...
// decide which target to connect to, we take the fourth (index '3'!!)
// ...
eslapi::CAInterface* ca_interface =
 cadi_simulation->GetTarget(targetInfoList[3].id);
if (ca_interface == NULL)
{
 // GetTarget() failed.
}
// Requesting CADI 2.0 interface.
eslapi::if_name_t ifNameTarget = "eslapi.CADI2";
eslapi::if_rev_t minRevTarget = 0;
eslapi::if_rev_t actualRevTarget = 0;
ca_interface = ca_interface->ObtainInterface(ifNameTarget,
 minRevTarget,
 &actualRevTarget);
if (ca_interface == NULL)
{
 // Unsupported or incompatible interface.
}
// Converting CAInterface* to CADI*.
CADI* cadi = static_cast<CADI*>(ca_interface);
// It might be necessary to connect to other targets later on, hence
// keeping the target infos for now.
// Continue using CADI ...

2 Target Connection Mechanism
2.6 Getting a target interface

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-35
Non-Confidential

2.7 Disconnecting from a target
The target connection mechanism in CADI enables establishing connections to CADI targets. It is also
responsible for a clean disconnection from targets and the release of a connected simulation object.

This section contains the following subsections:
• 2.7.1 About disconnecting from a target on page 2-36.
• 2.7.2 Deleting pointers to registered callbacks on page 2-36.
• 2.7.3 Releasing the objects of the target connection mechanism on page 2-36.
• 2.7.4 Typical shutdown scenarios on page 2-37.

2.7.1 About disconnecting from a target

This section describes how to disconnect from a target.

The primary way to disconnect from a simulation is to use the Release() method of those target-side
classes that are involved in the connection mechanism. After this method is called, the caller must ensure
that it does not start any additional interaction with the connection. The call performs the appropriate
actions on the target-side such as:
• Informing other connected callers.
• If the simulation is to be shut down, destroying objects that are no longer used.

 Caution

The caller must not explicitly destroy any target-side objects. This is the task of the target
implementation and must be triggered through Release() calls wherever appropriate.

Using only Release() calls is acceptable for simple scenarios such as unique and direct connections
between caller and target. For more sophisticated scenarios, however, a well-coordinated disconnection is
required. The CADISimulationCallback class provides two callbacks that are essential for such a
disconnection:

simShutdown()
the simulation signals a request for a clean shutdown.

simKilled()
the simulation signals a hard shutdown. It was not able to be kept alive until a clean shutdown
could be performed. After this call is received, the caller must ensure that it does not access the
CADISimulation or associated CADI objects.

Using these callbacks in combination with the Release() method in the target enables establishing well-
defined procedures for disconnection from a CADI simulation.

2.7.2 Deleting pointers to registered callbacks

A caller typically registers at least one callback object of type CADICallbackObj to a connected target.

To avoid any access violations from the target after a caller has disconnected, the essential first step in
disconnecting is to remove the pointers to all registered callback objects of the caller.

After removal of the callback object pointers, no additional action is required by the caller on the target
because the cleanup of the CADI objects is managed by the underlying CADI simulation.

2.7.3 Releasing the objects of the target connection mechanism

In a simple scenario, the release of the CADI target connection mechanism is not complex. It works in
the reverse order of establishing a connection.

1. The CADISimulation must be released for a clean disconnection. Depending on the shutdown
parameter for the method, the simulation is kept alive or destroyed.

2. The Release() method of CADISimulation is responsible for initiating the clean up of the existing
CADI interfaces for a simulation shutdown.

2 Target Connection Mechanism
2.7 Disconnecting from a target

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-36
Non-Confidential

Additionally, the call must close any other connection to the simulation by issuing the corresponding
simulation callbacks. After that it is guaranteed that all connections are removed, the simulation
object and all of its members can be cleanly destroyed.

3. If a CADI factory was used to instantiate a new simulation, the CADISimulationFactory class is
next within the class hierarchy.

As with the other CADI classes, it owns a Release() method but, as mentioned in 2.4 Using
GetSimulationFactories() on page 2-27, the factory can be immediately released after instantiating
the required CADI simulation. It is not necessary to call Release() on the factory during shutdown.

4. The last step in closing a connection is to release the CADI broker. After cleanly releasing all
simulations and factories owned by the broker, the Release() method is only required to destroy the
object it belongs to.

It some cases, however, a broker might contain live and used members. It must ensure that any
connected caller is cleanly disconnected from then and that its own members are destroyed.

Related references
2.4 Using GetSimulationFactories() on page 2-27.

2.7.4 Typical shutdown scenarios

This section describes the typical scenarios for shutting down a simulation.

Single caller and the caller initiates shutdown

A single connected caller initiating a simulation shutdown is the most typical scenario.

The procedure consists of a Release() call to the simulation with either true or false as the shutdown
parameter value. Depending on the parameter value, the simulation is destroyed or kept alive.

Caller CADISimulationRelease()

Figure 2-10 Single caller and simulation shutdown initiated by caller

Single caller and the simulation initiates shutdown

The simulation initiates its shutdown and informs the caller.

This scenario is used, for example, if the simulation offers a user-interface for interaction that permits
ending the simulation. The procedure requires two steps:
1. The simulation that is shutting down, for example because of a corresponding semihosting input,

issues a simShutdown() callback through the registered simulation callback object.
2. The first reaction of the attached caller is to unregister any callback object that is registered to targets

owned by the simulation.
3. After unregistering the callbacks, the caller issues a Release() call to indicate that it does not access

the simulation or targets in the future.

CADISimulation

1. Call simShutdown()
2. Unregister callback objects

3. Call Release()Caller

Figure 2-11 Single caller and simulation shutdown initiated by simulation

The shutdown parameter can be set to false, as the simulation is already shutting down. A value of true
is ignored at this point.

2 Target Connection Mechanism
2.7 Disconnecting from a target

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-37
Non-Confidential

Multiple callers and one of the callers initiates shutdown

The sequence is similar to that for a single caller that initiates shutdown except that the other caller must
also be shut down.

Caller 2

CADISimulation

3. Unregister callback objects
 and call Release(false)

Caller 1
1. Call Release(true)

2. Call simShutdown()

Figure 2-12 Simulation shutdown initiated by caller while multiple callers are attached

1. Call the Release() method for the simulation. The shutdown parameter can be either true or false.
If false, the simulation is not shut down and the sequence ends here.

2. If shutdown is true, there is a requirement for some interaction with all other attached callers. To
indicate the demand to shut down, the simulation issues the simShutdown() callback to all registered
simulation callback objects that are enabled for this call.

3. The informed callers must stop their communication with the simulation as soon as possible and
remove any registered callback objects from the simulation and its targets.

The affected callers must sign off with a Release() call to announce successful disconnection from
the simulation. Its shutdown parameter is set to false as the shutdown is already in progress (a value
of true is ignored at this point).

4. After all callers have disconnected from the simulation, the CADISimulation object can be destroyed.
5. If all callers have not disconnected, but the simulation must urgently shut down, the simulation sends

a simKilled() callback. If this occurs, the caller must not access the corresponding simulation in the
future.

Multiple callers and the simulation initiates shutdown

Multiple callers are attached to a simulation and the simulation initiates its own shutdown.

This scenario is used, for example, if the simulation offers a user-interface for interaction that permits
ending the simulation:

Caller 2

CADISimulation

2. Unregister callback objects
 and call Release(false)

Caller 1
1. Call simShutdown()

1. Call simShutdown()

2. Unregister callback objects
 and call Release(false)

Figure 2-13 Multiple callers and simulation shutdown initiated by simulation

2 Target Connection Mechanism
2.7 Disconnecting from a target

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-38
Non-Confidential

The main difference between this situation and one in which there are multiple callers and one of the
callers initiates shutdown is the missing Release(true) call:
1. The simulation immediately issues the simShutdown() callbacks to all attached callers that have

registered a simulation callback object.
2. Each informed caller must perform a call to Release(). After all attached callers are signed off, the

simulation can be safely destroyed.

2 Target Connection Mechanism
2.7 Disconnecting from a target

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 2-39
Non-Confidential

Chapter 3
Using the CADI Interface Methods from a Debugger

This chapter describes how a debugger uses the CADI interface to control the target.

It contains the following sections:
• 3.1 CADI accesses from a debugger on page 3-41.
• 3.2 CADIReturn_t return values on page 3-43.
• 3.3 Target connection and configuration on page 3-45.
• 3.4 Register access on page 3-53.
• 3.5 Memory access on page 3-56.
• 3.6 Execution control on page 3-58.
• 3.7 Application loading on page 3-66.
• 3.8 CADI Disassembler on page 3-67.
• 3.9 Using the semihosting API on page 3-71.
• 3.10 Profiling on page 3-73.

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-40
Non-Confidential

3.1 CADI accesses from a debugger
This section describes CADI accesses from a debugger.

This section contains the following subsections:
• 3.1.1 About CADI accesses from a debugger on page 3-41.
• 3.1.2 CADI and threads on page 3-42.

3.1.1 About CADI accesses from a debugger

Using the CADI interface requires specific calling schemes and procedures.

• Some are typically used for all targets such as, for example, setting up a target connection.
• Some might be deployed for dedicated functionality such as, for example, writing to memories.

This chapter describes typical schemes and the general usage of the CADI interface from the caller side.

 Note

Procedures that are described in separate chapters are only covered briefly in this one.

A major aim of CADI 2.0 is to prevent the passing of data objects from the heap memory across dynamic
library boundaries. To achieve this, each method call that passes information from the target to the caller
must allocate data objects to receive the information. A pointer to this object is forwarded to the target
that must fill it.

All CADI 2.0 data types provide a default constructor that initializes newly created data objects with
reasonable values. This eliminates the risk that initialization is forgotten and unexpected behavior is
caused by accident.

CADI 2.0 includes fundamental calling schemes for requesting hardware resource information and
accessing these resources.

Methods in CADI 2.0 to request resource information typically have a prototype of this form:

CADIReturn_t method_name(uint32_t startIndex,
 uint32_t desiredNumOfElements,
 uint32_t *actualNumOfElements,
 dataType *buffer);

Follow these guidelines for all CADI calls:
• The startIndex refers to an internal list within the target that contains the requested data. If

requesting information of which every element holds a specific ID, the ID does not necessarily match
the list index. Consequently, IDs are not required to be sequential.

• The size of the buffer array must match the desiredNumOfElements parameter. This is necessary to
guarantee enough memory for passing the requested data.

• The number of elements requested in desiredNumOfElements must always be larger or equal to the
actually returned number of elements. Otherwise, the used buffer is too small and this might lead to
undesired effects.

• If more data elements than available are requested, only the existing elements are returned. This
results in buffer containing a smaller number of elements than requested. The available elements are
copied into buffer starting from position zero. The call finishes with CADI_STATUS_OK.

• Even if a call fails, some data elements might have been successfully set. If so,
actualNumOfElements must provide this number.

• If the startIndex points behind the last position of the internal list held by the target, the call ends
successfully and returning CADI_STATUS_OK, but actualNumOfElements is zero.

Other similar schemes exist. The returned CADIReturn_t and the actualNumOfElements parameter are
set accordingly.

If querying certain resource information, the expected number can be usually obtained in the form of
target properties returned by previous method calls. There are, however, some methods such as

3 Using the CADI Interface Methods from a Debugger
3.1 CADI accesses from a debugger

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-41
Non-Confidential

GetSimulationFactories() and GetSimulationInfos() for which the caller cannot know the exact
number of properties in advance. For such calls, it is necessary to estimate a reasonable number that is
sufficient to receive all expected items.

If the complete array is filled for such calls, it might be necessary to repeat the call with a larger array
because a completely filled array might mean both a number of items that exactly matched the requested
one and a number of items that was too small. Because this case cannot be excluded, it is therefore
necessary to ask for more items to assure that all items have been acquired.

3.1.2 CADI and threads

Debugging a simulation model that exposes a CADI implementation typically uses one simulation thread
and one (debugger) thread for each connected debugger.

To decouple the threads (especially the debugger threads from the simulation thread) and avoid
deadlocks, you must obey these rules when implementing the interface:

• Methods of the classes CADI, CADIDisassembler, CADISimulation, CADISimulationFactory,
CADIBroker, and CADIProfiling must only be called from a debugger thread.

• Methods and callbacks from the callback classes CADIProfilingCallbacks, CADIErrorCallback,
CADISimulationCallback, and CADICallbackObj must only be called from the simulation thread.

This implicitly means that:
• A CADI callback method must never directly call a normal CADI method.
• A normal CADI method must never directly call a CADI callback method.

3 Using the CADI Interface Methods from a Debugger
3.1 CADI accesses from a debugger

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-42
Non-Confidential

3.2 CADIReturn_t return values
Most CADI 2.0 methods return a value of type CADIReturn_t.

The return value:
• Informs the debugger that the method call succeeded.
• Gives the debugger a hint about what happened and how to proceed.

The CADIReturn_t object provides hints that are of value in classifying the error. The debugger can take
appropriate action such as repeating a call with different parameters or triggering a fallback solution if
the functionality is not supported. If required, more detailed information about a failure can be read from
the target with the CADIXfaceGetError() method that is accessible through the CADI object of the target.

The possible return values are:

CADI_STATUS_OK
The method call completed successfully. The debugger is not required to take any additional
action.

CADI_STATUS_ArgNotSupported
An argument that in principle can be processed is, however, not supported by the current target.
This might be, for example, a register ID that is not assigned to any register or a memory
address that does not belong to an addressable memory range.
The action the debugger must take depends on the unsupported argument:
• If the argument represents a certain capability of the target, for example the stepOver

argument of CADIExecSingleStep(), the debugger must switch to a fallback solution.
• If an argument such as the groupID of CADIRegGetMap() is unsupported, this might be

because the debugger used the wrong information.

CADI_STATUS_IllegalArgument
Indicates that the client issued a call that is disallowed by the CADI specification. The client
must not rely on the target handling an illegal call correctly.

An illegal argument also refers to values that can never be accepted by an implementation of the
method. This especially applies to values that represent an invalid CADI data object or to a
pointer that has not been set to a valid object. For example, calling CADIBptClear() for a
breakpoint ID of 0 (which is reserved for invalid breakpoints) must result in this return value.

Another important example of illegal arguments is the use of null pointers that are not explicitly
permitted. If a CADI method returns with this value, the implementation of the corresponding
debugger functionality is defective.

CADI_STATUS_CmdNotSupported
The called method is not implemented for the addressed target. An implementation of a CADI
call returning this value must never return a different one. The client can assume that all future
calls to the same method also return this value.

The debugger must react to this response with a fallback solution. If no fallback is available, the
debugger cannot use the requested method on the selected target.

CADI_STATUS_UnknownCommand
This value must only be returned by methods that receive a command string such as
CADIXfaceBypass(). It must be used if an unknown command is received. It is completely up
to the target which commands are known and unknown.

CADI_STATUS_TargetBusy
The CADI call could not be completed because the target is busy. Registers and memories, for
example, might not be writable while the target is executing application code. The target is
typically not in a stable state and must return this value.

The debugger can either wait for the target to reach a stable state or enforce a stable state by, for
example, stopping a running target. The debugger can repeat the original call after the target
reaches a stable state.

3 Using the CADI Interface Methods from a Debugger
3.2 CADIReturn_t return values

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-43
Non-Confidential

CADI_STATUS_TargetNotResponding
The target did not respond to the call and the method timed out. This might be the result of a
stalled simulation or, if debugging over a network, a lost connection.

The debugger can attempt to determine the reason the call failed by, for example, calling
CADIXfaceGetError(). Depending on the result, the debugger might try to call the target again
or it might attempt to safely clean up the connection.

CADI_STATUS_GeneralError
An error occurred that is not covered by one of the more precise return values.

The debugger can call CADIXfaceGetError() to determine the reason the call failed. Depending
on the result, the debugger might attempt to handle the error.

CADI_STATUS_PermissionDenied
Method failed because of an access being denied, such as, for example, writing a read-only
register.

This typically indicates a wrongly-configured access of a target resource.

CADI_STATUS_SecurityViolation
Method failed because of a security violation such as, for example, reading memory with
restricted access.

This typically indicates a wrongly-configured access of a target resource.

CADI_STATUS_BufferSize
A character string buffer used to receive a response from a CADI method is too small to carry
the entire string.

It is dependent on the implementation in target whether an empty string is returned or if the
buffer is partially filled with the message based on the length of the buffer.

ARM recommends that the debugger does not rely on the returned information. The debugger
must repeat the call using a larger string buffer.

CADI_STATUS_InsufficientResources
The method did not complete because of missing resources such as, for example, the simulation
was not able to allocate enough memory on the host machine.

To determine which of the resources are insufficient, the debugger must call
CADIXfaceGetError(). Depending on the result, the debugger might repeat the failed call with
a different set of arguments or use a different call to achieve the wanted result.

3 Using the CADI Interface Methods from a Debugger
3.2 CADIReturn_t return values

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-44
Non-Confidential

3.3 Target connection and configuration
This section summarizes the steps for target connection and configuration.

This section contains the following subsections:
• 3.3.1 Connecting to targets on page 3-45.
• 3.3.2 Obtaining an interface pointer to the target on page 3-45.
• 3.3.3 Target interface setup on page 3-46.
• 3.3.4 Setting runtime parameters on page 3-46.
• 3.3.5 CADI target characteristics on page 3-47.
• 3.3.6 Querying the hardware resource for register information on page 3-48.
• 3.3.7 Querying the hardware resource for memory information on page 3-50.

3.3.1 Connecting to targets

This section describes conceptually how to connect to targets.

Using a CADI interface requires that you first establish a connection to the corresponding target.

Procedure
1. Open the dynamic library that implements the CADI interface.
2. Establish a connection to a required simulation.
3. Obtain the interface of the target to debug.

Related references
Chapter 2 Target Connection Mechanism on page 2-17.

3.3.2 Obtaining an interface pointer to the target

This section describes the steps to obtain the interface pointer.

1. The caller queries the target component interface for a CAInterface pointer.
2. The caller (for example, a debugger) acquires a CAInterface pointer of the targeted component. This

is typically requested from a CADI simulation.
3. The caller must call the ObtainInterface() method of the target and pass the required interface

name and revision to check for compatibility with the required interface.
4. If the requested interface is found, another CAInterface pointer is returned that points to the

requested interface. This might be the same as the previously acquired pointer. A NULL pointer is
returned it there is not a matching interface.

5. The caller knows that the target provides the required interface and the CAInterface pointer must be
converted to the proper interface class, in this case SpecificInterface.

It is necessary to perform a static_cast at this point because the boundary of a dynamic library was
crossed and this prevents the use of a dynamic_cast. The impossibility of using a dynamic_cast
across dynamic library boundaries was the primary reason for introducing ObtainInterface()
followed by the static_cast.)

3 Using the CADI Interface Methods from a Debugger
3.3 Target connection and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-45
Non-Confidential

1. Query CAInterface* to target component interface

Caller library

Target
component

interface

Target library

Caller

Dynamic library
boundary

CAInterface* to target
component interface

CAInterface* to
specific interface

SpecificInterface*

2. Receive CAInterface* to target component interface

3. Call ObtainInterface() to check compatibility

4. Receive CAInterface* to specific interface

5. Perform a static_cast to convert
CAInterface* to specific interface pointer

Figure 3-1 Obtaining a pointer to a specific interface

3.3.3 Target interface setup

After the CADI interface for a specific target component is obtained, there are some typical steps that
must be performed to prepare the interface for the actual communication between caller and target.

The first method of the CADI interface that must be called after establishing a connection is
CADIXfaceGetFeatures(). It returns information on the features supported by the target. These include,
for example, the supported types of breakpoints, the number of register groups and memory spaces, and
the register ID of the program counter. This information can be used by subsequent CADI method calls.

Before starting the real interaction with the connected target, the caller must register its
CADICallbackObj objects (typically there is only one) to the corresponding CADI interface. The
CADIXfaceAddCallback() method in the interface must therefore be called. In addition to a pointer to
the callback object, an array of chars is forwarded that contains the enable vector that describes which of
the callbacks in the object are permitted to be used by the target.

The enable vector that is forwarded in combination with a callback object is only associated with that
specific object. You can connect different callback objects that implement different subsets of callbacks.
It is also possible to re-configure a registered object by executing CADIXfaceAddCallback() using the
same pointer in combination with a new enable vector.

Related references
3.3.5 CADI target characteristics on page 3-47.

3.3.4 Setting runtime parameters

CADI provides a dedicated set of method calls to set runtime parameters through the CADI interface.

To retrieve information on the available parameters, the CADIGetParameters() method can be used. The
prototype for the method uses the typical scheme receiving:
• A start index into the internal list of the target.
• The required number of queried elements.
• The actually returned number of elements.

3 Using the CADI Interface Methods from a Debugger
3.3 Target connection and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-46
Non-Confidential

An alternative way to acquire information for a single parameter is to use the CADIGetParameterInfo()
call. It receives the name of the parameter that was, for example, determined using the list as retrieved by
CADIGetParameters().

After the caller has obtained parameter descriptions, the corresponding values can be queried by
CADIGetParameterValues(). To achieve this, an array that contains the corresponding data structures
must be forwarded. The elements of the array are initialized with the necessary identifiers. The size of
the array is specified by the actualNumOfParams parameter.

Setting the runtime parameters for the target is performed in a similar manner. A list of parameters to set
is created and forwarded. The CADISetParameters() method might return an error message that
indicates the first encountered error. Based on this information, the caller can determine which parameter
has caused the problem.

3.3.5 CADI target characteristics

This section describes CADI target characteristics.

About CADI target characteristics

The key characteristics for a CADI target are provided by its target features that are stored in an object of
data type CADITargetFeatures_t. The object can be acquired by the CADIXfaceGetFeatures() method
of the object.

CADITargetFeatures_t is closely related to CADITargetInfo_t which can be retrieved by the
GetTargetInfos() method for a CADI simulation. The target info provides an overview of the high-
level capabilities for the target such as parameterization or software execution capabilities. The target
features, however, go into more detail about a specific target and inform the debugger about target
resources required to configure a retargetable debugger.

The target features include:
• The number of memory spaces and register groups.
• The supported breakpoint types.
• The number of available reset and execution modes.

These features can help the debugger to systematically read architectural details about the target. The
maximum number of returned descriptions (that is, the size of the internal lists of the target) for the
associated CADI methods are equal to the corresponding number in the CADITargetFeatures_t struct.
For example, the numbers of supported reset levels and execution modes must match the maximum
number of list elements returned by CADIExecGetResetLevels() and CADIExecGetModes().

For a single program counter, the target features denotes its register ID and enables reading it without
having to search for this ID.

Extended Target Features Register

This is an important target feature for helping a debugger to adjust to the current target. After it is
enabled by the corresponding flag, this string register can communicate additional features and
characteristics of a target to the connected caller.

The Extended Target Features Register contains a string of tokens or arbitrary non-colon-ASCII
characters separated by colons. Such a string might, for example, look like:

FOO:BAR:ANSWER=42:STARTUP=0xe000:

ARM recommends adding a colon at the end of the string, as shown.

The supported tokens and their semantics are implementation specific. CADI 2.0 and the Fast Models
from ARM provide a predefined set of tokens that can be exposed by the target.

Related references
B.1.7 CADITargetFeatures_t on page Appx-B-141.

3 Using the CADI Interface Methods from a Debugger
3.3 Target connection and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-47
Non-Confidential

3.3.6 Querying the hardware resource for register information

The register information is organized hierarchically. The caller must query this hierarchy to obtain
information on a specific register.

Target component

Register group 1 Register group 2 Register group n

Register 1

Register 2

Register 3
(in two
groups)

Register 5
(compound

register)
Register m

...

...

Register 4
(component 1)

Register 6
(component 2)

Figure 3-2 Register organization

The first step is to examine the information that the target features provide. It contains the number of
available register groups. Calling CADIRegGetGroups() for a specific group retrieves more detailed
information. The call scheme is similar to a typical one.

Register groups are groups of registers that, for example, provide a dedicated functionality such as
separating integer and floating point registers or that are used in a specific user mode. A register can be
part of more than one register group.

 Note

Register IDs must be unique within a target component.

After obtaining the register group information, you query the register map for a register group by calling
CADIRegGetMap(). In contrast to a typical call scheme, this method additionally receives the register
group ID specified in CADIRegGroupt_t.

This data structure holds the number of registers that are assigned to this group. The correct size can be
determined and used for the forwarded array. The result of this call is an array containing more detailed
information on all registers available from this group.

To retrieve the information on all registers of a target component, the caller might iterate over all register
groups and call CADIRegGetMap(), resulting in a concatenated list.

A register might, however, be part of more than one register group, and the resulting list might have
multiple entries for the same register.

3 Using the CADI Interface Methods from a Debugger
3.3 Target connection and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-48
Non-Confidential

Accessing register information

// "cadi" points to a CADI 2.0 interface.
eslapi::CADITargetFeatures_t target_features;
eslapi::CADIReturn_t status;
status = cadi->CADIXfaceGetFeatures(&target_features);
// ...check status and do some setup stuff...
eslapi::CADIRegGroup_t* reg_groups =
 new eslapi::CADIRegGroup_t[target_features.nrRegisterGroups]();
uint32_t groupIndex = 0;
uint32_t actualNumOfRegGroups = 0;
status = cadi->CADIRegGetGroups(groupIndex,
 target_features.nrRegisterGroups,
 &actualNumOfRegGroups,
 reg_groups);
// ...check status...
for (uint32_t regCnt = 0; regCnt < actualNumOfRegGroups; regCnt++)
{
 uint32_t startRegisterIndex = 0;
 uint32_t desiredNumOfRegisters = reg_groups[regCnt].numRegsInGroup;
 uint32_t actualNumOfRegisters = 0;
 eslapi::CADIRegInfo_t* reg =
 new eslapi::CADIRegInfo_t[desiredNumOfRegisters]();
 status = cadi->CADIRegGetMap(reg_groups[regCnt].groupID,
 startRegisterIndex, desiredNumOfRegisters,
 &actualNumOfRegisters, reg);
 // ...check status and use the obtained register information...
 delete[] reg;
}
delete[] reg_groups;
// ...

An alternative, and much more convenient, way to obtain all register information is to call
CADIRegGetMap() with CADI_REG_ALLGROUPS as register group ID. This alternative also eliminates
redundant entries.

To allocate an array of an appropriate size, the caller can either roughly estimate the required number or
sum up the number of registers for each register group. The method must result in an array that is larger
than (if there are multiple entries) or equal to the required size:

Alternative method to obtain register information

// ...
eslapi::CADIReturn_t status;
eslapi::CADIRegGroup_t* reg_groups =
 new eslapi::CADIRegGroup_t[target_features.nrRegisterGroups]();
uint32_t groupIndex = 0;
uint32_t actualNumOfRegGroups = 0;
status = cadi->CADIRegGetGroups(groupIndex, target_features.nrRegisterGroups,
 &actualNumOfRegGroups, reg_groups);
// ...check status...
uint32_t startRegisterIndex = 0;
uint32_t actualNumOfRegisters = 0;
uint32_t numOfAllRegisters = 0;
for (uint32_t regCnt = 0; regCnt < actualNumOfRegGroups; regCnt++)
{
 //sum up the numbers of registers in the register groups
 numOfAllRegisters += reg_groups[regCnt].numRegsInGroup;
}
// Allocated array is large enough for all registers.
eslapi::CADIRegInfo_t* all_registers =
 new eslapi::CADIRegInfo_t[numOfAllRegisters]();
status = cadi->CADIRegGetMap(eslapi::CADI_REG_ALLGROUPS, startRegisterIndex,
 numOfAllRegisters, &actualNumOfAllRegisters,
 all_registers);
// ...check status and do something with all_registers...
delete[] all_registers;
delete[] reg_groups;
// ...

CADI supports compound registers. Compound registers are composed of several other registers. For
example, a 32-bit integer register might be composed of two 16-bit integer registers whose interpretation
depends on the configuration of the processor.

A compound register is treated like any other register of the CADI interface. It can be directly used to
read or write contents. It is also possible to manipulate an individual register in a compound register. You

3 Using the CADI Interface Methods from a Debugger
3.3 Target connection and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-49
Non-Confidential

can use the CADIRegGetCompound() method to retrieve a list with the IDs for the component registers. It
applies the typical query scheme and receives the compound registers ID as an additional parameter.

 Note

The number of components in a compound register is accessible through a union in CADIRegDetails_t
data object of a CADIRegInfo_t.

Determining the number of compound registers

// cadi is a pointer to a cadi 2.0 interface.
// registerInfos is an array of CADIRegInfo_t of length actualNumOfRegisters,
// obtained from a call to CADI::CADIRegGetMap().
for(uint32_t i=0; i < actualNumOfRegisters; i++)
{
 if (registerInfos[i].details.type == eslapi::CADI_REGTYPE_Compound)
 {
 uint32_t desiredNumOfComponents;
 desiredNumOfComponents = (uint32_t)registerInfos[i].details.u.compound.count;
 uint32_t actualNumOfComponents = 0;
 uint32_t *components = new uint32_t[desiredNumOfComponents]();
 cadi->CADIRegGetCompound(registerInfos[i].regNumber,0,desiredNumOfComponents,
 &actualNumOfComponents, components);
 for (uint32_t j = 0; j < actualNumOfComponents; j++)
 {
 // Do something with components.
 }
 }
}

 Note

A set of registers must not form a cyclic graph. A compound register must not be the parent of another
compound register that directly or implicitly points back to the parent.

Related references
3.1 CADI accesses from a debugger on page 3-41.

3.3.7 Querying the hardware resource for memory information

Similar to register information, memory information has a hierarchical structure.

3 Using the CADI Interface Methods from a Debugger
3.3 Target connection and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-50
Non-Confidential

Target component

Memory space 1 Memory space 2 Memory space n

Memory block 1 Memory block 2 Memory block 3
(parent of 4 and 5) Memory block m

...

...

Memory block 4 Memory block 5

Figure 3-3 Memory organization

To retrieve the information on the memories, the caller again must start from the target features. This
data structure holds the number of available memory spaces (nrMemSpaces). Based on this value, an
appropriate array of CADIMemSpaceInfo_t can be created that receives the corresponding memory space
information during the CADIMemGetSpaces() method call. This call complies with the common call
scheme used for CADI accesses from a debugger.

A memory space is subdivided into memory blocks that define the characteristics of certain ranges of
memory within a memory space, such as ranges with different accessibility properties. Call
CADIMemGetBlocks() to retrieve a list of these memory blocks. In addition to the parameters of the
typical call scheme, it receives the memory space ID. It is not possible to acquire all available memory
blocks of all memory spaces by a special memory space ID.

Memory blocks can be ordered hierarchically. To enable identifying the structure, the dedicated
parentID parameter CADIMemBlockInfo_t is used. It is required because the memory blocks are
returned as a list that flattens the corresponding hierarchy. This value must be set to the ID of the actual
parent. For blocks that are direct children of a memory space, this parameter is set to
CADI_MEMBLOCK_ROOT.

3 Using the CADI Interface Methods from a Debugger
3.3 Target connection and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-51
Non-Confidential

Accessing memory-related hardware information

// "cadi" points to a CADI 2.0 interface.
eslapi::CADITargetFeatures_t target_features;
eslapi::CADIReturn_t status;
status = cadi->CADIXfaceGetFeatures(&target_features);
// ...check status and setup...
eslapi::CADIMemSpaceInfo_t* mem_spaces =
 new eslapi::CADIMemSpaceInfo_t[target_features.nrMemSpaces]();
uint32_t startMemSpaceIndex = 0;
uint32_t actualNumOfMemSpaces = 0;
status = cadi->CADIMemGetSpaces(startMemSpaceIndex, target_features.nrMemSpaces,
 &actualNumOfMemSpaces, mem_spaces);
// ...check status...
for (uint32_t spaceCnt = 0; spaceCnt < actualNumOfMemSpaces; spaceCnt++)
{
 uint32_t memBlockIndex = 0;
 uint32_t desiredNumOfMemBlocks = mem_spaces[spaceCnt].nrMemBlocks;
 uint32_t actualNumOfMemBlocks = 0;
 eslapi::CADIMemBlockInfo_t* mem_blocks =
 new eslapi::CADIMemBlockInfo_t[desiredNumOfMemBlocks]();
 status = cadi->CADIMemGetBlocks(mem_spaces[spaceCnt].memSpaceId,
 memBlockIndex, desiredNumOfMemBlocks,
 &actualNumOfMemBlocks, mem_blocks);
// ...check status and use obtained memory information...
 delete[] mem_blocks;
}
delete[] mem_spaces;
// ...

Related references
3.1 CADI accesses from a debugger on page 3-41.

3 Using the CADI Interface Methods from a Debugger
3.3 Target connection and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-52
Non-Confidential

3.4 Register access
This section describes how to access registers in the target.

This section contains the following subsections:
• 3.4.1 About accessing registers on page 3-53.
• 3.4.2 Reading from string registers on page 3-54.
• 3.4.3 Writing to string registers on page 3-55.

3.4.1 About accessing registers

CADIRegRead() and CADIRegWrite() are used to access registers and process an array of accesses with
elements of type CADIReg_t.

The elements of the array:

• Specify the addressed register by its register number (ID).
• Provide a buffer of 16 bytes for accesses.
• Receive information about permitted access (read, write or read-write).
• Optionally specify an offset for registers wider than 128 bits. As CADIReg_t data buffer can contain a

maximum of only 16 bytes, which is 128 bits. Such registers must be accessed multiple times to
return all of the register content. Each access uses an appropriate offset to specify a different bit range
in the register.

• Enable the target to indicate registers with undefined content.

Accessing registers in the target

// One way to implement a read access to a register with a width of 512 bits.
// "register_info" is a CADIRegInfo_t representing a register with a
// bitwidth of 512 bits, reading and displaying the register's contents;
// "cadi" is a pointer to a CADI object.
uint32_t regCount = (register_info.bitsWide + 127)/128;
uint32_t regWidthInBytes = (register_info.bitsWide + 7)/8;
eslapi::CADIReg_t* reg = new eslapi::CADIReg_t[regCount]();
for (uint32_t i = 0; i < regCount; i++)
{
 reg[i].regNumber = register_info.regNumber;
 reg[i].offset128 = i;
 reg[i].isUndefined = false;
 reg[i].attribute = register_info.attribute;
 memset(reg[i].bytes, 0, sizeof(uint8_t) * 16);
}
uint32_t numOfRegsWritten = 0;
eslapi::CADIReturn_t status =
 cadi->CADIRegRead(regCount, reg, &numOfRegsWritten,
 0 /* no side effects */);
// Check status.
if (numOfRegsWritten > 0)
{
 printf("0x");
}
// Start with the most significant bits to bring it in a readable form
for (uint32_t i = 0; i < numOfRegsWritten; i++)
{
 uint8_t currentBuffer = reg[numOfRegsWritten – 1 – i].bytes;
 uint32_t bytesInBuffer =
 regWidthInBytes – ((numOfRegsWritten – 1 - i) * 16);
 if (bytesInBuffer >= 16)
 bytesInBuffer = 16;
 for (uint32_t j = bytesInBuffer; j > 0; j--)
 {
 printf("%02x", currentBuffer[j-1]);
 }
}
delete[] reg;

In addition to the forwarded array of CADIReg_t data objects, the number of requested accesses is passed
as regCount. The number of successful register accesses is returned in the numRegsRead (or
numRegWritten) parameter.

3 Using the CADI Interface Methods from a Debugger
3.4 Register access

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-53
Non-Confidential

 Note

The contents of the CADIReg_t data buffer must be accessed in little endian, even if the target uses a
different endianness. That is, the element with the smallest index of the buffer array contains the least
significant byte (LSB). This implicitly means that the access with offset 0, for registers wider than 128
bytes, addresses the 16 LSBs.

The caller sets the doSideEffects parameter to specify whether the target must perform side effects
associated with the access:
• If true, the target must do all side effects as usual.
• If false, the target must decide which side effects are inevitable and must always be performed.

Other side effects are not performed.

CADIRegRead() might have a side effect for a clear-on-read. Typically, a target must omit all side effects
for a read access if the doSideEffects parameter is set to false. This corresponds to a debug read that
must not interfere with the execution of the target.

A possible side effect for a write access to a register by CADIRegWrite() would be triggering an
interrupt. For a write access, the target can decide which side effects to perform. It might be for example
necessary to change the mode of a processor according to the contents of a register even if
doSideEffects is set to false.

3.4.2 Reading from string registers

Reading from string registers works slightly differently to reading from an integer or a floating-point
register. In contrast to other types of registers, a string register does not own a bitwidth.

The string itself determines the actual size of the string that is read through the string register. The bytes
of the data buffer in CADIReg_t are read sequentially until the terminating '\0' character is reached. For a
string longer than 16 bytes (including the terminating character), increase the offset128 parameter and
read the register after every set of 16 bytes.

Reading string registers

// "register_info" contains information on a string register.
eslapi::CADIReg_t stringReg; //only one CADIReg_t required
eslapi::CADIReturn_t status;
if (register_info.display == eslapi::CADI_REGTYPE_STRING)
{
 std::string readString = "";
 // Set up "stringReg".
 stringReg.regNumber = register_info.regNumber;
 stringReg.offset128 = 0;
 stringReg.isUndefined = false;
 stringReg.attribute = register_info.attribute;
 bool stringFinished = false;
 while (!stringFinished)
 {
 uint32_t numOfRegsRead = 0;
 memset(stringReg.bytes, 0, sizeof(uint8_t) * 16); //init buffer
 status = cadi->CADIRegRead(1, //regCount
 &stringReg,
 &numOfRegsRead,
 0); //do no side effects
 // ...check status and number of actually read registers...
 for (uint32_t i = 0; i < 16; i++)
 {
 char currentChar = stringReg.bytes[i];
 readString.append(1, currentChar);
 if (currentChar == '\0') // Reached end of string, leaving loop
 {
 stringFinished = true;
 break;
 }
 }
 stringReg.offset128++; // Increment offset for next read.
 }
}

3 Using the CADI Interface Methods from a Debugger
3.4 Register access

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-54
Non-Confidential

3.4.3 Writing to string registers

Writing to string registers works differently to writing to an integer or a floating-point register, and to
reading a string register. In contrast to other types of registers, a string register does not have a fixed
bitwidth.

A CADIRegWrite to a string register using nonzero offset128 could extend, truncate, or update a string.
To avoid ambiguity, string updates must allocate an array of n CADIReg_t elements with enough buffer
space to store the entire string, including a terminating null character. The offset128 parameter in each
CADIReg_t must have the value n and the bytes buffer must contain the nth 16 byte chunk of the string.
The caller performs a single CADIRegWrite, updating the string register atomically, if successful.

Writing string registers

eslapi::CADIReturn_t status;
// "register_info" contains information on a string register.
std::string writeString("Pneumonoultramicroscopicsilicovolcanoconiosis");
const char *s = writeString.c_str();
uint32_t bytes = strlen(s) + 1;
uint32_t chunks = (bytes + 15) / 16; // The number of 128-bit chunks required to
hold the null terminated string.
uint32_t numRegsWritten = 0;
eslapi::CADIReg_t *regs = new eslapi::CADIReg_t[chunks];
for(uint32_t i = 0; i < chunks; i++)
{
 regs[i].regNumber = register_info.regNumber;
 regs[i].offset128 = i;
 uint32_t remaining = bytes - i*16;
 memset(regs[i].bytes, 0, 16);
 memcpy(regs[i].bytes, &s[i*16], remaining > 16 ? 16 : remaining);
}
status = cadi->CADIRegWrite(chunks, regs, &numRegsWritten, 0);
delete[] regs;
if (status != eslapi::CADI_STATUS_OK || numRegsWritten != chunks)
{
 printf("ERROR: Writing register failed\n");
 return;
}

3 Using the CADI Interface Methods from a Debugger
3.4 Register access

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-55
Non-Confidential

3.5 Memory access
Memory accesses are performed by the CADI methods CADIMemRead() and CADIMemWrite().

In contrast to register accesses, a memory access is not described by a data structure but by several
parameters that must be passed to the methods.

The prototype of CADIMemRead(), for example, is:

CADIReturn_t CADIMemRead(CADIAddrComplete_t startAddress,
 uint32_t unitsToRead,
 uint32_t unitSizeInBytes,
 uint8_t *data,
 uint32_t *actualNumOfUnitsRead,
 uint8_t doSideEffects);

The start address is specified in the location.add data member of an object of type
CADIAddrComplete_t.

The unitsToRead and unitSizeInBytes parameters specify the number and the size of units that are
accessed. The size of a unit is specified in bytes and must be a supported multiple of the Minimum
Access Size (MAU). A list of the supported multiples can be obtained from the corresponding memory
block information.

 Note

Memory accesses must consider invariance. The unitSizeInBytes memory space property specifies the
number of bytes that are treated as one unit. The coherence of these bytes is preserved, especially if
converting endianness.

The total memory accessed in bytes is equal to the number of access units multiplied by their size in
bytes. The data buffer that is used to perform the memory access is an array of uint8_t that must have
exactly the same size as the complete access size.

The number of actually read or written access units is returned. If the memory access is completely
successful, the value identified by actualNumOfUnitsRead equals the number of units requested in
unitsToRead.

 Note

The requested number of units is not the size in bytes.

If an access succeeds partially, the returned number equals the number of completed units, and the
contents of data is valid for additional processing. An example of such a situation is an attempt to access
memory that is not part of a memory block. This might happen when performing an access that exceeds a
valid memory range.

Memory accesses can be optionally performed depending on the corresponding parameter passed to
CADIMemRead() or CADIMemWrite(). As for register accesses, the target ultimately must decide which
side effects can be omitted.

For CADIMemRead(), an example of a side effect is clear-on-read. If a read is done with the
doSideEffects parameter set to false, all side effects must be omitted. Such a debug read cannot
interfere with the execution of the target.

A side effect during writing to memory might be for example the usage of a memory-mapped register
whose contents control the mode of a certain component. If this value is changed, the component must
perform this side effect even if doSideEffects is set to false. If the side effect was not done, the
simulated target would behave incorrectly.

3 Using the CADI Interface Methods from a Debugger
3.5 Memory access

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-56
Non-Confidential

Writing to memory

eslapi::CADI* cadi;
eslapi::CADIMemSpaceInfo_t mem_space;
eslapi::CADIMemBlockInfo_t mem_block;
// ...fill the variables declared above with feasible data...
// Preparing a write access to the beginning of the memory block.
eslapi::CADIAddrComplete_t startAddress;
startAddress.location.space = mem_space.memSpaceId;
startAddress.location.addr = mem_block.startAddr;
// Writing 256 4-byte words.
uint32_t unitsToWrite = 256;
uint32_t unitSizeInBytes = 4;
uint32_t actualNumOfUnitsWritten = 0;
uint32_t completeAccessInBytes = unitsToWrite * unitSizeInBytes;
uint8_t* data = new uint8_t[completeAccessInBytes]();
// ...filling data buffer "data"...
eslapi::CADIReturn_t status;
status = cadi->CADIMemWrite(startAddress, unitsToWrite, unitSizeInBytes,
 data,&actualNumOfUnitsWritten, 0);
// Do no side effects.
// ...check status and actualNumOfUnitsWritten...
delete[] data;

3 Using the CADI Interface Methods from a Debugger
3.5 Memory access

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-57
Non-Confidential

3.6 Execution control
This section discusses CADI features related to interactive debugging from the caller-side. This includes
the management of breakpoints, the control of a targeted system, and the expected behavior of the
callback methods implemented by the caller.

This section contains the following subsections:
• 3.6.1 Breakpoints on page 3-58.
• 3.6.2 Execution mode control on page 3-60.

3.6.1 Breakpoints

Breakpoints are an essential part of any debug mechanism. CADI offers several types of breakpoints that
target different areas and levels of debugging. Each breakpoint can be individually configured to modify
its behavior.

Predefined breakpoint types

CADI provides predefined breakpoint types.

Program breakpoints
Program breakpoints are breakpoints set in a program memory of the target. As soon as the
program counter equals hits the corresponding address, the simulation suspends and awaits
additional commands from the caller.

Memory breakpoints
A memory breakpoint can be set to a specific address in the available memory. This breakpoint
suspends simulation if the specified address is read or written, or the value changes.

Register breakpoints
Setting a register breakpoint to a specific register results in a suspended simulation if the register
is read or written, or its value changes.

Instruction step breakpoints
The instruction step breakpoint is an inverted program breakpoint. It suspends simulation as
soon as the program counter is set to an address different from the selected breakpoint address.
As indicated by its name, this type of breakpoint is used for instruction step implementations.
The breakpoint can be set to the current value of the program counter.

Program range breakpoints
This breakpoint type extends the program breakpoint to check a specific range of program
addresses instead of a single one.

Exception breakpoints
An exception breakpoint is triggered immediately after the occurrence of an exception.

The breakpoint types supported by a target component are stored in a vector that contains the features for
the target (CADITargetFeatures_t). CADI provides comparison values to identify supported predefined
types. These are named CADI_TARGET_FEATURE_BPT_TypeExtension. To determine support, perform a
simple bitwise AND operation on the target features and the comparison value.

 Note

Do not confuse these enum data types:
• CADI_BPT_TypeExtension represents an index of the breakpoint type.
• CADI_TARGET_FEATURE_BPT_TypeExtension represents a breakpoint type vector for comparison

with the CADI target features.

For both enum data types, TypeExtension is one of these:
• PROGRAM.
• MEMORY.
• REGISTER.
• INST_STEP.
• PROGRAM_RANGE.

3 Using the CADI Interface Methods from a Debugger
3.6 Execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-58
Non-Confidential

• EXCEPTION.
• USER_DEFINED.

Breakpoint properties

CADIBptRequest_t owns several fields specific to certain breakpoint types. These fields are ignored for
other types.

This sections gives an overview of the respective associations between fields in CADIBptRequest_t and
the various breakpoint types.

Table 3-1 Properties for each breakpoint by trigger type

triggerType Program Memory Register Instruction Step Program Range Exception

Address Yes Yes - Yes Yes Yes

sizeOfAddressRange - - - - Yes -

Enabled Yes Yes Yes Yes Yes Yes

Conditions Yesa Yesa Yesa Yesa Yesa Yesa

useFormalConditions Yes Yes Yes Yes Yes Yes

formalCondition Yesb Yesb Yesb Yesb Yesb Yesb

type Yes Yes Yes Yes Yes Yes

regNumber - - Yes - - -

temporary Yes Yes Yes Yes Yes Yes

continueExecution Yes Yes Yes Yes Yes Yes

If a field is not supported for the required breakpoint type, its value must be left to the initial value
assigned by the standard constructor of CADIBptRequest_t.

Breakpoint configuration

CADI provides the dedicated data structure CADIBptRequest_t that is used to set a breakpoint requested
by the caller. It holds a description of the breakpoint and specifies its details.

These details include:

• Its type.
• The location (memory address or register number) it is to be set to.
• A possible condition for the breakpoint.

A breakpoint can be defined as enabled or as disabled and the state can be changed by a corresponding
method call. Breakpoints can be configured to continue execution after being hit.

A breakpoint can be declared as temporary. Temporary breakpoints can be easily cleared by calling
CADIBptClear() with a special breakpoint ID (CADI_BPT_CLEAR_ALL_TEMPORARY_BPTS). This removes
all of the breakpoints that have the temporary field has set in CADIBptRequest_t.

It is not required to set every field of the corresponding data structure for a breakpoint. Properties that are
not required for a certain breakpoint type are ignored by the target. For example, the triggerType field
of CADIBptRequest_t is only used for setting a register breakpoint or a memory breakpoint.

a Yes only if useFormalConditions is 0.
b Yes only if useFormalConditions is 1.

3 Using the CADI Interface Methods from a Debugger
3.6 Execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-59
Non-Confidential

Configuring conditional breakpoints requires special planning. There are two options, either:
• Use the format set of conditions provided by CADI that cover typical conditions.
• Forward the breakpoint to the target which then decides if custom conditions apply.

Using formal conditions requires that the corresponding data object owned by CADIBptRequest_t is set.
This member, of type CADIBptCondition_t, includes the condition operator and a value to apply the
operator to. The format of this value is described by the operator, for example whether it is a signed or
unsigned value, and by the bitwidth specified in the condition data type. The bitwidth includes the sign
bit.

Related references
Breakpoint properties on page 3-59.

Breakpoint management

To set a new breakpoint, call CADIBptSet(). It receives a breakpoint description of type
CADIBptRequest_t. On return, the caller receives a breakpoint ID of type CADIBptNumber_t to use in
subsequent breakpoint management calls.

After creating a new breakpoint/watchpoint with CADIBptSet(), the breakpoint/watchpoint is enabled/
disabled depending on the value of the Enabled field.

Use CADIBptConfigure() to change the enable state for a breakpoint. Call CADIBptClear() to clear a
breakpoint. After clearing a breakpoint, the corresponding breakpoint number must not be referred to.

 Note

There are two breakpoint IDs that must not be used:
• 0 represents an invalid breakpoint ID.
• 0xFFFFFFFF is reserved for clearing temporary breakpoints.

To read out descriptions of currently set breakpoints either:

• Use CADIBptRead() to request the description of a single breakpoint.

The breakpoint number must be available to identify the required breakpoint.
• Use CADIBptGetList() to request a list of breakpoints set in the target.

The method can be used, for example, to read out all breakpoint information of an existent simulation
the caller is connected to. No specific knowledge about the target is required.

The CADIBptGetList() method call scheme is that used by CADI accesses from a debugger. To create a
buffer with an appropriate size, either:
• Make a reasonable estimate of the number of breakpoints required.
• Use the number of supported breakpoints specified in the target features

(nrBreakpointsAvailable).

Depending on the target implementation, this number might be very large.

An important use case for CADIBptGetList() is breakpoint synchronization of several connected callers.
This debugger can regularly update the breakpoint list and show breakpoints that have been set from
another tool.

Related references
Breakpoint configuration on page 3-59.
3.1 CADI accesses from a debugger on page 3-41.

3.6.2 Execution mode control

This section describes how to control the execution mode.

3 Using the CADI Interface Methods from a Debugger
3.6 Execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-60
Non-Confidential

About execution mode control

To provide fully controlled debugging of the target, the attached debugger must be able to control the
execution of the target.

CADI provides this capability with a set of method calls that can determine the current state of the target
and initiate state changes such as stopping or running. This target execution control is closely coupled to
CADICallbackObj.

The mode, that is, the state of the target, can be explicitly requested by CADIExecGetMode(). This might
be useful to, for example, connect to an existing simulation.

ARM does not recommend polling of the target state, however. The modeChange() callback of
CADICallbackObj must be implemented by the caller to eliminate the requirement for such polling calls
and prevent blocking the interface. The returned mode is of type CADI_EXECMODE_t. The returned state is
either CADI_EXECMODE_Run, CADI_EXECMODE_Stop, CADI_EXECMODE_Error, or
CADI_EXECMODE_ResetDone.

 Note

You cannot return CADI_EXECMODE_Bpt as the target state from CADIExecGetMode().

CADIExecSetMode() is the counterpart to CADIExecGetMode(). It receives a 32-bit unsigned integer as
parameter. The provided value is typically of type CADI_EXECMODE_t which is a 32-bit unsigned integer.
The intended use is to pass either CADI_EXECMODE_Run or CADI_EXECMODE_Stop to the target.

 Note

You cannot use CADIExecSetMode() to set the target state to CADI_EXECMODE_Bpt.

Accessing registers in the target, modifying the target mode

// very basic example of debugger accessing registers in connected target
// cadi is a connected simulation object of type CADI
cout << "Client: Invoking target->CADIExecSetMode(3)" << endl;
cadi->CADIExecSetMode(3);
cout << "Client: Invoking target->CADIExecGetMode()" << endl;
uint32_t execMode;
cadi->CADIExecGetMode(&execMode);
cout << "Client: Target's current mode is: " << execMode << endl;

Starting and stopping the target

For a subset of execution modes, the dedicated methods are preferable.

• CADIExecContinue() instead of CADIExecSetMode(CADI_EXECMODE_Run).
• CADIExecStop() instead of CADIExecSetMode(CADI_EXECMODE_Stop).

Call CADIExecContinue() to start or continue the execution of a target component. This asynchronous
call immediately returns after triggering the target, so the execution might not start immediately. The
registered callback object (from the caller) is responsible for indicating the actual beginning of the target
execution by issuing a modeChange() callback.

If CADIExecContinue() is called and the target is running (CADI_EXECMODE_Run), the target must ignore
the call and return CADI_STATUS_TargetBusy.

Call CADIExecStop() to stop a running simulation. This method returns immediately and the target is
not typically stopped when the call returns. The caller must wait for a modeChange() callback that
indicates CADI_EXECMODE_Stop.

3 Using the CADI Interface Methods from a Debugger
3.6 Execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-61
Non-Confidential

If CADIExecStop() is called and the target is already stopped (CADI_EXECMODE_Stop), the call must be
ignored by the target and return CADI_STATUS_TargetBusy.

 Note

In general, clients must expect that mode changes can occur asynchronously. If for example an
asynchronous mode change occurred during the execution of:

if (t->CADIExecGetMode()==CADI_EXECMODE_Stop) t->CADIExecContinue()

the second call might return CADI_STATUS_TargetBusy while the client receives a modeChange message
on the callback thread. The client must handle all possible outcomes of this race condition.

Stepping the target

In addition to the ability to run the target until the next breakpoint or the end of simulation, you can use
CADIExecSingleStep() to step the target component for one or more steps.

Target steps can be specified as either cycle steps or instruction steps. That is, the target is either stepped
for a specific number of clock cycles or stepped until the corresponding instructions are completely
finished.

The stepOver parameter of CADIExecSingleStep() enables stepping over call instructions. This is
primarily intended for use with source level debugging where some methods or function calls must not
be stepped through.

The method is asynchronous and the call returns immediately and typically before the instructions have
been finished. A sequence of modeChanges() to CADI_EXECMODE_Run and CADI_EXECMODE_Stop are
issued to inform the caller about the progress of the execution.

If CADIExecSingleStep() is called and the target is running, the call must be ignored and
CADI_STATUS_TargetBusy returned.

Using CADI resets

A CADI reset is intended to bring a simulation platform, or one of its components, back into a specific
state.

This simulation reset must be distinguished from a real hardware reset because it might perform, for
example, certain initialization steps that real hardware does not do.

CADI resets are identified by their reset level and a name. The corresponding reset level numbers must
be used uniquely within a target. There must not be two different resets defined to be of the same reset
level.

CADI permits free definition of its simulation reset levels. Each associated reset can differ in the
addressed components or resources. One reset might, for example, only initialize the core registers in a
processor, but another reset might modify both the core registers and memory in the target.

CADI reserves reset 0 as a Hard Reset and explicitly specifies the semantics of this reset. All other reset
levels, however, can be customized and might differ from model to model. Reset level numbers can be
chosen arbitrarily and have no other meaning than representing a certain simulation reset. There is, for
example, no ordering of reset levels by their severity.

Because CADI reset 0, the Hard Reset, has fixed semantics, it must be implemented by every model
providing a CADI implementation. This Hard Reset resets all state variables of a model including those
that would not be modified by a real hardware reset. After the reset, the simulation platform must be in
the same state as it was immediately after instantiating it. The corresponding initialization values must be
well-defined and must not be chosen randomly. This guarantees that a simulation run with the same
loaded application is reproducible after a hard reset.

3 Using the CADI Interface Methods from a Debugger
3.6 Execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-62
Non-Confidential

 Caution

Calling CADIExecReset() for any reset level must not touch any set breakpoint or unregister any
registered callback object.

A call to CADIExecReset(0) must trigger this behavior of the target:
• Setting all registers and state variables to their initial values.
• Clearing all memories of the target and bring them into their initial state.
• Clearing the internal list of loaded applications (because the memory is cleared).

After calling CADIExecReset(0), it is the responsibility of the calling debugger to reload applications if
that is required.

To determine the supported resets for a target, call the CADIExecGetResetLevels() method which
provides a list with the corresponding identifiers. The contained reset level number must be forwarded to
CADIExecReset() to trigger the required reset.

Related references
3.7 Application loading on page 3-66.

Using CADIExecReset()

CADIExecReset() is an asynchronous call and can therefore return before the actual reset of the target
has finished.

After the target has ended all required actions, the simulation thread sends out a
modeChange(CADI_EXECMODE_ResetDone) callback to all registered debuggers. Because a target can
only accept one CADI reset at a time, the calling debugger can depend on the receiving the end
notification for its CADIExecReset() call and then proceed with other required functionality such as
loading applications to the target.

 Note

The modeChange(CADI_EXECMODE_ResetDone) callback is identical to the legacy
CADICallbackObj::reset() callback.

Targets must support both callbacks to maintain backwards compatibility.

ARM recommends using modeChange(CADI_EXECMODE_ResetDone) in client code because a future
version of CADI is to deprecate the reset() callback.

Related references
A.7.7 CADICallbackObj::modeChange() on page Appx-A-95.

Callback behavior

The CADICallbackObj class is an important part of the mechanism for controlling target execution.
Unlike the interface calls of the CADI class that initiates behavior changes in the target, the callback
mechanism reports changes in the target state back to the caller.

Some callback calls are optional and are not required for the execution control. These include:

• Semihosting.
• Methods provided for convenience that are not used for control, but instead enable notifying the

caller to perform actions on the GUI side such as refreshing views.

Callbacks in CADI are asynchronous and can be received even if a debugger has not triggered any
behavior. This is required to enable connection of multiple debuggers to a single target. If for example
one debugger requests a running target to stop, all connected debuggers receive a

3 Using the CADI Interface Methods from a Debugger
3.6 Execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-63
Non-Confidential

modeChange(CADI_EXECMODE_Stop) callback that instructs the debuggers to change their state and to
update the target views.

 Note

Callbacks of class CADICallbackObj must only be called from the simulation thread. The associated
debugger thread must not, either directly or indirectly, call a callback of this class.

The most important, and almost mandatory, callback for execution control is the modeChange() method.
It reports any change of the state of the target state or if a breakpoint is hit. modeChange() receives the
execution mode and, if required, the breakpoint ID. The typical execution modes are
CADI_EXECMODE_Run, CADI_EXECMODE_Stop, CADI_EXECMODE_Bpt, CADI_EXECMODE_ResetDone, and
CADI_EXECMODE_Error.

Issuing a modeChange() callback is only permitted if the state changed and the new state has been
reached. For example, a change to CADI_EXECMODE_Stop can only be issued if the target was previously
in another state, typically CADI_EXECMODE_Run, and the target is now in the stopped state and has
finished ALL implied updates of target resources.

A change to CADI_EXECMODE_Bpt requires an additional breakpoint ID to inform the caller that the
breakpoint has been hit. In all other cases, this parameter has to be set to zero which indicates an invalid
breakpoint ID.

A mode change to CADI_EXECMODE_Bpt must be issued for every hit breakpoint. If multiple breakpoints
triggered at the time, each of them must be reported by dedicated calls. This might be the case if, for
example, a register breakpoint and a program breakpoint are hit simultaneously. Both must be reported to
enable the caller to react properly to the two events.

A mode change to CADI_EXECMODE_ResetDone indicates the end of a CADI reset and the debugger must
update all its views. The debugger might also take additional actions if the debugger was responsible for
the reset, to control the execution mode. The caller might expect characteristic sequences of
modeChange() callbacks in response to a specific requested functionality.

Table 3-2 Typical modeChange() callback responses

Target
state

Called interface method Expected modeChange() sequence

Stopped Debugger calls CADIExecContinue(). modeChange(CADI_EXECMODE_Run, 0)

Running Debugger calls CADIExecStop(). modeChange(CADI_EXECMODE_Stop, 0)

Stopped Debugger calls CADIExecSingleStep(). modeChange(CADI_EXECMODE_Run, 0)
modeChange(CADI_EXECMODE_Stop, 0)

Running Debugger calls CADIExecContinue() or
CADIExecSingleStep().

No modeChange() is issued and the corresponding call returns
with CADI_STATUS_TargetBusy.

Stopped Debugger calls CADIExecStop(). No modeChange() is issued. The call returns with
CADI_STATUS_OK because nothing unexpected or incorrect
occurred.

Stopped Debugger has set a program breakpoint (ID=1) to be
hit.

Debugger calls CADIExecContinue().

modeChange(CADI_EXECMODE_Run, 0)
modeChange(CADI_EXECMODE_Bpt, 1)
modeChange(CADI_EXECMODE_Stop, 0)

3 Using the CADI Interface Methods from a Debugger
3.6 Execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-64
Non-Confidential

Table 3-2 Typical modeChange() callback responses (continued)

Target
state

Called interface method Expected modeChange() sequence

Stopped Debugger has set a program breakpoint (ID=1) on
the next instruction and a memory breakpoint (ID
=2) on an address is modified after finishing the
current instruction.

Debugger calls CADIExecSingleStep() for an
instruction step.

modeChange(CADI_EXECMODE_Run, 0)
modeChange(CADI_EXECMODE_Bpt, 1)
modeChange(CADI_EXECMODE_Bpt, 2)
modeChange(CADI_EXECMODE_Stop, 0)

Stopped Debugger has set a breakpoint (ID=1) with property
continueExecution set to true. The breakpoint
is hit if execution resumes.

Debugger calls CADIExecContinue().

modeChange(CADI_EXECMODE_Run, 0)
modeChange(CADI_EXECMODE_Bpt, 1)

Target continues.

Stopped Debugger calls CADIExecReset(). modeChange(CADI_EXECMODE_ResetDone, 0)

Running Debugger calls CADIExecReset(). modeChange(CADI_EXECMODE_Stop, 0) if it is required that
the model stop before reset.

modeChange(CADI_EXECMODE_ResetDone, 0)

Related references
3.9 Using the semihosting API on page 3-71.
3.6.2 Execution mode control on page 3-60.

3 Using the CADI Interface Methods from a Debugger
3.6 Execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-65
Non-Confidential

3.7 Application loading
The CADI interface simplifies the loading of an application from a debugger to a target.

A debugger typically writes the application program code directly to the platform memory. For
simplicity, CADI has a CADIExecLoadApplication() method that autonomously writes the application
code to the target. The debugger must extract debug information, if available, from the executable. You
can use this debug information to initialize more hardware resources of the simulation model: for
example, by setting the program counter to the entry point of the application.

 Note

The file path to the binary must be visible to both the debugger and the target because only the path
string is passed through the interface.

The types of executable that a model supports depends on the implementation. For example, ELF file
support.

You can load multiple applications to a target, for example to load several different applications to a
cluster. The information about each loaded application and its received command-line parameters are
stored in an internal list in the target.

This list always represents the currently loaded applications. To determine which applications are loaded
on a connected target, call the CADIExecGetLoadedApplications(). It returns all information, including
the file paths and the applied command-line parameters, used to load the corresponding binary. Other
debuggers connecting to this processor can use this data to obtain the required debug information.

Preserve the list of loaded applications until a hard reset, that is until CADIExecReset(level=0). Other
reset levels that modify program memory can also empty this list. See the documentation for the model
to determine the model behavior.

 Note

A simple CADIMemWrite() does not have an impact on the list of loaded applications even if it breaks
one of them.

To unload an application from the target (or even better, to invalidate the application) without using a
CADI reset, the debugger can call CADIExecUnloadApplication(). This method removes the
application information and any debug information from the target. Memory contents are not, however,
erased by this call. The passed file path must be identical with the one used for
CADIExecLoadApplication().

 Note

Debug information support depends on the implementation of the model. This support is not necessary
because the debugger side must extract the information from the application image.

3 Using the CADI Interface Methods from a Debugger
3.7 Application loading

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-66
Non-Confidential

3.8 CADI Disassembler
This section describes the CADI Disassembler.

This section contains the following subsections:
• 3.8.1 About the CADI Disassembler on page 3-67.
• 3.8.2 Obtaining a CADI Disassembler on page 3-67.
• 3.8.3 CADI Disassembler callbacks on page 3-67.
• 3.8.4 Disassembly modes on page 3-68.
• 3.8.5 CADIDisassemblerStatus on page 3-68.
• 3.8.6 Disassembly acquisition on page 3-69.

3.8.1 About the CADI Disassembler

The CADI Disassembler is an extension of the common CADI interface. It enables a debugger to exploit
a disassembler that is integrated into a simulation model. This has the advantage of entirely separating
the ISA-specific information from the implementation of the debugger.

A CADI Disassembler is mainly intended to deliver disassembly information from a target to the
debugger. However It also provides interface methods that expose debug information a model might
have extracted.

The CADI Disassembler interface consists of the CADIDisassembler class and the
CADIDisassemblerCB class. CADIDisassemblerCB is required to be implemented by the connected
debugger and declares callback methods. These are directly linked to methods in CADIDisassembler and
return the requested information to those calls.

3.8.2 Obtaining a CADI Disassembler

A pointer to a certain CADIDisassembler object is obtained from the corresponding CAInterface
instance in the target.

 Note

The CADIGetDisassembler() method of the corresponding CADI object is retained only for
compatibility with old CADI versions. ARM deprecates it. Do not use it in new implementations.

Related references
1.3.2 CADI classes used to control the simulation target on page 1-15.

3.8.3 CADI Disassembler callbacks

The CADI Disassembler interface provides a callback mechanism that requires an appropriate
implementation in the debugger.

The callback mechanism, unlike other callback mechanisms in CADI, is not intended to enable an
asynchronous behavior. The CADI Disassembler calls that trigger callbacks are intended to be
synchronous and all issued callbacks must be finished by the time the calling method returns.

The CADI Disassembler callbacks provide a way to return the requested disassembly information in
character strings of arbitrary size without passing ownership of the corresponding data across library
boundaries. Using this mechanism, the debugger receives a string buffer owned by the target and creates
a local copy.

 Note

The string must be null terminated because the length of the issued string is not explicitly passed to the
debugger.

3 Using the CADI Interface Methods from a Debugger
3.8 CADI Disassembler

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-67
Non-Confidential

Table 3-3 Relationships between CADIDisassembler and the callback methods

CADIDisassembler CADIDisassemblerCB

GetModeNames() ReceiveModeName()

GetDisassembly() ReceiveDisassembly()

GetSourceReferenceForAddress() ReceiveSourceReference()

In contrast to other callback mechanisms, the pointer to the utilized callback object is not registered to
the disassembler instance but explicitly passed to it with each call.

3.8.4 Disassembly modes

The CADI Disassembler interface supports different disassembly modes.

Such modes might, for example, represent different instruction sets that are supported by a processing
unit. A simple example is an ARM processor that supports the A32 instruction set and the T32
instruction set.

A debugger can use the GetModeCount() and the GetModeNames() methods to determine which modes
are supported. Typically all CADI Disassembler implementations support at least one mode which can be
considered as a don’t care mode. The ID for this mode is reserved as 0. The mode ID enables the
instruction at the requested address to be disassembled with consideration of the instruction set and the
current mode for the processing unit.

 Caution

Querying the disassembly for a specific memory address with a nonzero mode ID results in the
interpretation of the memory contents according to the instruction set for that mode. The disassembler
proceeds even if it is an instruction of a different set. This might lead to an incorrect, but apparently
successful, disassembly if the memory contents accidentally represents a valid instruction in the ISA for
the other mode.

3.8.5 CADIDisassemblerStatus

Similar to the CADI class, the CADIDisassembler class can indicate the success or failure of some
methods with the dedicated status type CADIDisassemblerStatus.

This enum type informs the debugger about more details of an uncompleted method call. Methods that
use this return type are those that request disassembly information. These return values are defined:

CADI_DISASSEMBLER_STATUS_OK
The method call succeeded. All requested information was sent to the debugger either by
callbacks or by filling a provided data buffer.

For multiply-triggered callbacks, for example when requesting multiple subsequent instructions
to be disassembled, all have been issued to the debugger before returning from the method call.

CADI_DISASSEMBLER_STATUS_NO_INSTRUCTION
Disassembling the requested address failed because the data was not a valid instruction for the
specified ISA.

CADI_DISASSEMBLER_STATUS_ILLEGAL_ADDRESS
Disassembling the requested address failed because it was not within a valid memory range of
the target.

Reading memory from this address with CADI::CADIMemRead() also fails.

CADI_DISASSEMBLER_STATUS_ERROR
An error occurred that is not covered by one of the other return values. This might be, for
example, because of a lost connection or an illegal method call parameter such as, for example,
an invalid pointer to a callback object.

3 Using the CADI Interface Methods from a Debugger
3.8 CADI Disassembler

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-68
Non-Confidential

3.8.6 Disassembly acquisition

Call GetDisassembly() to get the disassembly from a CADI Disassembler.

The GetDisassembly() method has these parameters:

callback
The callback object for the debugger to use to return the disassembly information.

address
The address the disassembly starts from.

nextAddr
Used by the disassembler to return the next address that can be disassembled. This gives the
debugger a hint where to continue with disassembling after the last instruction of the current
request.

This information is particularly useful for uncompleted calls. It gives the debugger an address
from which it can resume.

mode
The mode used to disassemble the data. This can either be an explicitly selected mode or the
mode the processing unit is currently in. For the latter case, the don’t care ID of 0 must be
forwarded.

desiredCount
The number of instructions for the disassembler to process. This must also be the maximum
number of ReceivedDisassembly() callbacks issued.

 Note

The desiredCount refers to the number of requested instructions. If the mode ID is 0, the size of the
instruction words can vary if the mode changes in between. It is therefore possible that the distance
between the addresses (as returned by the callback) is not equally spaced.

It might be necessary to update nextAddr after the last instruction is reached. If the last valid instruction
within a memory space is reached, nextAddr must be set to this last instruction. The last valid instruction
can be determined by testing these conditions:
• nextAddr is identical to the requested address.
• The GetDisassembly() call returns with CADI_DISASSEMBLER_STATUS_OK and triggers only one

ReceiveDisassembly() callback no matter how many instructions are requested.

DebuggerTarget 1. Call GetDisassembly() with address as 0x0
and desiredCount as 0x200

2. ReceiveDisassembly() called 256 (0x100) times
3. nextAddr of GetDisassembly() is set to 0x200

4. GetDisassembly() returns with status as
CADI_DISASSEMBLER_STATUS_OK

Program memory

Valid instruction

No instruction

0x0

Valid instruction

0xFF
0x100

0x200
0x1FF

...

...

...

No instruction

Valid instruction

5. Call GetDisassembly() with the address set to
nextAddr from the previous call.

6. GetDisassembly() returns a value for nextAddr
that is different from address.

3 Using the CADI Interface Methods from a Debugger
3.8 CADI Disassembler

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-69
Non-Confidential

A call where the last instruction in the range is a valid instruction.

Figure 3-4 nextAddr set to last instruction

DebuggerTarget 1. Call GetDisassembly() with address as
0x100 and desiredCount as 0x200

2. ReceiveDisassembly() called 256 (0x100) times
3. nextAddr of GetDisassembly() is set to 0x1FF

4. GetDisassembly() returns with status as
CADI_DISASSEMBLER_STATUS_OK

Program memory

No instruction

Valid instruction

0x0

No instruction

0xFF
0x100

0x200
0x1FF

...

...

...

Valid instruction

No instruction

5. Call GetDisassembly() with address set to the
same value of nextAddr from the previous call.
6. GetDisassembly() returns a value for
nextAddr equal to address. Only one
ReceiveDisassembly() call is issued no matter
how many instructions were requested.

A call where the last instruction in the range is the last instruction in the memory space.

Figure 3-5 nextAddr set to last valid instruction

3 Using the CADI Interface Methods from a Debugger
3.8 CADI Disassembler

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-70
Non-Confidential

3.9 Using the semihosting API
CADI provides a semihosting interface that enables interaction between a user and a connected target.

A debugger can use the host machine I/O to emulate the I/O devices in a simulation platform. An
application running on a target component can request keyboard input that is then provided interactively
when you enter the input on the host keyboard.

Host display

Host keyboard

Virtual platform

SoC
model

Virtual
display

Virtual
keyboard

Output to
display

Request
keyboard

input

appliOutput()

appliInput()

Semihosting
interface

between target
and host
hardware

Target simulationHost hardware Debugger running
on host

Figure 3-6 Semihosting interface

Because semihosting is used by the simulation target to provide and receive information, the interface
methods are provided by the CADICallbackObj object. The primary methods are appliInput() and
appliOutput(). Both use a data buffer of type char and the buffer size defined by the target.

After the call returns, the actualCount parameter indicates:

• How many characters were successfully written to the output device by appliOutput().
• How many characters were received from the input device by appliInput().

Because the forwarded string might contain '\0' characters, the end of the string is not indicated by
'\0'.

 Note

actualCount is also used to indicate:
• That the end of file was reached by returning zero.
• That a string reading error occurred by returning static_cast<uint32_t>(-1).

The addressed target of appliInput() and appliOutput() is typically one StdIn, StdOut, and StdErr
streams on the host. The host can redirect these standard stream calls to log files. The IDs for the
standard streams are defined in the enum type CADIStreamId. The numbering corresponds to the C file
conventions:
• 0 is stdin.
• 1 is stdout.
• 2 is stderr.
• IDs greater than 2 identify explicitly opened file streams.

Use the appliOpen() and appliClose() callbacks to open and close streams to files. The returned ID
identifies the stream. The file stream IDs and standard stream IDs cannot overlap.

The semihosting interface also provides the doString() method to send messages from the target to the
caller. This method can be used, for example, to send error messages or debug output. This call is not
intended to be used for passing printouts from an application.

3 Using the CADI Interface Methods from a Debugger
3.9 Using the semihosting API

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-71
Non-Confidential

Related references
A.7.3 CsADICallbackObj::appliInput() on page Appx-A-94.
A.7.4 CADICallbackObj::appliOutput() on page Appx-A-95.
A.7.6 CADICallbackObj::doString() on page Appx-A-95.

3 Using the CADI Interface Methods from a Debugger
3.9 Using the semihosting API

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-72
Non-Confidential

3.10 Profiling
These methods give access to execution and memory debug-profiling for a processor.

 Note

• Fast Models does not implement the CADIProfiling class. It is not, therefore, covered in detail here.
• This API is for debug profiling such as, for example, tracing program execution. It is not related to

the ESL Cycle Accurate Profiling Interface (CAPI).

Related references
A.11.2 CADIProfilingCallbacks::profileResourceAccess() on page Appx-A-127.
A.11.3 CADIProfilingCallbacks::profileRegisterHazard() on page Appx-A-127.
A.12.2 CADIProfiling::CADIProfileSetup() on page Appx-A-129.
A.12.3 CADIProfiling::CADIProfileControl() on page Appx-A-129.
A.12.4 CADIProfiling::CADIProfileTraceControl() on page Appx-A-130.
A.12.5 CADIProfiling::CADIProfileGetExecution() on page Appx-A-130.
A.12.6 CADIProfiling::CADIProfileGetMemory() on page Appx-A-131.
A.12.7 CADIProfiling::CADIProfileGetTrace() on page Appx-A-131.
A.12.8 CADIProfiling::CADIProfileGetRegAccesses() on page Appx-A-132.
A.12.9 CADIProfiling::CADIProfileSetRegAccesses() on page Appx-A-132.
A.12.10 CADIProfiling::CADIProfileGetMemAccesses() on page Appx-A-132.
A.12.11 CADIProfiling::CADIProfileSetMemAccesses() on page Appx-A-133.
A.12.12 CADIProfiling::CADIProfileGetAddrExecutionFrequency() on page Appx-A-133.
A.12.13 CADIProfiling::CADIProfileSetAddrExecutionFrequency() on page Appx-A-134.
A.12.14 CADIProfiling::CADIGetNumberOfInstructions() on page Appx-A-134.
A.12.15 CADIProfiling::CADIProfileInitInstructionResultArray() on page Appx-A-134.
A.12.16 CADIProfiling::CADIProfileGetInstructionExecutionFrequency() on page Appx-A-135.
A.12.17 CADIProfiling::CADIProfileSetInstructionExecutionFrequency() on page Appx-A-135.
A.12.18 CADIProfiling::CADIRegisterProfileResourceAccess() on page Appx-A-135.
A.12.19 CADIProfiling::CADIUnregisterProfileResourceAccess() on page Appx-A-136.
A.12.20 CADIProfiling::CADIProfileRegisterCallBack() on page Appx-A-136.
A.12.21 CADIProfiling::CADIProfileUnregisterCallBack() on page Appx-A-136.

3 Using the CADI Interface Methods from a Debugger
3.10 Profiling

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 3-73
Non-Confidential

Chapter 4
CADI Extension Mechanism

This chapter describes the CADI extension mechanism that adds interfaces to a target and the
modifications that are required on both the caller side and the target side.

It contains the following sections:
• 4.1 Overview of the extension mechanism on page 4-75.
• 4.2 Extending the target side on page 4-76.
• 4.3 Obtaining a custom interface on page 4-81.

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 4-74
Non-Confidential

4.1 Overview of the extension mechanism
A major feature introduced with CADI 2.0 is the extension mechanism.

The extension mechanism:

• Provides a simple framework that enables adding more interfaces to a target component.
• Enables checking compatibility between the caller and the target.

A single target can present multiple interfaces. Each of the interfaces, including the basic CADI interface,
is an extension of the abstract CAInterface class. The client can use a pointer to any of the interfaces to
obtain a pointer to any of the other interfaces implemented by the target.

The CADI extension mechanism is based on the CAInterface class and its methods that must be
implemented for any custom interface:

IFNAME()
is a static method that must be defined by each interface class. It returns the name.

IFREVISION()
is a static method that must be defined by each interface class. It returns the revision.

ObtainInterface()
is a virtual method that is implemented in the class that implements the interface. It retrieves an
interface from a target, including those introduced by an extension, and performs compatibility
checks.

The main work of adding a custom extension to CADI must be done in the implementation for the target.
A new class is declared and implemented provides access to all interfaces the target component offers.

A typical implementation must consider:
1. Declaring a class with the custom interface extensions that must be derived from CAInterface. The

inherited method calls must be implemented.
2. Implementing ObtainInterface() for the custom extension so that all existing interfaces are

accessible.
3. Linking the extension to other implemented interfaces provided by the target through their

ObtainInterface() implementations.

Related references
4.2 Extending the target side on page 4-76.

4 CADI Extension Mechanism
4.1 Overview of the extension mechanism

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 4-75
Non-Confidential

4.2 Extending the target side
This section describes a way to create a simple extension interface, and the required steps to use the
extension mechanism in an implementation.

Get MyExtensions
or MyCADI interface

Derive and
implement

CADI

MyCADI
(Custom interface class that

exposes both original methods
and custom extensions)

CAInterface

MyExtensions
(Abstract class defining the

custom extensions)

MyExtensionsImplementation
(Custom extensions)

Derive and
implement

Derive

Include instance

Figure 4-1 Custom extensions to a CADI interface class, showing the class relationships

To create the target-side implementation:
1. Declare the interface that provides the custom extensions in a new class, called for example

MyExtensions.

MyExtensionsAbstract class

// MyExtensions Interface Class
// Keep this class as abstract as possible. It should be
// the interface declaration, only.
class MyExtensions
: public eslapi::CAInterface
{
 public:
 static eslapi::if_name_t IFNAME()
 { return “MyExtensions”; }
 static eslapi::if_rev_t IFREVISION()
 { return 0; }
 virtual eslapi::CAInterface*
 ObtainInterface(eslapi::if_name_t ifName,
 eslapi::if_rev_t minRev,
 eslapi::if_rev_t* actualRev);
 public:
 virtual void MyMethod1() = 0;
 virtual void MyMethod2() = 0;
 ...
}

The MyExtensions class is derived from eslapi::CAInterface to enable the extension mechanism.
It must implement the IFNAME() and IFREVISION() methods. The remainder of the interface must be

4 CADI Extension Mechanism
4.2 Extending the target side

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 4-76
Non-Confidential

kept as abstract as possible provide a clean separation between the interface declaration and the
interface implementation.

2. It might not be obvious, but a CADI target that receives a custom extension interface also provides an
implementation of the CADI interface itself. Enabling access to the custom extensions requires
modification of the CADI implementation and, for the example below, the passing of pointers from
the instantiated interface objects.

The example below shows the declaration of the class MyExtensionsImplementation that provides
the actual implementation of the custom interface and some additions required to mount the new
interface. The class MyCADI is the class derived from CADI as shown in the example above.

Declaration of MyExtensionsImplementation

// MyExtensionsImplementation Class
// Implementing MyExtensions interface.
class MyExtensionsImplementation
 : public MyExtensions
{
private:
 MyCADI *myCadiPointer; /* Pointer to an object of MyCADI which is
 required for the link to the original interfaces.*/
public:
 // Called by MyCADI constructor.
 MyExtensionsImplementation(MyCADI *myCadi)
 { myCadiPointer = myCadi; }
 static eslapi::if_name_t IFNAME()
 { return "MyExtensionsImplementation"; }
 static eslapi::if_rev_t IFREVISION()
 { return 0; }
 virtual eslapi::CAInterface*
 ObtainInterface(eslapi::if_name_t ifName,
 eslapi::if_rev_t minRev,
 eslapi::if_rev_t* actualRev);
public:
 void MyMethod1();
 void MyMethod2();
};

This class owns a pointer of class MyCADI that points to the instance of the CADI implementation
linked to this custom extension. This is required by the ObtainInterface() method as shown in the
example below. In this example, the corresponding pointer is passed through the constructor.

This class must implement its own versions of the IFNAME() and IFREVISION() methods.
3. After declaring the MyExtensionsImplementation class, implement the inherited

ObtainInterface() that receives these parameters:

ifname
The interface name requested by the caller such as, for example,
MyExtensionsImplementation.

minRev
The minimum revision required by the caller. Use 0 to accept any revision.

actualRev
The actually implemented revision (greater than or equal to minRev). This value must be set
by the target.

ObtainInterface(), a typical implementation for the extension

// Call ObtainInterface of MyCADI which is derived from CADI.
// This guarantees that, for example, an ObtainInterface()
// call for "eslapi.CAInterface" returns the same pointer
// from MyExtensionsImplementation AND from MyCADI.
eslapi::CAInterface*
MyExtensionsImplementation::ObtainInterface(eslapi::if_name_t ifName,
 eslapi::if_rev_t minRev,
 eslapi::if_rev_t* actualRev)
{
 return myCadiPointer->ObtainInterface(ifName, minRev, actualRev);
}

This implementation forwards the interface request directly to the modified CADI implementation.
The reasoning is to implement ObtainInterface() in exactly one place so that only one
implementation must be edited if custom interfaces must be added. The CAInterface specification

4 CADI Extension Mechanism
4.2 Extending the target side

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 4-77
Non-Confidential

requires that the same pointer is provided for the specific requested interface, for example
eslapi.CAInterface, for any call of ObtainInterface() from any class such as
MyExtensionsImplementation::ObtainInterface() or myCadiPointer::ObtainInterface().
Because there is only one place to return these pointers, it can be guaranteed that the pointer for a
requested interface is always the same.

4. The final step to implement and mount a custom extension interface is to modify the existing CADI
implementation by deriving it and the required code.

Changes to MyCADI class

// MyCADI Class
// Derived from class CADI. The main purpose is to
// provide the modified ObtainInterface() method.
class MyCADI
 : public eslapi::CADI
{
private:
 MyExtensionsImplementation* myExtensionsPointer;
public:
 MyCADI()
{ myExtensionsPointer = new MyExtensionsImplementation(this); }
 static eslapi::if_name_t IFNAME()
 { return "MyCADI"; }
 static eslapi::if_rev_t IFREVISION()
 { return 0; }
 virtual eslapi::CAInterface*
 ObtainInterface(eslapi::if_name_t ifName,
 eslapi::if_rev_t minRev,
 eslapi::if_rev_t* actualRev);
 // …
};

In the example above, an instance of MyExtensionsImplementation is owned by MyCADI. This is
instantiated in the class constructor and accessed through a pointer. It is required to support calling
the ObtainInterface() implementation to return one of the interfaces such as
MyExtensionsImplementation or MyExtensions.

The value of the MyExtensionsImplement class listed above is the implementation of
ObtainInterface() in the code fragment listed below:

4 CADI Extension Mechanism
4.2 Extending the target side

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 4-78
Non-Confidential

Using ObtainInterface()

// MyCADI has been chosen to provide the "central" ObtainInterface()
// method, i.e. all ObtainInterface() calls arriving in the target
// are routed to this implementation. This requires a corresponding
// check for all interfaces and pointers to all available interface
// instances. In this example we have to check for:
// - MyCADI
// - MyExtensionsImplementation
// - MyExtensions
// - CADI
// - CAInterface
eslapi::CAInterface*
MyCADI::ObtainInterface(eslapi::if_name_t ifName,
 eslapi::if_rev_t minRev,
 eslapi::if_rev_t* actualRev)
{
 // Check if queried interface is "MyCADI" and if the
 // provided revision is sufficient.
 if((strcmp(ifName,IFNAME()) == 0)
 && (minRev <= IFREVISION()))
 {
 if (actualRev != NULL) // NULL pointer check.
 {
 *actualRev = IFREVISION(); // Set the actual rev.
 }
 return this;
 }
 // Check if queried interface is "MyExtensionsImplementation" and
 // if the provided revision is sufficient.
 if((strcmp(ifName, MyExtensionsImplementation::IFNAME()) == 0)
 && (minRev <= MyExtensionsImplementation::IFREVISION()))
 {
 if (actualRev != NULL) // NULL pointer check
 {
 *actualRev = MyExtensionsImplementation::IFREVISION();
 // Set the actual rev.
 }
 // This is an additional check added for MyExtensionsImplementation.
 // Return the corresponding pointer.
 return myExtensionsPointer;
 }
 // Check if queried interface is "MyExtensions" and if the
 // provided revision is sufficient.
 if((strcmp(ifName, MyExtensions::IFNAME()) == 0)
 && (minRev <= MyExtensions::IFREVISION()))
 {
 if (actualRev != NULL) // NULL pointer check
 {
 *actualRev = MyExtensions::IFREVISION(); // Set the actual rev
 }
 // This is an additional check added for MyExtensionsImplementation.
 // Return the corresponding pointer.
 return myExtensionsPointer;
 }
 // Check if queried interface is "CADI" and if the
 // provided revision is sufficient.
 if((strcmp(ifName, eslapi::CADI::IFNAME()) == 0)
 && (minRev <= eslapi::CADI::IFREVISION()))
 {
 if (actualRev != NULL) // NULL pointer check
 {
 *actualRev = eslapi::CADI::IFREVISION(); // Set the actual rev
 }
 return this;
 }
 // Check if queried interface is "CAInterface" and if the
 // provided revision is sufficient.
 if((strcmp(ifName, eslapi::CAInterface::IFNAME()) == 0)
 && (minRev <= eslapi::CAInterface::IFREVISION()))
 {
 if (actualRev != NULL) // NULL pointer check
 {
 *actualRev = eslapi::CAInterface::IFREVISION();// Set the actual rev
 }
 return this;
 }
 // Target does not provide the requested interface.
 return NULL;
}

This ObtainInterface() implementation is very similar to the common one. This example, however,
has two interface checks associated with the added myExtensionsPointer pointer.

4 CADI Extension Mechanism
4.2 Extending the target side

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 4-79
Non-Confidential

These interface checks are similar to the usual checks, but if one of the two interfaces is recognized,
ObtainInterface() does not return the this pointer, but instead returns the pointer to the instantiated
extension implementation myExtensionsPointer.

4 CADI Extension Mechanism
4.2 Extending the target side

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 4-80
Non-Confidential

4.3 Obtaining a custom interface
This section describes how to ensure the correct functionality of an acquired interface and to avoid, for
example, the utilization of an outdated interface revision.

The procedure of obtaining a custom interface is the same as the one for the standard interfaces:
1. A CAInterface pointer to the target interface class is required. The CADI simulation typically

returns this pointer.
2. The ObtainInterface() method must be called to check if the required interface is provided.
3. The returned pointer to CAInterface, which might differ from the originally obtained one, must be

converted to a pointer to the requested interface class by using a static_cast().

Using CADISimulation to return a pointer to the interface, using MyExtensions and MyCADI classes
implementations

CADISimulation* cadiSimulation;
uint32_t targetID;
CAInterface* ca_interface;
MyExtensions* my_extensions_if;
 .
 .
 .
 // Get the CADISimulation pointer.
 .
 .
 .
// Here, gets a pointer of type CAInterface. this pointer can be used to obtain
// any interface provided by the target using ObtainInterface().
ca_interface = cadiSimulation->GetTarget(targetID);
//obtain the desired interface
if_name_t ifName = “MyExtensions”;
if_rev_t minRev = 0;
if_rev_t actualRev = 0;
// ObtainInterface() asks for "MyExtensions" interface.
// It returns the corresponding base class pointer.
ca_interface = ca_interface->ObtainInterface(ifName, minRev, &actualRev);
if (ca_interface == NULL)
{
 // Something went wrong, handle it...
}
else // MyExtensions interface supported.
{
 my_extensions_if =
 static_cast<MyExtensions*>(ca_interface);
}
 .
 .
 . //go on using the obtained interface extensions

Related references
4.2 Extending the target side on page 4-76.
3.3.2 Obtaining an interface pointer to the target on page 3-45.

4 CADI Extension Mechanism
4.3 Obtaining a custom interface

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. 4-81
Non-Confidential

Appendix A
Class Reference

This appendix describes the classes that create, initialize, and communicate with a simulation.

 Note

Implementing the CADIDisassemblerCB, CADIDisassembler, CADIProfilingCallbacks, and
CADIProfiling classes and the methods that use them is optional. Typically, only components that
execute applications use them.

It contains the following sections:
• A.1 CAInterface class on page Appx-A-83.
• A.2 CADIBroker class on page Appx-A-85.
• A.3 CADISimulationFactory class on page Appx-A-88.
• A.4 CADIErrorCallback class on page Appx-A-90.
• A.5 CADISimulationCallback class on page Appx-A-91.
• A.6 CADISimulation class on page Appx-A-92.
• A.7 CADICallbackObj class on page Appx-A-94.
• A.8 CADI class on page Appx-A-98.
• A.9 CADIDisassemblerCB class on page Appx-A-121.
• A.10 CADIDisassembler class on page Appx-A-123.
• A.11 CADIProfilingCallbacks class on page Appx-A-127.
• A.12 CADIProfiling class on page Appx-A-128.

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-82
Non-Confidential

A.1 CAInterface class
This section describes the CAInterface class, which is the base class for all CADI interface classes.

This section contains the following subsections:
• A.1.1 About the CAInterface class on page Appx-A-83.
• A.1.2 CAInterface class declaration on page Appx-A-84.
• A.1.3 CAInterface::IFNAME() on page Appx-A-84.
• A.1.4 CAInterface::IFREVISION() on page Appx-A-84.
• A.1.5 CAInterface::ObtainInterface() on page Appx-A-84.

A.1.1 About the CAInterface class

CAInterface provides a basis for a software model built around components and interfaces.

For CADI, an interface:

• Is an abstract class consisting entirely of pure virtual methods.
• Derives from CAInterface.
• Provides a number of methods for interacting with a component.
• Is identified by a string name of type if_name_t and an integer revision of type if_rev_t. A higher

revision number indicates a newer revision of the same interface.

A component is a black-box entity that has a unique identity and provides concrete implementations of
one or more interfaces:

• Each of these interfaces can expose different facets of the component behavior.
• These interfaces are the only way to interact with the component.
• There is no way for a client to enumerate the set of interfaces that a component implements. The

client must ask for specific interfaces by name.

(The implementation of a component interface might be provided by one or several interacting C++
objects. This is an implementation detail that is opaque to the client.)

• If the component does not implement the requested interface, it returns a NULL pointer.

The CAInterface class is the base class for all interfaces. It defines a method,
CAInterface::ObtainInterface(), that enables a client to obtain a reference to any of the interfaces
that the component implements.

The client specifies the ID and revision of the interface that it is requesting. The component can return
NULL if it does not implement that interface, or only implements a lower revision.

Because each interface derives from CAInterface, a client can call ObtainInterface() on any one
interface pointer to obtain a pointer to any other interface implemented by the same component.

These rules govern the use of components and interfaces:
• Each component is distinct. No two components can return the same pointer for a given interface. An

ObtainInterface() call on one component must not return an interface on a different component.
• Each interface consists of a name, a revision number, and a C++ abstract class definition. The return

value of ObtainInterface() is either NULL or a pointer, castable to the class type.
• Where two interfaces have the same if_name_t, the newer revision of the interface must be

compatible with the old revision. (This includes the binary layout of any data structures that it uses
and the semantics of any methods.)

• During the lifetime of a component, any calls to ObtainInterface() for a given interface name and
revision must always return the same pointer value. It must not matter which of the component
interfaces is used to invoke ObtainInterface().

• All components must implement an interface derived from eslapi::CAInterface.

A Class Reference
A.1 CAInterface class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-83
Non-Confidential

A.1.2 CAInterface class declaration

This section describes the CAInterface class declaration.

class ESLAPI_WEXP CAInterface
 {
 public:
 static if_name_t IFNAME() { return "eslapi.CAInterface"; }
 static if_rev_t IFREVISION() { return 0; }
 virtual ~CAInterface() {}
 public:
 virtual CAInterface *ObtainInterface(if_name_t ifName,
 if_rev_t minRev, if_rev_t *actualRev) = 0;
 };

A.1.3 CAInterface::IFNAME()

This section describes IFNAME().

The default declaration for IFNAME() is:

static if_name_t IFNAME() { return "eslapi.CAInterface"; }

The component interface overrides this method to provide the name for the specific interface.

A.1.4 CAInterface::IFREVISION()

This section describes IFREVISION().

The default declaration for IFREVISION() is:

static if_rev_t IFREVISION() { return 0; }

The component interface overrides this method to provide the revision number for the specific interface.

A.1.5 CAInterface::ObtainInterface()

ObtainInterface() enables a client to obtain a reference to any of the interfaces that the component
implements.

The default declaration is:

virtual CAInterface *ObtainInterface(if_name_t ifName,
 if_rev_t minRev,
 if_rev_t *actualRev) = 0;

if_name_t
is a name identifying the requested interface.

minRev
specifies the minimum minor revision required.

actualRev
if not NULL, on return holds the actual revision number implemented.

return value
is a pointer to the requested interface, or NULL.

A Class Reference
A.1 CAInterface class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-84
Non-Confidential

A.2 CADIBroker class
This section describes the CADIBroker class, which enables connecting to existing simulations and
creating new simulations.

This section contains the following subsections:
• A.2.1 CADIBroker class definition on page Appx-A-85.
• A.2.2 Creating the CADIBroker on page Appx-A-85.
• A.2.3 CADIBroker::GetSimulationFactories() on page Appx-A-86.
• A.2.4 CADIBroker::GetSimulationInfos() on page Appx-A-86.
• A.2.5 CADIBroker::SelectSimulation() on page Appx-A-87.
• A.2.6 CADIBroker::Release() on page Appx-A-87.

A.2.1 CADIBroker class definition

This section describes the CADIBroker class definition.

class WEXP CADIBroker: public CAInterface
{
public:
static if_name_t IFNAME() { return "eslapi.CADIBroker2"; }
static if_rev_t IFREVISION() { return 0; }
virtual ~CADIBroker() {}
virtual void Release() = 0;
virtual CADIReturn_t GetSimulationFactories(uint32_t startFactoryIndex,
 uint32_t desiredNumberOfFactories, CADISimulationFactory **factoryList,
 uint32_t *actualNumberOfFactories) = 0;
virtual CADIReturn_t GetSimulationInfos(uint32_t startSimulationInfoIndex,
 uint32_t desiredNumberOfSimulations, CADISimulationInfo_t *simulationList,
 uint32_t *actualNumberOfSimulations) = 0;
virtual CADISimulation *SelectSimulation(uint32_t simulationId,
 CADIErrorCallback *errorCallbackObject, CADISimulationCallback*
 simulationCallbackObject,
 char simulationCallbacksEnable[CADI_SIM_CB_Count])=0;
};

The CADI broker owns all CADI simulations and no other class is permitted to delete them.

If a CADI factory creates a simulation, it must transfer the pointer to the new simulation to the broker.

If the simulation is shut down or killed, the broker is responsible for deleting the simulation. Delete the
simulation by processing GetSimulationInfos() and checking for running simulations (check that the
reference count is 0 and any other implementation-specific conditions are in the appropriate state).

A.2.2 Creating the CADIBroker

This is the first step in creating a new simulation or connecting to an existing one.

This example shows the prototypes for the functions that create the CADIBroker:

Creating the CADIBroker

extern "C"
{
// Global function exported by a dynamically loaded object.
// This function must exist in a dynamically loaded object(DLL/.so).
// It allows the client to instantiate the CADIBroker.
CADI_WEXP eslapi::CADIBroker *CreateCADIBroker();
}

A prototype declaration enables a global function to instantiate a broker from a dynamically loaded
object:

CADIBroker type declaration

typedef CADIBroker *(CreateCADIBroker_t)();

A Class Reference
A.2 CADIBroker class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-85
Non-Confidential

Clients must locate this symbol and cast it as a pointer to CreateCADIBroker_t:

// CreateCADIBroker_t
void *entry = lookup_symbol(dll, "CreateCADIBroker");
CADIBroker *broker = ((*CADIBroker::CreateCADIBroker_t)entry)();

A.2.3 CADIBroker::GetSimulationFactories()

This method returns a list of possible simulation factories provided by this simulation broker.

This list is static for a given CADIBroker.

virtual CADIReturn_t CADIBroker::GetSimulationFactories(
 uint32_t startFactoryIndex,
 uint32_t desiredNumberOfFactories,
 CADISimulationFactory **factoryList,
 uint32_t *actualNumberOfFactories) = 0;

startFactoryIndex
is the index of first factory to return from the internal list maintained by the broker. If
startFactoryIndex exceeds the maximum factory index, CADI_STATUS_IllegalArgument is
returned.

desiredNumberOfFactories
is the required number of factories to return.

 Caution

The factoryList array must be at least this size.

factoryList
is the array of factory pointers returned by this call. This array must be allocated by caller with a
minimum size of desiredNumberOfFactories.

 Note

The returned factory pointers must not be used to delete the factories. The factories are owned
by the broker.

actualNumberOfFactories
is the actual number of factories returned.

A.2.4 CADIBroker::GetSimulationInfos()

This method returns a list of simulation infos informing about the running simulations managed by this
CADI simulation broker.

This list can change dynamically during lifetime of this CADIBroker.

virtual CADIReturn_t CADIBroker::GetSimulationInfos(
 uint32_t startSimulationInfoIndex,
 uint32_t desiredNumberOfSimulations,
 CADISimulationInfo_t *simulationList,
 uint32_t *actualNumberOfSimulations) = 0;

startSimulationInfoIndex
is the index of the first simulation info, within the internal list of running simulators, to return.

If startSimulationInfoIndex exceeds the maximum simulation info index,
CADI_STATUS_IllegalArgument is returned.

desiredNumberOfSimulations
is the required number of simulation infos to return.

 Caution

Array simulationInfoList must have at least this size.

A Class Reference
A.2 CADIBroker class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-86
Non-Confidential

simulationList
is the array of simulation infos returned by this call. This array must be allocated by the caller.

 Note

The minimum size of this array is desiredNumberOfSimulationInfos.

actualNumberOfSimulations
is the actual number of simulation infos returned.

A.2.5 CADIBroker::SelectSimulation()

This method enables connecting to the running simulation selected by the simulation identifier.

A pointer to the simulation is returned on success. If no simulation with the given ID is managed by this
broker, 0 is returned.

virtual CADISimulation *CADIBroker::SelectSimulation(uint32_t simulationId,
 CADIErrorCallback *errorCallbackObject,
 CADISimulationCallback *simulationCallbackObject,
 char simulationCallbacksEnable[CADI_SIM_CB_Count]) = 0;

simulationId
is the ID of the simulation to be returned. This is part of the respective entry in the list of the
simulation infos simulationList returned by GetSimulationInfos().

errorCallbackObject
is the error callback object to be used for signaling error conditions.

simulationCallbackObject
is the simulation callback object to be used for signaling model-wide conditions. This callback
might be called during execution of SelectSimulation() to, for example, signal that the
simulation wants to shut down.

simulationCallbacksEnable
The elements of this array enable or disable specific simulation callbacks. The simulation must
always check if the callbacks are enabled and these must not be called if they are disabled. The
callbacks might be disabled, for example, if the listener does not want to be called in certain
cases.

return value
is the pointer to the simulation or NULL if the call fails.

A.2.6 CADIBroker::Release()

This method releases this broker.

A debugger is expected to release the CADIBroker at the end of a debugging session. The debugger must
manage releasing all obtained CADIFactories before finally destroying the broker. An obtained CADI
interface of a running simulation must be released before destroying the broker.

virtual void Release() = 0;

A Class Reference
A.2 CADIBroker class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-87
Non-Confidential

A.3 CADISimulationFactory class
This section describes the CADISimulationFactory class that provides a mechanism to start new
simulations.

This section contains the following subsections:
• A.3.1 CADISimulationFactory class definition on page Appx-A-88.
• A.3.2 CADISimulationFactory::Release() on page Appx-A-88.
• A.3.3 CADISimulationFactory::GetName() on page Appx-A-88.
• A.3.4 CADISimulationFactory::GetDescription() on page Appx-A-88.
• A.3.5 CADISimulationFactory::GetParameterInfos() on page Appx-A-88.
• A.3.6 CADISimulationFactory::Instantiate() on page Appx-A-89.

A.3.1 CADISimulationFactory class definition

This section describes the CADISimulationFactory class definition.

class CADI_WEXP CADISimulationFactory : public CAInterface
{
public:
 // Return the CAInterface name for this interface.
 static if_name_t IFNAME() { return "eslapi.CADISimulationFactory2"; }
 // Specify the current minor revision for this interface.
 static if_rev_t IFREVISION() { return 0; }
 virtual void Release() = 0;
 virtual const char *GetName() = 0;
 virtual const char *GetDescription() = 0;
 virtual CADIReturn_t GetParameterInfos(uint32_t startParameterInfoIndex,
 uint32_t desiredNumberOfParameterInfos,
 CADIParameterInfo_t *parameterInfoList,
 uint32_t *actualNumberOfParameterInfos) = 0;
 virtual CADISimulation *Instantiate(CADIParameterValue_t *parameterValues,
 CADIErrorCallback *errorCallbackObject,
 CADISimulationCallback *simulationCallbackObject,
 char simulationCallbacksEnable[CADI_SIM_CB_Count]) = 0;
};

A.3.2 CADISimulationFactory::Release()

This method releases this simulation factory.

A debugger is expected to release the simulation factory as soon as the CADI target is obtained.

virtual void CADISimulationFactory::Release() = 0;

A.3.3 CADISimulationFactory::GetName()

This method returns the name for this factory.

virtual const char *CADISimulationFactory::GetName() = 0;

A.3.4 CADISimulationFactory::GetDescription()

This method returns the description for this factory.

virtual const char *CADISimulationFactory::GetDescription() = 0;

A.3.5 CADISimulationFactory::GetParameterInfos()

This method returns a list of simulation parameters and their attributes that must be set through
corresponding values in the Instantiate() call of this class.

virtual CADIReturn_t CADIBroker::GetParameterInfos(
 uint32_t startParameterInfoIndex,
 uint32_t desiredNumberOfParameterInfos,
 CADIParameterInfo_t *parameterInfoList,
 uint32_t *actualNumberOfParameterInfos) = 0;

A Class Reference
A.3 CADISimulationFactory class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-88
Non-Confidential

startParameterInfoIndex
is the index of the first parameter info to return. If startParameterInfoIndex exceeds the
maximum simulation info index, CADI_STATUS_IllegalArgument is returned.

desiredNumberOfParameterInfos
is the required number of parameter infos to return.

 Caution

Array parameterInfoList must have at least this size.

parameterInfoList
is the array of parameter infos returned. This array must be allocated by the caller.

 Note

The minimum size of this array is desiredNumberOfParameterInfos.

actualNumberOfParameterInfos
is the actual number of parameter infos returned.

A.3.6 CADISimulationFactory::Instantiate()

This method instantiates and returns a CADI simulation that is based on the given parameter values.

Errors occurring during system initialization are signaled through the given error callback
CADIErrorCallback.

 Note

This call can take a long time to complete. The call does not return until the instantiation is completed.

virtual CADISimulation *CADISimulationFactory::Instantiate(
 CADIParameterValue_t *parameterValues,
 CADIErrorCallback *errorCallbackObject,
 CADISimulationCallback *simulationCallbackObject,
 char simulationCallbacksEnable[CADI_SIM_CB_Count]) = 0;

parameterValues
are the parameter values for the simulation as specified by the parameter infos returned by
GetParameterInfos().

errorCallbackObject
is the error callback object to be used for signaling error conditions during simulation.

simulationCallbackObject
is the callback object to be used for signaling model-wide conditions.

simulationCallbacksEnable
The elements of this array enable or disable specific simulation callbacks.

 Note

The simulation must always check if the callbacks are enabled or not. Do not call them if they
are disabled. The listener might not want to be called in certain cases.

return value
is the pointer to the created simulation or NULL if instantiation failed.

A Class Reference
A.3 CADISimulationFactory class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-89
Non-Confidential

A.4 CADIErrorCallback class
This section describes the CADIErrorCallback class, which is the base class for error callback handlers
that are addressed during instantiation.

This section contains the following subsections:
• A.4.1 CADIErrorCallback class definition on page Appx-A-90.
• A.4.2 CADIErrorCallback::Error() on page Appx-A-90.

A.4.1 CADIErrorCallback class definition

This section describes the CADIErrorCallback class definition.

class CADI_WEXP CADIErrorCallback : public CAInterface
{
public:
 // Return the CAInterface name for this interface.
 static if_name_t IFNAME() { return "eslapi.CADIErrorCallback2"; }
 // Specify the current minor revision for this interface.
 static if_rev_t IFREVISION() { return 0; }
 // This message is called to signal an error to the listeners
 virtual void Error(CADIFactorySeverityCode_t severity,
 CADIFactoryErrorCode_t errorCode, uint32_t erroneousParameterId,
 const char *message) = 0;
};

A.4.2 CADIErrorCallback::Error()

This method is called to signal an error to the listeners.

virtual void Error(CADIFactorySeverityCode_t severity,
 CADIFactoryErrorCode_t errorCode,
 uint32_t erroneousParameterId,
 const char *message) = 0;

severity
is the severity of the error.

errorCode
is the error code as defined in the CADIFactoryErrorCode_t type.

erroneousParameterId
if this error refers to a parameter, this is the ID of the parameter causing the error.

message
is the error message.

Related references
B.1.3 CADIFactorySeverityCode_t on page Appx-B-139.

A Class Reference
A.4 CADIErrorCallback class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-90
Non-Confidential

A.5 CADISimulationCallback class
This section describes the CADISimulationCallback, which is the base class for simulation callbacks.
The class enables registering as a listener for system-wide callbacks.

This section contains the following subsections:
• A.5.1 CADISimulationCallback class definition on page Appx-A-91.
• A.5.2 CADISimulationCallback::simMessage() on page Appx-A-91.
• A.5.3 CADISimulationCallback::simShutdown() on page Appx-A-91.
• A.5.4 CADISimulationCallback::simKilled() on page Appx-A-91.

A.5.1 CADISimulationCallback class definition

This section describes the CADISimulationCallback class definition.

class CADI_WEXP CADISimulationCallback : public CAInterface
{
public:
 // Return the CAInterface name for this interface.
 static if_name_t IFNAME() { return "eslapi.CADISimulationCallback2"; }
 // Specify the current minor revision for this interface.
 static if_rev_t IFREVISION() { return 0; }
 virtual void simMessage(const char *message) = 0;
 virtual void simShutdown() = 0;
 virtual void simKilled() = 0;
};

A.5.2 CADISimulationCallback::simMessage()

This method enables the simulation to send system-wide messages to all listeners.

virtual void CADISimulationCallback::simMessage(const char *message) = 0;

message
is the message text to send to the listeners.

A.5.3 CADISimulationCallback::simShutdown()

This method enables the simulation to signal that it is shutting down.

All clients are requested to unregister their callback handlers, and release any references to the
simulation.

virtual void CADISimulationCallback::simShutdown() = 0;

A.5.4 CADISimulationCallback::simKilled()

This callback is a last-ditch recovery method.

Suppose the simulation is being forcedly terminated. After this call returns, the client must cease all
communication with the simulation. This callback is intended to provide last-ditch recovery in situations
where it is not possible to go through the clean simShutdown() route.

virtual void CADISimulationCallback::simKilled() = 0;

A Class Reference
A.5 CADISimulationCallback class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-91
Non-Confidential

A.6 CADISimulation class
This section describes the CADISimulation class, which represents a single simulation.

This section contains the following subsections:
• A.6.1 CADISimulation class definition on page Appx-A-92.
• A.6.2 CADISimulation::IFNAME() on page Appx-A-92.
• A.6.3 CADISimulation::IFREVISION() on page Appx-A-92.
• A.6.4 CADISimulation::Release() on page Appx-A-92.
• A.6.5 CADISimulation::AddCallbackObject() on page Appx-A-92.
• A.6.6 CADISimulation::RemoveCallbackObject() on page Appx-A-93.
• A.6.7 CADISimulation::GetTargetInfos() on page Appx-A-93.
• A.6.8 CADISimulation::GetTarget() on page Appx-A-93.

A.6.1 CADISimulation class definition

This section describes the CADISimulation class definition.

class CADI_WEXP CADISimulation : public CAInterface
{
public:
 static if_name_t IFNAME() { return "eslapi.CADISimulation2"; }
 static if_rev_t IFREVISION() { return 0; }
 virtual void Release(bool shutdown) = 0;
 virtual void AddCallbackObject(CADISimulationCallback *callbackObject) = 0;
 virtual void RemoveCallbackObject(CADISimulationCallback *callbackObject) = 0;
 virtual CADIReturn_t GetTargetInfos(uint32_t startTargetInfoIndex,
 uint32_t desirednumberOfTargetInfos,
 CADITargetInfo_t *targetInfoList,
 uint32_t *actualNumberOfTargetInfos) = 0;
 virtual CAInterface *GetTarget(uint32_t targetID) = 0;
};

A.6.2 CADISimulation::IFNAME()

This method returns the CAInterface name for this interface.

static if_name_t IFNAME() { return "eslapi.CADISimulation2"; }

A.6.3 CADISimulation::IFREVISION()

This method specifies the current minor revision for this interface.

static if_rev_t IFREVISION() { return 0; }

A.6.4 CADISimulation::Release()

This method releases this simulation and disconnects and cleans-up targets obtained from this simulation.

Using a target obtained from a simulation after the simulation is released is illegal.

virtual void Release(bool shutdown) = 0;

shutdown
if true, the simulation must call the SystemC method simulation_quit() to invoke a callback
in the SystemC wrapper component and force shutdown and exit.

 Note

The exit behavior can be overridden by registering for the callback.

A.6.5 CADISimulation::AddCallbackObject()

This method registers to listen for simulation-wide events such as, for example, system messages.

virtual void AddCallbackObject(CADISimulationCallback *callbackObject) = 0;

A Class Reference
A.6 CADISimulation class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-92
Non-Confidential

callbackObject
is the callback listener to register.

A.6.6 CADISimulation::RemoveCallbackObject()

This method logs off as a listener for simulation-wide events such as, for example, system messages.

virtual void RemoveCallbackObject(CADISimulationCallback *callbackObject) = 0;

callbackObject
is the callback listener to de-register.

A.6.7 CADISimulation::GetTargetInfos()

This method obtains info about the targets that are provided when the simulation is instantiated.

virtual CADIReturn_t GetTargetInfos(uint32_t startTargetInfoIndex,
 uint32_t desirednumberOfTargetInfos,
 CADITargetInfo_t *targetInfoList,
 uint32_t *actualNumberOfTargetInfos) = 0;

startTargetInfoIndex
is the index of first target info to return. If startTargetIndex exceeds the maximum target
index, CADI_STATUS_IllegalArgument is returned.

desiredNumberOfTargetInfos
is the required number of target infos to return.

Array simulationList must have at least this size.

targetInfoList
is an array of target information returned. This array must be allocated by the caller. The
minimum size of this array is desiredNumberOfTargetInfos.

actualNumberOfTargetInfos
is the actual number of target infos returned.

A.6.8 CADISimulation::GetTarget()

This method returns an interface handle for the target with a given target ID.

If no CADI exists with id targetID, 0 is returned.

virtual CAInterface *GetTarget(uint32_t targetID) = 0;

targetID
is the id of the target to return.

A Class Reference
A.6 CADISimulation class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-93
Non-Confidential

A.7 CADICallbackObj class
This section describes the CADICallbackObj class, which is the base class for the CADI callbacks in the
component.

This section contains the following subsections:
• A.7.1 CADICallbackObj class declaration on page Appx-A-94.
• A.7.2 CADICallbackObj::appliOpen() on page Appx-A-94.
• A.7.3 CsADICallbackObj::appliInput() on page Appx-A-94.
• A.7.4 CADICallbackObj::appliOutput() on page Appx-A-95.
• A.7.5 CADICallbackObj::appliClose() on page Appx-A-95.
• A.7.6 CADICallbackObj::doString() on page Appx-A-95.
• A.7.7 CADICallbackObj::modeChange() on page Appx-A-95.
• A.7.8 CADICallbackObj::reset() on page Appx-A-96.
• A.7.9 CADICallbackObj::cycleTick() on page Appx-A-96.
• A.7.10 CADICallbackObj::killInterface() on page Appx-A-96.
• A.7.11 CADICallbackObj::bypass() on page Appx-A-96.
• A.7.12 CADICallbackObj::lookupSymbol() on page Appx-A-97.
• A.7.13 CADICallbackObj::refresh() on page Appx-A-97.

A.7.1 CADICallbackObj class declaration

This section describes the CADICallbackObj class declaration.

class CADI_WEXP CADICallbackObj : public CAInterface
{
public:
 virtual uint32_t appliOpen(const char *sFileName, const char *mode) = 0;
 virtual void appliOutput(uint32_t streamId, uint32_t count,
 uint32_t *actualCount, const char *buffer) = 0;
 virtual uint32_t appliClose(uint32_t streamID) = 0;
 virtual void doString(const char *stringArg) = 0;
 virtual void modeChange(uint32_t newMode, CADIBptNumber_t bptNumber) = 0;
 virtual void reset(uint32_t resetLevel) = 0;
 virtual void cycleTick(void) = 0;
 virtual void killInterface(void) = 0;
 virtual uint32_t bypass(uint32_t commandLength, const char *command,
 uint32_t maxResponseLength, char *response) = 0;
 virtual uint32_t lookupSymbol (uint32_t symbolLength, const char *symbol,
 uint32_t maxResponseLength, char *response) = 0;
 virtual void refresh(uint32_t refreshReason) = 0;
};

A.7.2 CADICallbackObj::appliOpen()

This method opens an application and returns the ID of the stream. CADI 2.0 deprecates this method.

virtual uint32_t CADICallbackObj::appliOpen(const char *sFileName,
 const char *mode) = 0;

sFileName
is the name of the file to be opened.

mode
indicates the permitted access on the file. See the ANSI C definition of fopen for possible
values of this parameter.

A.7.3 CsADICallbackObj::appliInput()

The target can call this function to request interactive console input from the debugger.

The target must call this function only on the first debugger in the list of registered callback objects that
implement this function and ignore the callbacks for all following connected debuggers that implement

A Class Reference
A.7 CADICallbackObj class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-94
Non-Confidential

this function. This is in contrast to appliOutput() which is always broadcast to all connected
debuggers.

virtual void CADICallbackObj::appliInput(uint32_t streamId,
 uint32_t count,
 uint32_t *actualCount,
 char *buffer) = 0;

streamId
is the stream identifier. This must be set to CADI_STREAMID_STDIN.

count
is the number of characters requested.

actualCount
is the number of characters supplied. This number must never be greater than the number of
characters requested. If this number is equal to the number of characters requested, the caller can
repeat the call to request more input. A return value of 0 indicates end of file. A return of –1,
~unit32(0), indicates an error such as, for example, an invalid stream ID.

buffer
is the supplied character stream. The buffer is not null terminated.

A.7.4 CADICallbackObj::appliOutput()

This method prints console output in all connected debuggers that implement this callback function.

virtual void CADICallbackObj::appliOutput(uint32_t streamId, uint32_t count,
 uint32_t *actualCount, const char *buffer) = 0;

streamId
is the stream identifier and must be either CADI_STREAMID_STDOUT or CADI_STREAMID_STDERR.

count
is the number of characters to output.

actualCount
is the number of characters output to the file. A return value of 0 indicates end of file. A return
of –1, ~unit32(0), indicates an error.

buffer
contains the characters to output. This buffer can contain NULL characters and is not NULL
terminated.

A.7.5 CADICallbackObj::appliClose()

This method closes the stream opened by appliOpen(). CADI 2.0 deprecates this method. Do not use it
in new models.

If the return value is 1, the file was successfully closed. A return value of –1 indicates an error.

virtual uint32_t CADICallbackObj::appliClose(uint32_t streamID) = 0;

A.7.6 CADICallbackObj::doString()

This method outputs a string from the target to the debugger.

This can be used, for example, to handle error messages from the target rather than using semihosting to
output the message.

virtual void CADICallbackObj::doString(char *stringArg) = 0;

A.7.7 CADICallbackObj::modeChange()

This method reports a mode change from the target to the debugger.

virtual void CADICallbackObj::modeChange(uint32_t newMode,
 CADIBptNumber_t bptNumber) = 0;

newMode
is one of the CADI_EXECMODE_* constants.

A Class Reference
A.7 CADICallbackObj class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-95
Non-Confidential

bptNumber
is the breakpoint number. This value is used if the debugger has an action associated with a
particular breakpoint. Temporary breakpoints, for example, might run a script after the
breakpoint was hit.

This parameter can be ignored for all mode changes not related to a breakpoint.

 Note

The modeChange(CADI_EXECMODE_ResetDone) callback is identical to the legacy
CADICallbackObj::reset() callback.

Targets must support both callbacks to maintain backwards compatibility.

ARM recommends using modeChange(CADI_EXECMODE_ResetDone) in client code because a future
version of CADI is to deprecate the reset() callback.

Related references
B.3.7 CADI_EXECMODE_t on page Appx-B-158.
A.7.8 CADICallbackObj::reset() on page Appx-A-96.

A.7.8 CADICallbackObj::reset()

This method reports a finished target reset to the client.

virtual void CADICallbackObj::reset(uint32_t resetLevel) = 0;

 Note

CADICallbackObj::reset() is a legacy callback and is identical to the newer
modeChange(CADI_EXECMODE_ResetDone) callback.

Targets must support both callbacks to maintain backwards compatibility.

ARM recommends using modeChange(CADI_EXECMODE_ResetDone) in client code because a future
version of CADI is to deprecate the reset() callback.

Related references
A.7.7 CADICallbackObj::modeChange() on page Appx-A-95.

A.7.9 CADICallbackObj::cycleTick()

ARM deprecates this method. Do not use it.

virtual void CADICallbackObj::cycleTick(void) = 0;

A.7.10 CADICallbackObj::killInterface()

ARM deprecates this method. Do not use it.

virtual void CADICallbackObj::killInterface(void) = 0;

A.7.11 CADICallbackObj::bypass()

This method is reserved for future use by the callback object.

virtual uint32_t CADICallbackObj::bypass(uint32_t commandLength,
 const char *command,
 uint32_t maxResponseLength,
 char *response) = 0;

A Class Reference
A.7 CADICallbackObj class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-96
Non-Confidential

A.7.12 CADICallbackObj::lookupSymbol()

This method is reserved for future use by the callback object.

virtual uint32_t CADICallbackObj::lookupSymbol(uint32_t symbolLength,
 const char *symbol,
 uint32_t maxResponseLength,
 char *response) = 0;

A.7.13 CADICallbackObj::refresh()

Use this callback whenever the state of a target changes spontaneously while the model is in the stopped
state.

Do not use it with a modeChange(Stop), modeChange(Error) or modeChange(ResetDone) callback.

A target can notify a debugger to update its display if, for example, a register value changes in the target
because it was edited by a debugger. The target uses refresh(REGISTERS) to notify the other debuggers
of the register change. If, however, a target hits a breakpoint and stops, it must call the necessary
modeChange() callbacks instead of the refresh() callbacks.

virtual void CADICallbackObj::refresh(uint32_t refreshReason) = 0

A target must not call this function while the simulation is running.

Related references
B.1.9 CADIRefreshReason_t on page Appx-B-144.
B.3.7 CADI_EXECMODE_t on page Appx-B-158.

A Class Reference
A.7 CADICallbackObj class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-97
Non-Confidential

A.8 CADI class
This section describes the CADI class and its methods.

This section contains the following subsections:
• A.8.1 Methods in the CADI class on page Appx-A-99.
• A.8.2 Component CADI class declaration on page Appx-A-100.
• A.8.3 The CADI class constructor on page Appx-A-101.
• A.8.4 CADI::CADIXfaceGetFeatures() on page Appx-A-101.
• A.8.5 CADI::CADIXfaceGetError() on page Appx-A-102.
• A.8.6 CADI::CADIGetDisassembler() on page Appx-A-102.
• A.8.7 CADI::CADIXfaceAddCallback() on page Appx-A-102.
• A.8.8 CADI::CADIXfaceRemoveCallback() on page Appx-A-102.
• A.8.9 CADI::CADIXfaceBypass() on page Appx-A-103.
• A.8.10 CADI::CADIGetTargetInfo() on page Appx-A-103.
• A.8.11 CADI::CADIGetParameterInfo() on page Appx-A-103.
• A.8.12 CADI::CADIGetParameterValues() on page Appx-A-103.
• A.8.13 CADI::CADIGetParameters() on page Appx-A-104.
• A.8.14 CADI::CADISetParameters() on page Appx-A-104.
• A.8.15 CADI::CADIRegGetGroups() on page Appx-A-104.
• A.8.16 CADI::CADIRegGetMap() on page Appx-A-104.
• A.8.17 CADI::CADIRegGetCompound() on page Appx-A-105.
• A.8.18 CADI::CADIRegWrite() on page Appx-A-106.
• A.8.19 CADI::CADIRegRead() on page Appx-A-106.
• A.8.20 CADI::CADIGetPC() on page Appx-A-107.
• A.8.21 CADI::CADIGetCommittedPCs() on page Appx-A-107.
• A.8.22 CADI::CADIMemGetSpaces() on page Appx-A-107.
• A.8.23 CADI::CADIMemGetBlocks() on page Appx-A-108.
• A.8.24 CADI::CADIMemRead() on page Appx-A-108.
• A.8.25 CADI::CADIMemWrite() on page Appx-A-109.
• A.8.26 CADI::CADIMemGetOverlays() on page Appx-A-109.
• A.8.27 CADI::VirtualToPhysical() on page Appx-A-110.
• A.8.28 CADI::PhysicalToVirtual() on page Appx-A-110.
• A.8.29 CADI::CADIGetCacheInfo() on page Appx-A-110.
• A.8.30 CADI::CADICacheRead() on page Appx-A-110.
• A.8.31 CADI::CADICacheWrite() on page Appx-A-111.
• A.8.32 About the CADI execution modes on page Appx-A-111.
• A.8.33 CADI::CADIExecGetModes() on page Appx-A-112.
• A.8.34 CADI::CADIExecGetResetLevels() on page Appx-A-112.
• A.8.35 CADI::CADIExecSetMode() on page Appx-A-112.
• A.8.36 CADI::CADIExecGetMode() on page Appx-A-113.
• A.8.37 CADI::CADIExecSingleStep() on page Appx-A-113.
• A.8.38 CADI::CADIExecReset() on page Appx-A-113.
• A.8.39 CADI::CADIExecContinue() on page Appx-A-114.
• A.8.40 CADI::CADIExecStop() on page Appx-A-114.
• A.8.41 CADI::CADIExecGetExceptions() on page Appx-A-114.
• A.8.42 CADI::CADIExecAssertException() on page Appx-A-115.
• A.8.43 CADI::CADIExecGetPipeStages() on page Appx-A-115.
• A.8.44 CADI::CADIExecGetPipeStageFields() on page Appx-A-115.
• A.8.45 CADI::CADIExecLoadApplication() on page Appx-A-116.
• A.8.46 CADI::CADIExecUnLoadApplication() on page Appx-A-116.
• A.8.47 CADI::CADIExecGetLoadedApplication() on page Appx-A-116.
• A.8.48 CADI::CADIGetInstructionCount() on page Appx-A-117.
• A.8.49 CADI::CADIGetCycleCount() on page Appx-A-117.
• A.8.50 CADI::CADIBptGetList() on page Appx-A-118.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-98
Non-Confidential

• A.8.51 Special purpose registers with permanent breakpoints for vector catching with
CADIBptGetList() on page Appx-A-118.

• A.8.52 CADI::CADIBptRead() on page Appx-A-119.
• A.8.53 CADI::CADIBptSet() on page Appx-A-119.
• A.8.54 CADI::CADIBptClear() on page Appx-A-119.
• A.8.55 CADI::CADIBptConfigure() on page Appx-A-120.

A.8.1 Methods in the CADI class

This section describes the methods in the CADI class that provide the main interfaces for configuring and
running the target.

About the methods in the CADI class

This section describes common aspects of the methods in the CADI class.

For more details of the structs, enums, and defines that the CADI interface uses, see also the
CADITypes.h file.

If called, unsupported methods must return CADI_STATUS_CmdNotSupported.

Setup API

The setup API controls the interaction between the host, the debugger, and the CADI target.

Use this API to:
• Inspect the actual properties of a given CADI object.
• Register CADICallbackObj callbacks.
• Bypass specialized commands not available from CADI.

Breakpoint API

The breakpoint API enables defining various types of breakpoint in the target model.

The types of breakpoint:
• Instruction execution.
• The content of a memory location.
• The content of a register.
• Temporary breakpoints for run to debugger behavior.
• Breakpoints on triggered exceptions.

Execution API

This section describes what the execution API enables a debugger to do.

• Control the execution using various asynchronous execution commands.
• Control the target by, for example, starting or stopping simulation.
• Obtain information about the pipeline for a cycle-accurate model.
• Manage the synchronous commands of loading or resetting an application.

Register API

The register API exposes the internal state of the registers of a model for inspection and modification.

If a model has a large number of registers, the registers can be grouped to simplify navigating through
the registers. The register API supports compound registers.

Models must expose their internal performance counters (for example, Instr Cache Reads, Instr Cache
Misses) as registers to be accessible through this interface.

Memory API

The memory API exposes the internal state of the memory of a model for inspection and modification.
Memory is exposed through address spaces (memory spaces) that represent separately addressable units.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-99
Non-Confidential

For processor models, the memory exposed through the API is not memory contained in the model, but
rather memory accessed by the model.

Some processor models, however, do contain their own physical memory and expose this memory as a
separate memory space.

The requirement for multiple memory spaces is because of different processor models:

• Harvard architectures can require two separate memory spaces.
• DSP processors might require up to three memory spaces.
• There also exist processors that access different memory spaces depending on internal execution

flags, for instance distinguishing between secure memory and non-secure memory.

Memory models typically expose a single memory space corresponding to their physical memory and
other models typically do not expose any memory.

Data stored in a memory space is organized according to the endianness specified by the flags of that
particular memory space. This can be little endian or big endian, with the invariance defining the number
of bytes in an accessed unit.

Data can also be organized using a model-specific endianness. In these cases, the documentation that
accompanies the model must provide specific details.

The total number of bytes in a memory word can be determined based on bitsPerMau. The bytes are
divided in groups of invariance bytes. These groups are then arranged in little endian or big endian
order.

For example, for invariance of 2 and bitsPerMau of 64:
• A little endian word is represented as b0 b1 b2 b3 b4 b5 b6 b7.
• A big endian word is represented as b6 b7 b4 b5 b2 b3 b0 b1.

Each memory space can be subdivided in memory blocks. Memory blocks contain additional information
pertaining to the intended usage of the memory. This information can be used as hints for memory data
presentation dedicated for human consumption, but it has no effect on the actual simulation.

Cache API

These functions enable access to cache memories in the target.

Use the CADIGetCacheInfo() function to return the cache information for the target. The
CADICacheRead() and CADICacheWrite() functions are used to directly access the cache memory
contents.

Parameters API

This section describes what the parameters API enables.

• Getting information on runtime parameters.
• Retrieving the current values for runtime parameters.
• Setting runtime parameters to new values.

A.8.2 Component CADI class declaration

This section describes the component CADI class declaration.

// Header file for a typical CADI component class.
class CADIMyComponent : public CADI
{
public:
 CADIMyComponent(MyComponentClass *c); // Change names accordingly.
 virtual ~CADIMyComponent();
// The declaration/implementation of CAInterface() methods is missing
// and must be added at this point.
// These are essential for properly obtaining a CADI 2.0 interface.
public:
 // Register access functions.
 CADIReturn_t CADIRegGetGroups(uint32_t groupIndex
 , uint32_t desiredNumOfRegGroups, uint32_t *actualNumOfRegGroups

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-100
Non-Confidential

 , CADIRegGroup_t *reg);
 CADIReturn_t CADIRegGetMap(uint32_t groupID, uint32_t regIndex
 , uint32_t registerSlots, uint32_t *registerCount, CADIRegInfo_t *reg);
 CADIReturn_t CADIRegWrite(uint32_t regCount, CADIReg_t *reg
 , uint32_t *numRegsWritten, uint8_t doSideEffects);
 CADIReturn_t CADIRegRead(uint32_t regCount, CADIReg_t *reg
 , uint32_t *numRegsRead, uint8_t doSideEffects);
 // Memory access functions.
 CADIReturn_t CADIMemGetSpaces(uint32_t spaceIndex, uint32_t memSpaceSlots
 , uint32_t *memSpaceCount, CADIMemSpaceInfo_t *memSpace);
 CADIReturn_t CADIMemGetBlocks(uint32_t memorySpace, uint32_t blockIndex
 , uint32_t memBlockSlots, uint32_t *memBlockCount
 , CADIMemBlockInfo_t *memBlock);
 CADIReturn_t CADIMemWrite(CADIAddrComplete_t startAddress
 , uint32_t unitsToWrite, uint32_t unitSizeInBytes, const uint8_t *data
 , uint32_t *actualNumOfUnitsWritten, uint8_t doSideEffects);
 CADIReturn_t CADIMemRead(CADIAddrComplete_t startAddress
 , uint32_t unitsToRead, uint32_t unitSizeInBytes, uint8_t *data
 , uint32_t *actualNumOfUnitsRead, uint8_t doSideEffects);
 // Access to disassembly class (if available).
 CADIDisassembler *CADIGetDisassembler(void);
private:
 // Pointer to your own component class, see constructor.
 MyComponentClass *target;
 // Register related info.
 CADIRegInfo_t *regInfo;
 CADIRegGroup_t *regGroup;
 // Memory related info.
 CADIMemSpaceInfo_t *memSpaceInfo;
 CADIMemBlockInfo_t *memBlockInfo;
};

Typically, you can leave the class declaration as it is, except for:
• Adding any private data members.
• Changing the parameter in the constructor to the class name of the component.

 Note

If your component is a processor, see also the functions that are available in the CADIDisassembler and
CADIProfiler classes for controlling and monitoring application execution.

Related references
A.10 CADIDisassembler class on page Appx-A-123.
A.9 CADIDisassemblerCB class on page Appx-A-121.
A.12 CADIProfiling class on page Appx-A-128.
A.11 CADIProfilingCallbacks class on page Appx-A-127.

A.8.3 The CADI class constructor

You can define in the constructor the number of registers you have and the property of your memory
spaces.

A.8.4 CADI::CADIXfaceGetFeatures()

The debugger for a target must call this function when it attaches to a target.

This function is typically called once per target. The debugger can, however, call it more often if
required. This call determines the features supported by the target by updating the passed features
parameter.

virtual CADIReturn_t CADI::CADIXfaceGetFeatures(
 CADITargetFeatures_t *features) = 0;

The caller allocates and de-allocates memory for the features parameter.

Related references
B.1.7 CADITargetFeatures_t on page Appx-B-141.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-101
Non-Confidential

A.8.5 CADI::CADIXfaceGetError()

If an error is detected, this routine is called to get the error message.

virtual CADIReturn_t CADI::CADIXfaceGetError(uint32_t maxMessageLength,
 uint32_t *actualMessageLength,
 char *errorMessage) = 0;

maxMessageLength
is the max length of errorMessage array. The target must not fill more than this number of
characters in the array.

actualMessageLength
is the actual length of errorMessage array. The target must set this to the actual number of chars
written into the errorMessage buffer.

errorMessage
is the actual error message text. The target writes the text into this character buffer. The length
of this buffer is exactly maxMessageLength.

A.8.6 CADI::CADIGetDisassembler()

This deprecated method returns the CADIDisassembler for a target.

 Caution

ARM deprecates obtaining disassemblers from CADI by calling CADIGetDisassembler(), but retains
the method for compatibility with CADI 1.1. New code must call ObtainInterface() for both
disassembler and profiling support.

virtual CADIDisassembler *CADI::CADIGetDisassembler(void) = 0;

A.8.7 CADI::CADIXfaceAddCallback()

A debugger connected to the target must call this to register a callback object that handles asynchronous
information from the target.

The callback routines must not make calls to the target. It is possible for a debugger to receive a callback
while in the middle of a call by, for example, receiving a modeChange callback from within a
CADIExecStop call.

Callbacks from a target into the debugger typically come from a different thread (called the simulation
thread) than the calls from the debugger into the target (called the GUI thread or debugger thread).

Already registered callbacks can be reconfigured with respect to the enabled callbacks. That is, they are
replaced when called again.

virtual CADIReturn_t CADI::CADIXfaceAddCallback(CADICallbackObj *callbackObj,
 char enable[CADI_CB_Count]) = 0;

callbackObj
is a pointer to the object whose member functions are called as callbacks.

enable
the elements of this array enable or disable specific callbacks. The caller must always check if
the callbacks are enabled. The callbacks must not be called if they are disabled.

The indexes in the array must be based on the list in CADICallbackType_t. The length of the
array is CADI_CB_Count.

A.8.8 CADI::CADIXfaceRemoveCallback()

A debugger must call this to remove any callback objects it has added. This is required when
disconnecting from a target that is not shut down.

virtual CADIReturn_t CADI::CADIXfaceRemoveCallback(
 CADICallbackObj *callbackObj) = 0;

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-102
Non-Confidential

callbackObj
is a pointer to the callback object. The target must not use this object after this call.

A.8.9 CADI::CADIXfaceBypass()

Targets can have specialized commands that can be requested by the debugger. This command enables
the debugger to pass a string containing one of these commands to a target.

The target must silently ignore all unknown commands issued through this mechanism and on return set
response to an empty string and use CADI_STATUS_UnknownCommand as the return value.

virtual CADIReturn_t CADI::CADIXfaceBypass(uint32_t commandLength,
 const char *command,
 uint32_t maxResponseLength,
 char *response) = 0;

commandLength
is the length, including the terminating zero, of the command. This helps networked versions of
the interface to determine how much space to allocate for command.

command
is the entire command with all arguments.

maxResponseLength
is the length of the response array. The target must truncate the response to fit it into the array.

response
is the response from the target. This string might or might not be zero terminated. It might also
be NULL or contain binary data depending on the issued bypass commands.

A.8.10 CADI::CADIGetTargetInfo()

This method returns target information for this model.

The values for the return parameters are set by the model.

virtual CADIReturn_t CADI::CADIGetTargetInfo(CADITargetInfo_t *targetInfo) = 0;

targetInfo
is set to point to the CADITargetInfo_t struct.

A.8.11 CADI::CADIGetParameterInfo()

This method gets parameter info class for a specific parameter name.

virtual CADIReturn_t CADIGetParameterInfo(const char *parameterName,
 CADIParameterInfo_t *param) = 0;

parameterName
is the name of the parameter to be retrieved. This is the local name in the model, not the global
hierarchical name.

param
points to a single CADIParameterInfo_t buffer that must be pre-initialized by the caller and
filled with data by the callee.

A.8.12 CADI::CADIGetParameterValues()

This method returns the current parameter values.

virtual CADIReturn_t CADI::CADIGetParameterValues(uint32_t parameterCount,
 uint32_t *actualNumOfParamsRead,
 CADIParameterValue_t *paramValuesOut) = 0;

parameterCount
is the length of array paramValuesOut.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-103
Non-Confidential

actualNumOfParamsRead
is the number of valid entries in paramValuesOut. ARM recommends that this is initialized to 0
by the caller.

If an error code is returned and actualNumOfParamsRead is greater than 0, the first
actualNumOfParams entries are valid and caused no error. The entry
paramValuesOut[actualNumOfParamsRead] caused the error.

paramValuesOut
is an output buffer that holds the parameter values.

A.8.13 CADI::CADIGetParameters()

This method gets a list of supported parameters and parameter details.

virtual CADIReturn_t CADI::CADIGetParameters(uint32_t startIndex,
 uint32_t desiredNumOfParams,
 uint32_t *actualNumOfParams,
 CADIParameterInfo_t *params) = 0;

A.8.14 CADI::CADISetParameters()

This method sets parameter values.

virtual CADIReturn_t CADI::CADISetParameters(uint32_t parameterCount,
 CADIParameterValue_t *parameters,
 CADIFactoryErrorMessage_t *error) = 0;

A.8.15 CADI::CADIRegGetGroups()

This call retrieves register groups from the target.

virtual CADIReturn_t CADI::CADIRegGetGroups(uint32_t groupIndex,
 uint32_t desiredNumOfRegGroups,
 uint32_t *actualNumOfRegGroups,
 CADIRegGroup_t *reg) = 0;

groupIndex
is the index into the internal list of register groups as maintained by the target. It is not the group
IDs.

desiredNumOfRegGroups
is the size of the reg[] buffer provided by the caller.

actualNumOfRegGroups
is, on return, the number of groups that have actually been returned by the target. If this is less
than the number requested, the debugger might call this function again with a different
groupIndex. Any value set on input is ignored.

reg
is the register group information. The array is allocated, and deallocated if applicable, by the
caller and filled by the target:
• The amount of space allocated must be enough to hold the number of groups required.
• If the required count is greater than the targets total number of register groups, the target

must return all groups.
• If fewer groups are returned than requested, the last entries of the reg[] array are left empty.

A.8.16 CADI::CADIRegGetMap()

This method obtains detailed register information.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-104
Non-Confidential

ARM recommends that the debugger for the target call this method after connecting to the target to
obtain detailed register information:
• All registers must be reported even if they are part of a compound register.
• All register numbers must be unique both for registers in the same group and register numbers in

other groups.
• A register can be a member of more than one register group.

virtual CADIReturn_t CADI::CADIRegGetMap(uint32_t groupID,
 uint32_t startRegisterIndex,
 uint32_t desiredNumOfRegisters,
 uint32_t *actualNumOfRegisters,
 CADIRegInfo_t *reg) = 0;

groupID
identifies the ID of the group whose map is requested. If the value is CADI_REG_ALLGROUPS, all
registers of all groups are returned.

startRegisterIndex
is the index into the internal list of registers held by the target. It is not register numbers.

desiredNumOfRegisters
is the total number of registers required by the caller. The caller must allocate a buffer size that
is enough to hold the requested number of registers.

actualNumOfRegisters
is the number of registers actually returned by the target. Any value set on input is ignored.

reg
is the register information. The array is allocated, and deallocated if applicable, by the caller to
be filled by the target. The amount of space allocated must be enough to hold the number of
registers requested.

If the count is greater than the targets number of registers, the target must return all the registers.
If fewer registers are returned than requested, the last entries of reg[] are left empty.

A.8.17 CADI::CADIRegGetCompound()

This call gets the information about a compound register.

The structure of the compound register is as reported by a call to CADIRegGetCompound(). Compound
registers, that is, registers that contain subregisters, form an additional hierarchy below register groups.

virtual CADIReturn_t CADI::CADIRegGetCompound(uint32_t reg,
 uint32_t componentIndex,
 uint32_t desiredNumOfComponents,
 uint32_t *actualNumOfcomponents,
 uint32_t *components) = 0;

reg
is the register number.

componentIndex
is the index into the internal component array for the requested register.

desiredNumOfComponents
is the total number of child registers required by the caller, starting at componentIndex.

actualNumOfcomponents
on return, is the number of components returned by the target. Any value set on input is ignored.

components
on return, is the list of component registers. The array is allocated, and deallocated if applicable,
by the caller to be filled by the target. The amount of space allocated must be big enough to hold
the number of requested components. If a target has written less than regCount registers it
returns the number of registers successfully written in this field. The target must report an error
only in the case of a cyclic graph where, for example, a compound register contains a register
(component) that again is a compound register that owns a component that is the initially
requested compound register.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-105
Non-Confidential

A.8.18 CADI::CADIRegWrite()

This function writes to registers in the target.

virtual CADIReturn_t CADI::CADIRegWrite(uint32_t regCount,
 CADIReg_t *reg,
 uint32_t *numOfRegsWritten,
 uint8_t doSideEffects) = 0;

regCount
is the requested number of registers (and consequently the size of the reg array).

reg
is an array of CADIReg_t structs each holding the some attributes and an array of bytes
containing the contents of an individual register. The number of required bytes for each register
is available from the CADIInfo_t struct. The number of registers is returned by the
CADIRegGetMap() call.

numOfRegsWritten
on return, is the number of registers that are actually written. Any value set on input is ignored.

doSideEffects
If set to true, this parameter informs the target that it must perform side effects on a write
access. Such side effects might be, for example, triggering an interrupt. If it is set to false, the
target must decide when to ignore this parameter. For some cases it is not possible to write a
register without doing a side effect such as manipulating a register that influences a hardware
accelerator's behavior and changes the computed results.

A.8.19 CADI::CADIRegRead()

This function reads register values from the target.

virtual CADIReturn_t CADI::CADIRegRead(uint32_t regCount,
 CADIReg_t *reg,
 uint32_t *numRegsRead,
 uint8_t doSideEffects) = 0;

regCount
is the number of requested registers and so the size of the reg array.

reg
is an array of CADIReg_t structs, each holding some attributes and an array of bytes containing
the contents of an individual register. The number of required bytes for each register is available
from the CADIInfo_t struct. The CADIRegGetMap() call returns the number of registers.

numRegsRead
on return, is the number of registers read. If the value is less than regCount, the function returns
an error code. Any value set on input is ignored.

doSideEffects
if this parameter is set to true, it informs the target that it must perform side effects on a read
access. Such side effects might be, for example, a clear-on-read.

If the parameter is set to false, the target must always omit side effects. This state is the
common use case where a debug read of a register must not interfere with the target execution.

 Note

If an error occurs, CADIRegRead() must return the error position in numRegsRead. Data is assumed valid
up to this position.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-106
Non-Confidential

CADI register access, showing how to set up the CADI access functions and test reading a register
value

CADI *cadi1 = s1->getCADI(); // cadi1 is a valid CADI interface.
uint32_t actual = 0;
CADIRegGroup_t regGroups [2];
cadi1->CADIRegGetGroups(0, 2, &actual, regGroups);
CADIRegInfo_t regs [2];
actual = 0;
cadi1->CADIRegGetMap(regGroups [0].groupID, 0, 2, &actual, regs);
CADIReg_t reg;
reg.regNumber = regs [1].regNumber;
actual = 0;
cadi1->CADIRegRead(1, ®, &actual, 0);
printf("CADI reg 0x%x\n", reg.bytes [0]);

A.8.20 CADI::CADIGetPC()

This method returns the PC of the instruction that is executed next from an ISA perspective.

virtual uint64_t CADI::CADIGetPC() = 0;
virtual uint64_t CADI::CADIGetPC(bool *is_virtual) = 0;

A.8.21 CADI::CADIGetCommittedPCs()

The method returns the number of program counters in the current cycle.

This method can be used with multi-issue processors.

virtual CADIReturn_t CADIGetCommitedPCs(int startIndex,
 int desiredCount,
 int *actualCount,
 uint64_t *pcs) = 0;

startIndex
is the index into the internal buffer of PCs present in the target.

desiredCount
is the required number of PCs.

actualCount
is the total number of PCs returned by the target through the pcs[] array.

pcs
is a list of PCs. The array is allocated, and deallocated if applicable, by the caller to be filled by
the target. This space must be big enough to hold the required number of spaces.

A.8.22 CADI::CADIMemGetSpaces()

ARM recommends that the debugger call this after connecting to the target but before accessing any
memory.

The function identifies the number of independent address spaces available on the target. Use different
memory spaces to separate distinct memory areas with overlapping address values (like program and
data memory in a Harvard architecture).

virtual CADIReturn_t CADI::CADIMemGetSpaces(uint32_t startMemSpaceIndex,
 uint32_t desiredNumOfMemSpaces,
 uint32_t *actualNumOfMemSpaces,
 CADIMemSpaceInfo_t *memSpaces) = 0;

startMemSpaceIndex
is the index into the buffer of memory spaces present in the target.

desiredNumOfMemSpaces
is the required number of memory spaces.

actualNumOfMemSpaces
is the total number of memory spaces returned by the target.

memSpaces
is a list of memory spaces. The array is allocated, and deallocated if applicable, by the caller to
be filled by the target. This space must be big enough to hold the required number of spaces.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-107
Non-Confidential

A.8.23 CADI::CADIMemGetBlocks()

ARM recommends that the debugger for the target call this method once for each memory space,
provided by calling the CADIMemGetSpaces() function, before accessing memory in that space.

This method must return the layout of the memory in a specific block. No two blocks with the same
parent can overlap. This call returns existing memory blocks only. The caller can assume that any
memory that is not in a block is a gap or invalid memory.

virtual CADIReturn_t CADI::CADIMemGetBlocks(uint32_t memorySpace,
 uint32_t memBlockIndex,
 uint32_t desiredNumOfMemBlocks,
 uint32_t *actualNumOfMemBlocks,
 CADIMemBlockInfo_t *memBlocks) = 0;

memorySpace
is the ID of the memory space for which the caller requests a block list.

memBlockIndex
is the index into the internal buffer of memory blocks held by the target for the specified
memory space.

desiredNumOfMemBlocks
is the required number of memory blocks.

actualNumOfMemBlocks
is the is the total number of blocks returned by the target. It is less than the number requested if
the number requested is more than the number available.

memBlocks
is a buffer that must be big enough to hold the required number of CADIMemBlockInfo_t structs.
Space is allocated, and deallocated if applicable, by the caller.

A.8.24 CADI::CADIMemRead()

The function reads memory values from the component. This function must be implemented to support
the display of memory contents.

virtual CADIReturn_t CADI::CADIMemRead(CADIAddrComplete_t startAddress,
 uint32_t unitsToRead,
 uint32_t unitSizeInBytes,
 uint8_t *data,
 uint32_t *actualNumOfUnitsRead,
 uint8_t doSideEffects) = 0;

startAddress
is the start address to begin reading from. If startAddress.overlay is CADI_NO_OVERLAY, it
refers to the current overlay.

unitsToRead
is the number of units of size unitSizeInBytes to read.

unitSizeInBytes
is the unit size, specified in bytes, for memory accesses.

data
is the data buffer that was allocated by the caller and must be large enough to hold the requested
number of addresses. The target data has the same endianness as is declared in the memory
space that is used for the access.

actualNumOfUnitsRead
is the number of units actually read. It can be less than the number of units requested.

doSideEffects
If this parameter is set to true, it informs the target that it must perform side effects on a read
access. Such a side effect might be, for example, a clear-on-read.

If this parameter is set to false, the target must always omit side effects. This is a common use
case when a debug read of memory must not interfere with the target execution.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-108
Non-Confidential

 Note

If an error occurs, CADIMemRead() must return the error position in actualNumOfUnits*. Data is
assumed to be valid up to this position.

A.8.25 CADI::CADIMemWrite()

This function writes values to the memory in the target.

virtual CADIReturn_t CADI::CADIMemWrite(CADIAddrComplete_t startAddress,
 uint32_t unitsToWrite,
 uint32_t unitSizeInBytes,
 const uint8_t *data,
 uint32_t *actualNumOfUnitsWritten,
 uint8_t doSideEffects) = 0;

startAddress
is the start address to begin writing from. If startAddress.overlay is CADI_NO_OVERLAY, it
refers to the current overlay.

unitsToWrite
is the number of units of size unitSizeInBytes to write.

unitSizeInBytes
is the unit size, specified in bytes, of the memory accesses.

data
is the data buffer holding the values to be written. This buffer contains target data that will be
interpreted according the endianness that is declared in the memory space that is used for the
access.

actualNumOfUnitsWritten
is the number of units actually written to the target. It can be less than the number of units
requested.

doSideEffects
If set to true, this parameter informs the target that it must perform side effects on a write
access. Such a side effect might be, for example, triggering an interrupt.

If set to false, the target must decide when to ignore this parameter. In some cases it is not
possible to write to memory without doing a side effect, such as manipulating a memory-
mapped register that influences a hardware accelerator's behavior and changes the computed
results.

 Note

• On error, CADIMemWrite() must return the error position in actualNumOfUnits*. Data is assumed to
be valid up to this position.

• If the write spans a gap in the memory space, the target must stop writing at the beginning of the gap
and return the number of successful writes in numUnitsWritten.

A.8.26 CADI::CADIMemGetOverlays()

The debugger calls this function to get the list of active overlays.

This would typically be done when a breakpoint is hit. When overlays are implemented, an overlay ID
must be stored in the symbol table and in the target software. The symbol table must store the starting
address, memory space, and byte count for each overlay. This enables the ID to be sent to the host when
an overlay occurs.

virtual CADIReturn_t CADI::CADIMemGetOverlays(uint32_t activeOverlayIndex,
 uint32_t desiredNumOfActiveOverlays,
 uint32_t *actualNumOfActiveOverlays,
 CADIOverlayId_t *overlays) = 0;

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-109
Non-Confidential

activeOverlayIndex
is the start index into the internal buffer of overlays held by the target.

desiredNumOfActiveOverlays
is the required number of overlays.

actualNumOfActiveOverlays
is the number of overlay structures returned by the target.

overlays
is the list of overlays that are currently memory resident (that is, swapped-in). The array is
allocated, and deallocated if applicable, by the caller and filled by the target.

A.8.27 CADI::VirtualToPhysical()

This function translates the virtual address passed as a parameter to a physical address that is the return
value.

virtual CADIAddrComplete_t CADI::VirtualToPhysical(CADIAddrComplete_t vaddr) = 0;

vaddr
is the virtual address that is to be converted.

 Note

If the call fails or is not supported, the returned CADIADDRComplete_t has a memory space ID of
CADI_MEM_SPACE_NOTSUPPORTED.

A.8.28 CADI::PhysicalToVirtual()

This function translates the physical address passed as a parameter to a virtual address that is the return
value.

virtual CADIAddrComplete_t CADI::PhysicalToVirtual(CADIAddrComplete_t paddr) = 0;

paddr
is the physical address that is to be converted.

 Note

If the call fails or is not supported, the returned CADIADDRComplete_t has a memory space ID of
CADI_MEM_SPACE_NOTSUPPORTED.

A.8.29 CADI::CADIGetCacheInfo()

This call gets the cache information for a memory space.

virtual CADIReturn_t CADI::CADIGetCacheInfo(uint32_t memSpaceID,
 CADICacheInfo_t *cacheInfo) = 0;

memSpaceID
is the memory space.

cacheInfo
is the cache information.

A.8.30 CADI::CADICacheRead()

This function performs a cache read.

virtual CADIReturn_t CADI::CADICacheRead(CADIAddr_t addr,
 uint32_t linesToRead,
 uint8_t *data,
 uint8_t *tags,
 bool *is_dirty,
 bool *is_valid,
 uint32_t *numLinesRead,
 bool doSideEffects) = 0;

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-110
Non-Confidential

addr
is the address to be read, including the memory space ID.

linesToRead
is the number of cache lines to read.

data
is a byte array of size (cache_lines *line_size). The array is encoded in little endian format.

tags
is a byte array of size (cache_lines *tagsbits/8).

is_dirty
is the status (one per line).

is_valid
is the status (one per line).

numLinesRead
is the number of cache lines actually read.

doSideEffects
If set to true, this parameter informs the target that it must perform side effects on a cache read
access. Such side effects might be, for example, triggering an interrupt. If it is set to false, the
target must decide when to ignore this parameter. For some cases it is not possible to read from
cache without side effects.

A.8.31 CADI::CADICacheWrite()

This function performs a cache write.

virtual CADIReturn_t CADI::CADICacheWrite(CADIAddr_t addr,
 uint32_t linesToWrite,
 const uint8_t *data,
 const uint8_t *tags,
 const bool *is_dirty,
 const bool *is_valid,
 uint32_t *numLinesWritten,
 bool doSideEffects) = 0;

addr
is the address to be written, including the memory space ID.

linesToWrite
is the number of cache lines to write.

data
is a byte array of size (cache_lines *line_size). The array is encoded in little endian format.

tags
is a byte array of size (cache_lines *tagsbits/8).

is_dirty
is status (one per line).

is_valid
is status (one per line).

numLinesWritten
is the number of cache lines actually written.

doSideEffects
If set to true, this parameter informs the target that it must perform side effects such as, for
example, selecting write through on a write access. If it is set to false, the target must decide
when to ignore this parameter. For some cases it is not possible to access cache without side
effects.

A.8.32 About the CADI execution modes

The execution APIs modify the execution state of the target.

These functions are asynchronous and typically return before the target completes the requested action.
For example, a run or even a single step returns before the target stops. The debugger is notified by the
callback about the completion of the request.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-111
Non-Confidential

The exec mode calls enable extensions to the typical execution modes such as run, stop, and
breakpoint. If a target does not have other modes, these calls are redundant and are typically not used.

Execution modes such as run, stop, and breakpoint are associated with specific enum identifiers.

Related references
B.3.7 CADI_EXECMODE_t on page Appx-B-158.

A.8.33 CADI::CADIExecGetModes()

Many processors have more than run, stop, and breakpoint states. This call enables the debugger to
determine the additional states.

virtual CADIReturn_t CADI::CADIExecGetModes(uint32_t startModeIndex,
 uint32_t desiredNumOfModes,
 uint32_t *actualNumOfModes,
 CADIExecMode_t *execModes) = 0;

startModeIndex
is the index into the internal buffer of execution modes held by the target.

desiredNumOfModes
is the requested number of modes.

actualNumOfModes
is the number of modes returned by the target.

execModes
is a list of CADIExecMode_t structs to receive the requested execution modes. The caller
allocates (and, if applicable, deallocates) space. The number of elements must be the same as
desiredNumOfModes to provide enough space for the requested modes.

Related references
B.3.7 CADI_EXECMODE_t on page Appx-B-158.

A.8.34 CADI::CADIExecGetResetLevels()

Many targets have more than one reset level. This call enables the debugger to determine what these
levels are.

virtual CADIReturn_t CADI::CADIExecGetResetLevels(
 uint32_t startResetLevelIndex,
 uint32_t desiredNumOfResetLevels,
 uint32_t *actualNumOfResetLevels,
 CADIResetLevel_t *resetLevels) = 0;

startResetLevelIndex
is the index into the internal buffer of reset levels held by the target.

desiredNumOfResetLevels
is the number of levels required by the caller.

actualNumOfResetLevels
is the number of reset levels actually returned.

resetLevels
is the caller allocated list that receives the requested reset levels. The number of elements must
be the same as the desiredNumOfResetLevels to provide space for the requested reset levels.
The contents must be returned sorted in order of most severe (at reset level zero) to least severe.

A.8.35 CADI::CADIExecSetMode()

This sets the target to a specified execution mode. This call returns immediately, possibly before the
target execution mode has been reached.

virtual CADIReturn_t CADI::CADIExecSetMode(uint32_t execMode) = 0;

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-112
Non-Confidential

This call is, for a subset of the execution modes, redundant with other APIs:
• A call to CADIExecSetMode(CADI_EXECMODE_Run) is equivalent to a call to CADIExecContinue().
• A call to CADIExecSetMode(CADI_EXECMODE_Stop) is equivalent to a call to CADIExecStop().

 Note

execMode must be less than the value nrExecModes received by CADIXfaceGetFeatures().

Related references
B.3.7 CADI_EXECMODE_t on page Appx-B-158.

A.8.36 CADI::CADIExecGetMode()

This call enables the debugger to determine the execution mode of the target.

virtual CADIReturn_t CADI::CADIExecGetMode(uint32_t *execMode) = 0;

 Note

execMode must be less than the value nrExecModes received by CADIXfaceGetFeatures().

A.8.37 CADI::CADIExecSingleStep()

This function returns immediately and a separate notification informs the debugger that the execution
state has changed. Typically this call results in the modeChange() callback (if enabled) for
CADI_EXECMODE_Run followed by CADI_EXECMODE_Stop.

virtual CADIReturn_t CADI::CADIExecSingleStep(uint32_t instructionCount,
 int8_t stepCycle,
 int8_t stepOver) = 0;

instructionCount
is the number of instructions to be executed.

Some targets can not step a specific number of instructions safely (into a delay slot, for
example). In this case, the target can step additional instructions to enable it to stop at a safe
place.

stepCycle
specifies (for targets that have exposed multiple pipe stages) whether the step merely clocks the
device (stepCycle == yes) or flushes the pipe (stepCycle == no).

For other kinds of targets, this argument is ignored (stepCycle = no is assumed).

stepOver
enables the target to handle stepping over a call.

It is especially useful for an emulator with no available breakpoints. In this case the target must
step until the call returns or a breakpoint is hit.

 Note

Because this call returns immediately, the return value indicates whether the target believes that it can
perform the operation and not whether the operation was completed successfully.

A.8.38 CADI::CADIExecReset()

This call provides a simulation level reset.

On receipt of this call, the target:

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-113
Non-Confidential

• Resets its execution related internal state.
• Resets its registers to their initial state.
• Does not change breakpoints or callbacks.

virtual CADIReturn_t CADI::CADIExecReset(uint32_t resetLevel) = 0;

resetLevel must be one of the numbers provided in the resetLevels array received by
CADIExecGetResetLevels().

On receiving this call, the target reset its execution related internal state. It resets registers and memories
to a predefined state, but does not change breakpoints or callbacks.

This call provides a generic reset interface that is independent of the actual model implementation. For
example, a debugger can use this call to reset the simulation of a model, system, or subsystem that does
not implement an explicit simulation-level reset mechanism.

The list of reset levels is target specific:
• Reset level 0 has fixed semantics and must be implemented by every target. This reset level brings

the simulation platform back into the same state as immediately after instantiation. This state must be
known to enable deterministic behavior of the platform after each reset.

• All reset levels other than 0 are model specific. The reset levels supported depend on the model
implementation.

CADIExecReset() is an asynchronous call. After the reset finishes, the target sends a
modeChange(CADI_EXECMODE_ResetDone) callback to all connected debuggers. The reset might be
finished at the time that CADIExecReset() returns.

A.8.39 CADI::CADIExecContinue()

This function returns immediately and a separate notification from the
modeChange(CADI_EXECMODE_Run) callback informs the debugger when the execution state has
changed.

The simulation runs asynchronously in a separate thread.

virtual CADIReturn_t CADI::CADIExecContinue(void) = 0;

 Note

Because this call returns immediately, the return value indicates whether the target believes that it can
perform the operation and not whether the operation was completed successfully.

A.8.40 CADI::CADIExecStop()

This method causes the execution of the target to stop.

The method returns immediately and the target might still be running when the method returns. A
debugger must wait for a modeChange(CADI_EXECMODE_Stop) callback to ensure that the simulation has
ended.

virtual CADIReturn_t CADI::CADIExecStop(void) = 0;

 Note

Because this call returns immediately, the return value indicates whether the target believes that it can
perform the operation and not whether the operation was completed successfully.

A.8.41 CADI::CADIExecGetExceptions()

This method gets the list of the exception vectors for the target.

virtual CADIReturn_t CADI::CADIExecGetExceptions(uint32_t startExceptionIndex,
 uint32_t desiredNumOfExceptions,

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-114
Non-Confidential

 uint32_t *actualNumOfExceptions,
 CADIException_t *exceptions) = 0;

startExceptionIndex
is the index into the targets list of exceptions.

desiredNumOfExceptions
is the number of slots in the exception array. The target must not fill more than this number of
characters in the array.

actualNumOfExceptions
is the total number of returned exceptions.

exceptions
is list of exceptions. The array is allocated, and deallocated if applicable, by the caller to be
filled by the target. This buffer must be big enough to hold desiredNumOfExceptions.

A.8.42 CADI::CADIExecAssertException()

This method raises an exception.

virtual CADIReturn_t CADI::CADIExecAssertException(uint32_t exception,
 CADIExceptionAction_t action) = 0;

exception
is the exception number.

action
is the exception action to be taken.

Related references
B.3.10 CADIExceptionAction_t on page Appx-B-159.

A.8.43 CADI::CADIExecGetPipeStages()

This method is used to expose the pipeline stages simulated inside of a cycle-accurate simulation.

virtual CADIReturn_t CADI::CADIExecGetPipeStages(uint32_t startPipeStageIndex,
 uint32_t desiredNumOfPipeStages,
 uint32_t *actualNumOfPipeStages,
 CADIPipeStage_t *pipeStages) = 0;

startPipeStageIndex
is the index into the internal list of pipeline stages held by the target.

desiredNumOfPipeStages
is the number of entries to fill in the pipeStages array. The target must not fill more than this
number of elements.

actualNumOfPipeStages
is the number of stages actually returned to the caller.

pipeStages
is the list of pipe stages in order of execution for a single instruction. pipestage[0] must
contain the first stage executed for any single instruction. The array is allocated, and deallocated
if applicable, by the caller to be filled by the target.

A.8.44 CADI::CADIExecGetPipeStageFields()

This method is used to expose the fields of the pipe simulated inside of a cycle-accurate simulation.

virtual CADIReturn_t CADI::CADIExecGetPipeStageFields(
 uint32_t startPipeStageFieldIndex,
 uint32_t desiredNumOfPipeStageFields,
 uint32_t *actualNumOfPipeStageFields,
 CADIPipeStageField_t *pipeStageFields) = 0;

startPipeStageFieldIndex
is the index into the internal list of pipe stage fields held by the target.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-115
Non-Confidential

desiredNumOfPipeStageFields
is the number of entries to fill in the pipeStageFields array. The target must not fill more than
this number of elements.

actualNumOfPipeStageFields
is the number of stages actually returned to the caller.

pipeStageFields
is the list of pipe stage fields in order of execution for a single instruction. The list can be sorted,
but this is not mandatory. The array is allocated, and deallocated if applicable, by the caller to be
filled by the target.

A.8.45 CADI::CADIExecLoadApplication()

This method is used to load an application file to program memory.

The target is not reset or restarted. The implementation of the model determines which file formats, ELF
for example, are supported. The debugger is responsible for initiating the execution of the application by,
for example, setting the program counter to the entry point in the application.

virtual CADIReturn_t CADI::CADIExecLoadApplication(const char *filename,
 bool loadData,
 bool verbose,
 const char *parameters) = 0;

filename
is the name of the application file.

loadData
If set to true, the target loads data, symbols, and code.
If set to false, the target does not reload the application code to its program memory. This can
be used, for example, to either:
• Forward information about applications that are loaded to a target by other platform

components.
• Change command line parameters for an application that was loaded by a previous

CADIExecLoadApplication() call.

verbose
If true, the target can print verbose messages while loading a file.

The target decides whether or not it outputs messages.

parameters
If not NULL, this is the command line parameters to pass to the loaded application. The
forwarded character string might contain whitespaces and must be 0 terminated.

If command line parameters are passed to a model that does not support this argument, the target
must return CADI_STATUS_ArgNotSupported.

A.8.46 CADI::CADIExecUnLoadApplication()

This method is used to unload symbol information of a specific image that was loaded previously.

virtual CADIReturn_t CADI::CADIExecUnloadApplication(const char *filename) = 0;

filename
is the same as for CADIExecLoadApplication().

A.8.47 CADI::CADIExecGetLoadedApplication()

This method gets a list of image filenames that are currently loaded in the target.

virtual CADIReturn_t CADI::CADIExecGetLoadedApplications(uint32_t startIndex,
 uint32_t desiredNumberOfApplications,
 uint32_t *actualNumberOfApplicatiosReturnedOut,
 char *filenamesOut,
 uint32_t filenameLength,

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-116
Non-Confidential

 char *parametersOut,
 uint32_t parametersLength) = 0;

startIndex
is the starting index in the list of filenames.

desiredNumberOfApplications
is the required number of applications (filename + parameters).

actualNumberOfApplicatiosReturnedOut
is the number of applications (filenames + parameters) that are valid in filenamesOut and
parametersOut.

filenamesOut
is a buffer of length [desiredNumberOfFilenames *filenamLength], the Nth filename
returned starts at offset N*filenameLength. The file name strings are zero terminated.

filenameLength
is the maximum length of a single filename including terminating 0. Longer filenames are
truncated. All returned filenames must be 0 terminated. If one of the returned filenames has the
length filenameLength-1 then filenameLength was too short and must be redone. The target
decides whether or not it can keep information of more than one file.

parametersOut
is a buffer of length [desiredNumberOfApplications *parametersLength], the Nth parameter
returned starts at offset N*parametersLength. Each parameter string is zero terminated. The
target decides whether or not it can keep information for more than one file.

parametersLength
is the maximum length of a single parameters string including terminating 0. Longer parameters
are truncated. All returned parameters must always be 0 terminated. If one of the returned
parameters has the length parametersLength-1 then parametersLength was too short and
must be redone. The target decides whether or not it can keep information for more than one
file.

A.8.48 CADI::CADIGetInstructionCount()

This method gets the current instruction count of the specific target that this debugger is connected to.

virtual CADIReturn_t CADI::CADIGetInstructionCount(
 uint64_t &instructionCount) = 0;

instructionCount
is the returned instruction count.

A.8.49 CADI::CADIGetCycleCount()

This method gets the current cycle count.

virtual CADIReturn_t CADI::CADIGetCycleCount(uint64_t &cycleCount,
 bool systemCycles) = 0;

cycleCount
is the returned cycle count. This must be pre-initialized by the caller and assigned by the callee.

systemCycles
if true, the method returns the system cycle count. If false, the method returns return the target
specific cycle count.

 Note

Not all targets support cycleCount or systemCycles. If not supported, the target returns either:
• An approximation to the cycle count such as, for example, the instruction count.
• The error value CADI_STATUS_CmdNotSupported.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-117
Non-Confidential

A.8.50 CADI::CADIBptGetList()

If the debugger attaches to a target that already has breakpoints set, this method enables the debugger to
identify the breakpoints.

virtual CADIReturn_t CADI::CADIBptGetList(uint32_t startIndex,
 uint32_t desiredNumOfBpts,
 uint32_t *actualNumOfBpts,
 CADIBptDescription_t *breakpoints) = 0;

startIndex
is the index into the internal buffer of breakpoints held by the target.

desiredNumOfBpts
is the required number of breakpoints.

actualNumOfBpts
is the number of breakpoints that are actually returned in the buffer.

breakpoints
is an array of CADIBptDescription_t structs used to return the requested breakpoints. The
caller must allocate the array.

Related references
B.3.4 CADIBptDescription_t on page Appx-B-157.

A.8.51 Special purpose registers with permanent breakpoints for vector catching with
CADIBptGetList()

Fast Models enables vector catching, using permanent breakpoints on special purpose registers.
CADIBptGetList() returns these breakpoints, if present, in addition to temporary ones.

Table A-1 Special purpose registers with permanent breakpoints by processor and technology

Cortex®-A and Cortex-R TrustZone® (Non-secure) TrustZone (Monitor) Virtualization

RESET - - -

UNDEFINED NS_UNDEFINED - HYP_UNDEFINED

- - - HYP_HYP

SVC NS_SVC SMC HVC

PREFETCH_ABORT NS_PREFETCH_ABORT MON_PREFETCH_ABORT HYP_PREFETCH_ABORT

DATA_ABORT NS_DATA_ABORT MON_DATA_ABORT HYP_DATA_ABORT

IRQ NS_IRQ MON_IRQ HYP_IRQ

FIQ NS_FIQ MON_FIQ HYP_FIQ

Table A-2 Special purpose registers with permanent breakpoints unique to AArch64 processors

EL + descriptor, for example S_EL1_CURRENT_SP0_SYNC.

Exception levels Descriptor

S_EL1 NS_EL1 EL2 EL3 _CURRENT_SP0_SYNC

S_EL1 NS_EL1 EL2 EL3 _CURRENT_SP0_IRQ

S_EL1 NS_EL1 EL2 EL3 _CURRENT_SP0_FIQ

S_EL1 NS_EL1 EL2 EL3 _CURRENT_SP0_ABORT

S_EL1 NS_EL1 EL2 EL3 _CURRENT_SPx_SYNC

S_EL1 NS_EL1 EL2 EL3 _CURRENT_SPx_IRQ

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-118
Non-Confidential

Table A-2 Special purpose registers with permanent breakpoints unique to AArch64 processors (continued)

Exception levels Descriptor

S_EL1 NS_EL1 EL2 EL3 _CURRENT_SPx_FIQ

S_EL1 NS_EL1 EL2 EL3 _CURRENT_SPx_ABORT

S_EL1 NS_EL1 EL2 EL3 _LOWER_64_SYNC

S_EL1 NS_EL1 EL2 EL3 _LOWER_64_IRQ

S_EL1 NS_EL1 EL2 EL3 _LOWER_64_FIQ

S_EL1 NS_EL1 EL2 EL3 _LOWER_64_ABORT

S_EL1 NS_EL1 EL2 EL3 _LOWER_32_SYNC

S_EL1 NS_EL1 EL2 EL3 _LOWER_32_IRQ

S_EL1 NS_EL1 EL2 EL3 _LOWER_32_FIQ

S_EL1 NS_EL1 EL2 EL3 _LOWER_32_ABORT

A.8.52 CADI::CADIBptRead()

This method reads the breakpoint request information for a specific breakpoint ID.

It can be used, for example, to retrieve the current ignoreCount of a specific breakpoint.

virtual CADIReturn_t CADIBptRead(CADIBptNumber_t breakpointId,
 CADIBptRequest_t *requestOut) = 0;

breakpointId
is the ID of the breakpoint to be read.

requestOut
is the return buffer for a single breakpoint.

A.8.53 CADI::CADIBptSet()

This method sets a code breakpoint in the target.

virtual CADIReturn_t CADI::CADIBptSet(CADIBptRequest_t *request,
 CADIBptNumber_t *breakpoint) = 0;

request
is the requested breakpoint.

breakpoint
is the resulting breakpoint (zero if the breakpoint was not set).

The CADIBptNumber_t is defined as uint32_t.

A.8.54 CADI::CADIBptClear()

This method removes a breakpoint from the target.

virtual CADIReturn_t CADI::CADIBptClear(CADIBptNumber_t breakpointId) = 0;

breakpointId
is the requested breakpoint.

 Note

CADIBptClear() returns CADI_STATUS_IllegalArgument for permanent breakpoints.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-119
Non-Confidential

A.8.55 CADI::CADIBptConfigure()

This method enables or disables a breakpoint in the target.

This only applies if the target supports enabling and disabling of hardware breakpoints. Otherwise, this
type of breakpoint management must be done on the host side.

virtual CADIReturn_t CADI::CADIBptConfigure(CADIBptNumber_t breakpointId,
 CADIBptConfigure_t configuration) = 0;

breakpointId
is the requested breakpoint.

configuration
is the requested configuration.

A Class Reference
A.8 CADI class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-120
Non-Confidential

A.9 CADIDisassemblerCB class
This section describes the CADIDisassemblerCB class and its methods.

This section contains the following subsections:
• A.9.1 CADIDisassemblerCB class definition on page Appx-A-121.
• A.9.2 CADIDisassemblerCB::IFNAME() on page Appx-A-121.
• A.9.3 CADIDisassemblerCB::IFREVISION() on page Appx-A-121.
• A.9.4 CADIDisassemblerCB::ReceiveModeName() on page Appx-A-121.
• A.9.5 CADIDisassemblerCB::ReceiveSourceReference() on page Appx-A-121.
• A.9.6 CADIDisassemblerCB::ReceiveDissassembly() on page Appx-A-122.

A.9.1 CADIDisassemblerCB class definition

The disassembly front end must implement this callback class.

class CADI_WEXP CADIDisassemblerCB : public CAInterface
{
public:
 // Return the CAInterface name for this interface.
 static if_name_t IFNAME() { return "eslapi.CADIDisassemblerCB2"; }
 static if_rev_t IFREVISION() { return 0; }
 virtual void ReceiveModeName(uint32_t mode, const char *modename) = 0;
 virtual void ReceiveSourceReference(const CADIAddr_t &addr, const char
 *sourceFile, uint32_t sourceLine) = 0;
 virtual void ReceiveDisassembly(const CADIAddr_t &addr,
 const char *opcodes, const char *disassembly) = 0;
};

A.9.2 CADIDisassemblerCB::IFNAME()

This callback returns the CAInterface name for this interface.

static if_name_t IFNAME() { return "eslapi.CADIDisassemblerCB2"; }

A.9.3 CADIDisassemblerCB::IFREVISION()

This callback specifies the current minor revision for this interface.

static if_rev_t IFREVISION() { return 0; }

A.9.4 CADIDisassemblerCB::ReceiveModeName()

This callback is triggered by CADIDisassembler::GetModeNames() and receives the mode name for the
requested disassembler.

virtual void ReceiveModeName(uint32_t mode,
 const char *modename) = 0;

mode
is the required mode.

modename
returns the mode name string.

A.9.5 CADIDisassemblerCB::ReceiveSourceReference()

This callback is triggered by CADIDisassembler::GetSourceReferenceForAddress() and receives the
source line and source file for the instruction at the requested address.

virtual ReceiveSourceReference(const CADIAddr_t &addr,
 const char *sourceFile,
 uint32_t sourceLine) = 0;

addr
is the requested address in the code.

sourceFile
is a reference to the source file for the requested address.

A Class Reference
A.9 CADIDisassemblerCB class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-121
Non-Confidential

sourceline
is a reference to the source line for the requested address.

A.9.6 CADIDisassemblerCB::ReceiveDissassembly()

This callback is triggered by CADIDisassembler::GetDisassembly() and receives the requested
disassembly.

virtual void ReceiveDisassembly(const CADIAddr_t &addr, const char *opcodes,
 const char *disassembly) = 0;

addr
is the requested address in the code.

opcodes
is the opcode text for the disassembled instruction.

disassembly
is the text for the disassembly.

A Class Reference
A.9 CADIDisassemblerCB class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-122
Non-Confidential

A.10 CADIDisassembler class
This section describes the CADIDisassembler class and its methods.

This section contains the following subsections:
• A.10.1 CADIDisassembler class definition on page Appx-A-123.
• A.10.2 CADIDisassembler::GetType() on page Appx-A-124.
• A.10.3 CADIDisassembler::GetModeCount() on page Appx-A-124.
• A.10.4 CADIDisassembler::GetModeNames() on page Appx-A-124.
• A.10.5 CADIDisassembler::GetCurrentMode() on page Appx-A-124.
• A.10.6 CADIDisassembler::GetSourceReferenceForAddress() on page Appx-A-124.
• A.10.7 CADIDisassembler::GetAddressForSourceReference() on page Appx-A-125.
• A.10.8 CADIDisassembler::GetDisassembly() on page Appx-A-125.
• A.10.9 CADIDisassembler::GetInstructionType() on page Appx-A-125.
• A.10.10 CADIDisassembler::ObtainInterface() on page Appx-A-126.

A.10.1 CADIDisassembler class definition

If a component supports disassembly, the Disassembly API can be used to display the disassembly
during a simulation.

 Caution

ARM deprecates obtaining a disassembler from the CADI interface by calling CADIGetDissambler().
The function is retained to enable compatibility with CADI 1.1. New code must use the
ObtainInterface() call for both disassembler and profiling support.

 Note

A program memory space must exist to use the disassembly feature.

class CADIDisassembler : public CAInterface
{
public:
 static if_name_t IFNAME() { return "eslapi.CADIDisassembler2"; }
 static if_rev_t IFREVISION() { return 0; }
 // Two types: distinguish standard and history type.
 virtual CADIDisassemblerType GetType() const = 0;
 // Support for multiple modes (e.g. 32-bit versus 16-bit mode).
 virtual uint32_t GetModeCount() const = 0;
 virtual void GetModeNames(CADIDisassemblerCB *callback) = 0;
 virtual uint32_t GetCurrentMode() = 0;
 virtual CADIDisassemblerStatus GetSourceReferenceForAddress(
 CADIDisassemblerCB *callback, const CADIAddr_t &address) = 0;
 virtual CADIDisassemblerStatus GetAddressForSourceReference(
 const char *sourceFile, uint32_t sourceLine, CADIAddr_t &address) = 0
 // Function for standard type disassembly.
 virtual CADIDisassemblerStatus GetDisassembly(CADIDisassemblerCB *callback,
 const CADIAddr_t &address, CADIAddr_t &nextAddr, const uint32_t mode,
 uint32_t desiredCount = 1) = 0;
 // Query if an instruction is a call instruction.
 virtual CADIDisassemblerStatus GetInstructionType(const CADIAddr_t &address,
 CADIDisassemblerInstructionType &insn_type) = 0;
 // A default minimum implementation, to provide backwards-compatibility.
 // This implementation assumes that there will be no other interfaces
 // implemented on the component providing CADIDisassembler.
 virtual CAInterface *ObtainInterface(if_name_t ifName, if_rev_t minRev,
 if_rev_t *actualRev)
 {
 if((strcmp(ifName,IFNAME()) == 0) && (minRev <= IFREVISION()))
 {
 if (actualRev) // make sure this is not a NULL pointer
 {
 *actualRev = IFREVISION();
 }
 return this;
 }
 if((strcmp(ifName, CAInterface::IFNAME()) == 0) &&
 minRev <= CAInterface::IFREVISION())

A Class Reference
A.10 CADIDisassembler class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-123
Non-Confidential

 {
 if (actualRev != NULL)
 {
 *actualRev = CAInterface::IFREVISION();
 }
 return this;
 }
 return NULL;
 }
};

A.10.2 CADIDisassembler::GetType()

The return value indicates whether the type is standard, source level, or interpretive.

virtual CADIDisassemblerType CADIDisassembler::GetType() const = 0;

The types are defined in the enum:

enum CADIDisassemblerType
{
 CADI_DISASSEMBLER_TYPE_STANDARD, //disassembly supporting a PC and lookahead
 CADI_DISASSEMBLER_TYPE_SOURCELEVEL=2, //source level assembly / C
 CADI_DISASSEMBLER_TYPE_INTERPRETER // interpreter window (for scripts)
};

A.10.3 CADIDisassembler::GetModeCount()

The return value from this function indicates support for multiple modes such as, for example, 32-bit or
16-bit mode.

Valid modes start at 1. Mode 0 indicates no modes or don't care.

virtual uint32_t CADIDisassembler::GetModeCount() = 0;

A.10.4 CADIDisassembler::GetModeNames()

This function returns the name of all modes.

The callback CADIDisassemblerCB::ReceiveModeName() is triggered once for every mode.

virtual std::string CADIDisassembler::GetModeNames(
 CADIDisassemblerCB *callback) = 0;

A.10.5 CADIDisassembler::GetCurrentMode()

The return value indicates the current execution mode. If modes are not supported by this target, the
return value is 0. If modes are supported, the return value is a number between 1 and the value returned
by GetModeCount().

virtual uint32_t CADIDisassembler::GetCurrentMode() = 0;

A.10.6 CADIDisassembler::GetSourceReferenceForAddress()

This method is used to obtain source-level information.

This method triggers the CADIDisassemblerCB::ReceiveSourceReference() callback.

virtual CADIDisassemblerStatus CADIDisassembler::GetSourceReferenceForAddress(
 CADIDisassemblerCB *callback,
 const CADIAddr_t &address) = 0;

callback
is the callback object to receive the source-level information.

address
is the address the source-level information is requested for.

A Class Reference
A.10 CADIDisassembler class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-124
Non-Confidential

A.10.7 CADIDisassembler::GetAddressForSourceReference()

This method is used to obtain the first address for a specified source line in a specified file.

virtual CADIDisassemblerStatus CADIDisassembler::GetAddressForSourceReference(
 const char *sourceFile,
 uint32_t sourceLine,
 CADIAddr_t &address) = 0;

sourceLine
is the requested source line number.

sourceFile
is a null terminated C string containing the source file name.

address
is set to the address corresponding to the source line and file.

A.10.8 CADIDisassembler::GetDisassembly()

This method enables standard type disassembly.

Each disassembled instruction triggers the CADIDisassembler::ReceiveDisassembly() callback.

virtual CADIDisassemblerStatus CADIDisassembler::GetDisassembly(
 CADIDisassemblerCB *callback,
 const CADIAddr_t &address,
 CADIAddr_t &nextAddr,
 const uint32_t mode,
 uint32_t desiredCount = 1) = 0;

callback
is the callback object to receive the disassembly.

address
passes the address of the instruction to disassemble and to return the address of the next valid
instruction. Mandatory if the return value is CADI_DISASSEMBLER_STATUS_NO_INSTRUCTION or
CADI_DISASSEMBLER_STATUS_ILLEGAL_ADDRESS.

nextAddr
returns the address of the next instruction. This must be used if the return value is
CADI_DISASSEMBLER_STATUS_NO_INSTRUCTION or
CADI_DISASSEMBLER_STATUS_ILLEGAL_ADDRESS.

nextAddr must be a hint to the next address that might result in successful disassembly.

mode
contains the execution mode. If 0, use the current execution mode.

desiredCount
can be used to disassemble a sequence of instructions. Up to desiredCount calls are made to
CADIDisassemblerCB::ReceiveDisassembly().

The first instruction is the instruction pointed to by address. The sequence of disassembled
instructions stops if an error such as, for example, no instruction or illegal address, occurs while
attempting to disassemble an instruction

return value
is the status. The possible values are defined by the CADIDisassemblerStatus enum.

Related references
B.5.1 CADIDisassemblerStatus on page Appx-B-161.

A.10.9 CADIDisassembler::GetInstructionType()

This method determines whether the instruction is a call instruction.

virtual CADIDisassemblerStatus GetInstructionType(const CADIAddr_t &address,
 CADIDisassemblerInstructionType &insn_type) = 0;

A Class Reference
A.10 CADIDisassembler class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-125
Non-Confidential

address
is used to pass the address of the instruction to check.

insn_type
is true if the instruction is a call instruction (CADI_DISASSEMBLER_INSTRUCTION_TYPE_CALL).

A.10.10 CADIDisassembler::ObtainInterface()

This is a default minimum implementation. This implementation assumes that there are no other
interfaces implemented on the component that provide CADIDisassembler.

virtual CAInterface *ObtainInterface(if_name_t ifName, if_rev_t minRev,
 if_rev_t *actualRev)

See CADIDisassembler.h for implementation details.

A Class Reference
A.10 CADIDisassembler class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-126
Non-Confidential

A.11 CADIProfilingCallbacks class
This section describes the CADIProfilingCallbacks class and its methods.

This section contains the following subsections:
• A.11.1 CADIProfilingCallbacks class definition on page Appx-A-127.
• A.11.2 CADIProfilingCallbacks::profileResourceAccess() on page Appx-A-127.
• A.11.3 CADIProfilingCallbacks::profileRegisterHazard() on page Appx-A-127.

A.11.1 CADIProfilingCallbacks class definition

This section describes the CADIProfilingCallbacks class definition.

class CADI_WEXP CADIProfilingCallbacks :
 public CAInterface
{
public:
 static if_name_t IFNAME() { return "eslapi.CADIProfilingCallbacks2"; }
 static if_rev_t IFREVISION() { return 0; }
 virtual void profileResourceAccess(const char *name,
 CADIProfileResourceAccessType_t accessType) = 0;
 virtual void profileRegisterHazard(CADIProfileHazardDescription_t *desc) = 0;
};

A.11.2 CADIProfilingCallbacks::profileResourceAccess()

This method profiles a resource access that has been registered by
CADIRegisterProfileResourceAccess().

virtual CADIReturn_t CADIProfilingCallback::profileResourceAccess(
 const char *name,
 CADIProfileResourceAccessType_t accessType) = 0;

name
is the name of the resource.

accessType
specifies the read/write access.

Related references
B.7.9 CADIProfileResourceAccessType_t on page Appx-B-166.

A.11.3 CADIProfilingCallbacks::profileRegisterHazard()

This method reports that a hazard of type CADIProfileHazardDescription_t has occurred.

virtual CADIReturn_t CADIProfilingCallback::profileRegisterHazard(
 CADIProfileHazardDescription_t desc) = 0;

desc
is of type CADIProfileHazardDescription_t.

Related references
B.7.11 CADIProfileHazardDescription_t on page Appx-B-166.

A Class Reference
A.11 CADIProfilingCallbacks class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-127
Non-Confidential

A.12 CADIProfiling class
The CADIProfiling class enables you to record and monitor profile information for debugging sessions.
This section describes the class and its methods.

This section contains the following subsections:
• A.12.1 CADIProfiling class definition on page Appx-A-128.
• A.12.2 CADIProfiling::CADIProfileSetup() on page Appx-A-129.
• A.12.3 CADIProfiling::CADIProfileControl() on page Appx-A-129.
• A.12.4 CADIProfiling::CADIProfileTraceControl() on page Appx-A-130.
• A.12.5 CADIProfiling::CADIProfileGetExecution() on page Appx-A-130.
• A.12.6 CADIProfiling::CADIProfileGetMemory() on page Appx-A-131.
• A.12.7 CADIProfiling::CADIProfileGetTrace() on page Appx-A-131.
• A.12.8 CADIProfiling::CADIProfileGetRegAccesses() on page Appx-A-132.
• A.12.9 CADIProfiling::CADIProfileSetRegAccesses() on page Appx-A-132.
• A.12.10 CADIProfiling::CADIProfileGetMemAccesses() on page Appx-A-132.
• A.12.11 CADIProfiling::CADIProfileSetMemAccesses() on page Appx-A-133.
• A.12.12 CADIProfiling::CADIProfileGetAddrExecutionFrequency() on page Appx-A-133.
• A.12.13 CADIProfiling::CADIProfileSetAddrExecutionFrequency() on page Appx-A-134.
• A.12.14 CADIProfiling::CADIGetNumberOfInstructions() on page Appx-A-134.
• A.12.15 CADIProfiling::CADIProfileInitInstructionResultArray() on page Appx-A-134.
• A.12.16 CADIProfiling::CADIProfileGetInstructionExecutionFrequency() on page Appx-A-135.
• A.12.17 CADIProfiling::CADIProfileSetInstructionExecutionFrequency() on page Appx-A-135.
• A.12.18 CADIProfiling::CADIRegisterProfileResourceAccess() on page Appx-A-135.
• A.12.19 CADIProfiling::CADIUnregisterProfileResourceAccess() on page Appx-A-136.
• A.12.20 CADIProfiling::CADIProfileRegisterCallBack() on page Appx-A-136.
• A.12.21 CADIProfiling::CADIProfileUnregisterCallBack() on page Appx-A-136.

A.12.1 CADIProfiling class definition

This section describes the CADIProfiling class definition.

class CADI_WEXP CADIProfiling : public CAInterface
{
public:
 static if_rev_t IFREVISION() { return 0; }
 virtual CADIReturn_t CADIProfileSetup (CADIProfileType_t type,
 uint32_t regionCount, CADIProfileRegion_t *region) = 0;
 virtual CADIReturn_t CADIProfileControl (CADIProfileControl_t control) = 0;
 virtual CADIReturn_t CADIProfileTraceControl (CADITraceBufferControl_t bufferArg,
 CADITraceControl_t control, CADITraceOverlayControl_t overlay) = 0;
 virtual CADIReturn_t CADIProfileGetExecution (CADIProfileResultType_t *type, uint32_t regIndex,
 uint32_t regionSlots, uint32_t *regionCount,
 CADIProfileResults_t *region) = 0;
 virtual CADIReturn_t CADIProfileGetMemory (CADIProfileResultType_t *type, uint32_t regIndex,
 uint32_t regionSlots, uint32_t *regionCount,
 CADIProfileResults_t *region) = 0;
 virtual CADIReturn_t CADIProfileGetTrace (uint32_t blockIndex, uint32_t blockSlots,
 uint32_t *blockCount, CADITraceBlock_t *block) = 0;
 virtual CADIReturn_t CADIProfileGetRegAccesses(uint32_t startRegID, uint32_t numberOfRegs,
 CADIRegProfileResults_t *reg, uint32_t &actualNumberOfRegs) = 0;
 virtual CADIReturn_t CADIProfileSetRegAccesses(uint32_t startRegID, uint32_t numberOfRegs,
 CADIRegProfileResults_t *reg, uint32_t &actualNumberOfRegs) = 0;
 virtual CADIReturn_t CADIProfileGetMemAccesses(CADIAddrComplete_t startAddress,
 uint32_t numberOfUnits, CADIMemProfileResults_t *mem,
 uint32_t &actualNumberOfUnits) = 0;
 virtual CADIReturn_t CADIProfileSetMemAccesses(CADIAddrComplete_t startAddress,
 uint32_t numberOfUnits, CADIMemProfileResults_t *mem,
 uint32_t &actualNumberOfUnits) = 0;
 virtual CADIReturn_t CADIProfileGetAddrExecutionFrequency(uint64_t startAddr, uint32_t numberOfAddr,
 uint64_t *freq, uint32_t &actualNumberOfAddr) = 0;
 virtual CADIReturn_t CADIProfileSetAddrExecutionFrequency(uint64_t startAddr, uint32_t numberOfAddr,
 uint64_t *freq, uint32_t &actualNumberOfAddr) = 0;
 virtual CADIReturn_t CADIGetNumberOfInstructions(uint32_t *num_instructions) = 0;
 virtual CADIReturn_t CADIProfileInitInstructionResultArray(uint32_t numberOfInstructions,
 CADIInstructionProfileResults_t *instructions,
 uint32_t &actualNumberOfInstructions) = 0;
 virtual CADIReturn_t CADIProfileGetInstructionExecutionFrequency(uint32_t numberOfInstructions,
 CADIInstructionProfileResults_t *instructions,

A Class Reference
A.12 CADIProfiling class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-128
Non-Confidential

 uint32_t &actualNumberOfInstructions) = 0;
 virtual CADIReturn_t CADIProfileSetInstructionExecutionFrequency(uint32_t numberOfInstructions,
 CADIInstructionProfileResults_t *instructions,
 uint32_t &actualNumberOfInstructions) = 0;
 virtual CADIReturn_t CADIRegisterProfileResourceAccess(const char *name,
 CADIProfileResourceAccessType_t accessType) = 0;
 virtual CADIReturn_t CADIUnregisterProfileResourceAccess(const char *name) = 0;
 virtual CADIReturn_t CADIProfileRegisterCallBack(CADIProfilingCallbacks *callbackObject) = 0;
 virtual CADIReturn_t CADIProfileUnregisterCallBack(CADIProfilingCallbacks *callbackObject) = 0;
};

A.12.2 CADIProfiling::CADIProfileSetup()

This method informs the target of the memory regions that are to be profiled.

Call this function once before any number of calls to:

• CADIProfileControl(CADI_PROF_CNTL_Start).
• CADIProfileControl(CADI_PROF_CNTL_Stop).

virtual CADIReturn_t CADIProfiling::CADIProfileSetup(CADIProfileType_t type,
 uint32_t regionCount, CADIProfileRegion_t *region) = 0;

type
is the type of profiling, execution addresses or data access, to which these regions apply. It is
one of these values:
• CADI_PROF_TYPE_Execution.
• CADI_PROF_TYPE_Memory is used with CADIProfileGetMemory().
• CADI_PROF_TYPE_Trace is used with CADIProfileGetTrace().

regionCount
is the number of regions.

region
contains the description of the memory areas being added. The caller allocates the required
memory for this array.

The return value must be CADI_STATUS_IllegalArgument if any of these are true:
• Any region spans unpopulated memory.
• Any region spans illegal memory.
• Any region overlaps another region.
• The address space of a region is not consistent with the profiling type.

Related references
B.7.4 CADIProfileType_t on page Appx-B-165.
B.7.3 CADIProfileRegion_t on page Appx-B-164.

A.12.3 CADIProfiling::CADIProfileControl()

This method starts, stops, or resets profiling by passing a member of the CADIProfileControl_t enum.

virtual CADIReturn_t CADIProfiling::CADIProfileControl(
 CADIProfileControl_t control) = 0;

control
defines profiling behavior.

 Note

Starting profiling resets any saved information. Stopping profiling does not reset recorded information.

Related references
B.7.5 CADIProfileControl_t on page Appx-B-165.

A Class Reference
A.12 CADIProfiling class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-129
Non-Confidential

A.12.4 CADIProfiling::CADIProfileTraceControl()

This method starts, stops, and resets recording the execution trace.

virtual CADIReturn_t CADIProfiling::CADIProfileTraceControl(
 CADITraceBufferControl_t bufferArg,
 CADITraceControl_t control,
 CADITraceOverlayControl_t overlay) = 0;

bufferArg
sets what to do when the buffer is full, that is, either wrap or stop.

control
defines the tracing behavior, and is one of these values:
• CADI_TRACE_CNTL_StartContinuous.
• CADI_TRACE_CNTL_StartDiscontinuity.
• CADI_TRACE_CNTL_Stop.

overlay
selects overlay mode, and is one of these values:
• If CADI_TRACE_OVERLAY_Memory, overlay events must be included in the trace output at the

expense of not being able to see inside the trace manager.
• If CADI_TRACE_OVERLAY_Manager, the trace data must include the overlay manager code at

the expense of not knowing the details about the memory regions that are overlaid.

Related references
B.7.13 CADITraceBufferControl_t on page Appx-B-167.
B.7.12 CADITraceControl_t on page Appx-B-167.
B.7.14 CADITraceOverlayControl_t on page Appx-B-167.

A.12.5 CADIProfiling::CADIProfileGetExecution()

This method gets the results of a profiling session for executable code.

If called before profiling is stopped or before a legal set of regions has been established, this call must
return CADI_STATUS_GeneralError.

virtual CADIReturn_t CADIProfiling::CADIProfileGetExecution(
 CADIProfileResultType_t *type,
 uint32_t regIndex, uint32_t regionSlots,
 uint32_t *regionCount,
 CADIProfileResults_t *region) = 0;

type
indicates whether percentage statistics or an absolute count is being returned.

regIndex
is the index into the internal buffer that the target holds.

regionSlots
is the number of spaces that were requested to be filled. The target shall not fill more than this
number of elements in the region array.

regionCount
is the actual number of regions set up by CADIProfileSetup plus one. The additional count
indicates the other category.

region
corresponds to the regions set up by CADIProfileSetup. The caller allocates and deallocates the
array, which the target fills.

Related references
B.7.1 CADIProfileResultType_t on page Appx-B-164.
B.7.2 CADIProfileResults_t on page Appx-B-164.

A Class Reference
A.12 CADIProfiling class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-130
Non-Confidential

A.12.6 CADIProfiling::CADIProfileGetMemory()

This method gets the results of a profiling session for memory accesses.

If called before profiling is stopped or before a legal set of profiling regions has been established, the
return value must be CADI_STATUS_GeneralError.

CADIProfileGetMemory() is similar to CADIProfileGetExecution(). It enables future versions to
separately modify the call signatures of the two functions.

virtual CADIReturn_t CADIProfiling::CADIProfileGetMemory(
 CADIProfileResultType_t *type,
 uint32_t regIndex,
 uint32_t regionSlots,
 uint32_t *regionCount,
 CADIProfileResults_t *region) = 0;

type
tells the caller whether percentage statistics or an absolute count is being returned.

regIndex
is the index into the internal buffer held by the target.

regionSlots
is the number of spaces requested to be filled. The target shall not fill more than this number of
elements in the region array.

regionCount
is the actual number of regions set up by CADIProfileSetup plus one. The additional count
indicates the other category.

region
corresponds to the regions set up by CADIProfileSetup. The array is allocated, and deallocated
if applicable, by the caller and filled by the target.

Related references
B.7.1 CADIProfileResultType_t on page Appx-B-164.
B.7.2 CADIProfileResults_t on page Appx-B-164.

A.12.7 CADIProfiling::CADIProfileGetTrace()

This method gets the results of a trace session. The block parameter contains the PC values that have
been executed by the target.

virtual CADIReturn_t CADIProfiling::CADIProfileGetTrace(uint32_t blockIndex,
 uint32_t blockSlots,
 uint32_t *blockCount,
 CADITraceBlock_t *block) = 0;

blockIndex
is the start index of the trace block.

blockSlots
is the number of spaces available to fill. The target must not fill more than this number of
elements in the block array.

blockCount
is the number of samples being returned.

block
is the list of executed addresses and overlay events in time sequential order. The blocks in the
array must be sorted by time executed and block[0] must contain the most recently executed
address or event. If multiple program memory spaces exist, and execution uses multiple spaces
during execution, separate blocks must exist for each memory space. The block array is
allocated, and deallocated if applicable, by the caller and filled in by the target.

Related references
B.7.16 CADITraceBlock_t on page Appx-B-167.

A Class Reference
A.12 CADIProfiling class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-131
Non-Confidential

A.12.8 CADIProfiling::CADIProfileGetRegAccesses()

This method reads the number of read/write accesses for numberOfRegs registers, starting with register
index startReg.

virtual CADIReturn_t CADIProfiling::CADIProfileGetRegAccesses(
 uint32_t startRegID,
 uint32_t numberOfRegs,
 CADIRegProfileResults_t *reg,
 uint32_t &actualNumberOfRegs) = 0;

startRegID
is the index of the first profiled register in the internal list of profiled registers held by the target.

NumberOfRegs
is the number of registers the profiling data is requested for.

reg
on return, this contains the profiling results.

 Note

reg must point to an array of objects of type CADIResourceProfileResults_t with size
numberOfRegs.

actualNumberOfRegs
on return, this contains the number of registers the profiling data was actually read for.

Related references
B.7.2 CADIProfileResults_t on page Appx-B-164.

A.12.9 CADIProfiling::CADIProfileSetRegAccesses()

This method writes the number of read/write accesses to the profiling resources for numberOfRegs
registers according to values saved in reg, starting with register index startReg.

virtual CADIReturn_t CADIProfiling::CADIProfileSetRegAccesses(
 uint32_t startRegID,
 uint32_t numberOfRegs,
 CADIRegProfileResults_t *reg,
 uint32_t &actualNumberOfRegs) = 0;

startRegID
is the index of the first profiled register in the internal list of profiled registers held by the target.

NumberOfRegs
is the number of registers the profiling data is set for.

reg
contains the results to use to set the profiling resources.

 Note

reg must point to an array of objects of type CADIResourceProfileResults_t with size
numberOfRegs.

actualNumberOfRegs
contains the number of actually updated registers.

Related references
B.7.2 CADIProfileResults_t on page Appx-B-164.

A.12.10 CADIProfiling::CADIProfileGetMemAccesses()

This method reads the number of read/write accesses for numberOfRegs memory units.

virtual CADIReturn_t CADIProfiling::CADIProfileGetMemAccesses(
 CADIAddrComplete_t startAddress,
 uint32_t numberOfUnits,

A Class Reference
A.12 CADIProfiling class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-132
Non-Confidential

 CADIMemProfileResults_t *mem,
 uint32_t &actualNumberOfUnits) = 0;

startAddress
is the start address for the selected memory units.

numberOfUnits
is the number of selected memory units.

mem
contains the results on return.

 Note

mem must point to an array of objects of type CADIResourceProfileResults_t with size
numberOfUnits.

actualNumberOfUnits
contains the actual number of memory units for which data was collected.

Related references
B.2.13 CADIAddrComplete_t on page Appx-B-152.
B.7.7 CADIMemProfileResults_t on page Appx-B-165.

A.12.11 CADIProfiling::CADIProfileSetMemAccesses()

This method writes the number of read/write accesses to the profiling resources for numberOfUnits
memory units according to values saved in mem.

virtual CADIReturn_t CADIProfiling::CADIProfileSetMemAccesses(
 CADIAddrComplete_t startAddress,
 uint32_t numberOfUnits,
 CADIMemProfileResults_t *mem,
 uint32_t &actualNumberOfUnits) = 0;

startAddress
is the starting address for the memory units.

NumberOfUnits
is the number of memory units.

mem
contains the values to use for the update of the profiling resources.

 Note

mem must point to an array of objects of type CADIMemProfileResults_t with size
numberOfUnits.

actualNumberOfUnits
contains the number of memory units for which data was actually updated.

Related references
B.2.13 CADIAddrComplete_t on page Appx-B-152.
B.7.7 CADIMemProfileResults_t on page Appx-B-165.

A.12.12 CADIProfiling::CADIProfileGetAddrExecutionFrequency()

This method reads the execution frequency for numberOfAddr disassembly addresses.

virtual CADIReturn_t CADIProfiling::CADIProfileGetAddrExecutionFrequency(
 uint64_t startAddr, uint32_t numberOfAddr, uint64_t *freq,
 uint32_t &actualNumberOfAddr) = 0;

startAddr
is the start address for the requested disassembly addresses.

numberOfAddr
is the number of requested disassembly addresses.

A Class Reference
A.12 CADIProfiling class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-133
Non-Confidential

freq
contains the results on return.

 Note

freq must point to an array of uint64_t with size numberOfAddr.

actualNumberOfAddr
contains the actual number of disassembly addresses for which the frequency was read.

A.12.13 CADIProfiling::CADIProfileSetAddrExecutionFrequency()

This method writes the execution frequency for numberOfAddr disassembly addresses to the profiling
resources according to values saved in freq.

virtual CADIReturn_t CADIProfiling::CADIProfileSetAddrExecutionFrequency(
 uint64_t startAddr,
 uint32_t numberOfAddr,
 uint64_t *freq,
 uint32_t &actualNumberOfAddr) = 0;

startAddr
is the start address for the requested disassembly addresses.

numberOfAddr
is the number of requested disassembly addresses.

freq
contains the values to use to update the disassembly addresses.

 Note

freq must point to an array of uint64_t with size numberOfAddr.

actualNumberOfAddr
contains the actual number of disassembly addresses for which the profiling resources were
updated.

A.12.14 CADIProfiling::CADIGetNumberOfInstructions()

This method returns the number of instructions of the target.

virtual uint32_t CADIProfiling::CADIGetNumberOfInstructions() = 0;

A.12.15 CADIProfiling::CADIProfileInitInstructionResultArray()

This method prepares instruction profiling according to the given array instructions by setting FID,
name, and pathToInstructionInLISASource.

virtual CADIReturn_t CADIProfiling::CADIProfileInitInstructionResultArray(
 uint32_t numberOfInstructions,
 CADIInstructionProfileResults_t *instructions,
 uint32_t &actualNumberOfInstructions) = 0;

numberOfInstructions
is the required number of array entries to be prepared.

instructions
is an array that contains the values to use for preparing profiling.

actualNumberOfInstructions
is the number of array entries actually prepared.

Related references
B.7.8 CADIInstructionProfileResults_t on page Appx-B-166.

A Class Reference
A.12 CADIProfiling class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-134
Non-Confidential

A.12.16 CADIProfiling::CADIProfileGetInstructionExecutionFrequency()

This method reads the execution counts for numberOfInstructions instructions by setting the
appropriate executionCount entry in array instructions.

virtual CADIReturn_t CADIProfiling::CADIProfileGetInstructionExecutionFrequency(
 uint32_t numberOfInstructions,
 CADIInstructionProfileResults_t *instructions,
 uint32_t &actualNumberOfInstructions) = 0;

numberOfInstructions
is the required number of instructions to read to the profiling resources.

instructions
is an array to contain the results.

actualNumberOfInstructions
is the number of instructions actually read.

Related references
B.7.8 CADIInstructionProfileResults_t on page Appx-B-166.

A.12.17 CADIProfiling::CADIProfileSetInstructionExecutionFrequency()

This method writes the execution counts for numberOfInstructions instructions according to values in
instructions.

virtual CADIReturn_t CADIProfiling::CADIProfileSetInstructionExecutionFrequency(
 uint32_t numberOfInstructions,
 CADIInstructionProfileResults_t *instructions,
 uint32_t &actualNumberOfInstructions) = 0;

numberOfInstructions
is the required number of array entries to write to the target.

instructions
contains the values to write to the target.

actualNumberOfInstructions
is the number of array entries actually written to the target.

Related references
B.7.8 CADIInstructionProfileResults_t on page Appx-B-166.

A.12.18 CADIProfiling::CADIRegisterProfileResourceAccess()

This method registers a resource access callback.

virtual CADIReturn_t CADIProfiling::CADIProfileRegisterResourceAccess(
 const char *name,
 CADIProfileResourceAccessType_t accessType) = 0;

name
is a resource.

accessType
is one of these values:
• CADI_PROF_ACCESS_READ.
• CADI_PROF_ACCESS_WRITE.
• CADI_PROF_ACCESS_READ_OR_WRITE.

Related references
B.7.9 CADIProfileResourceAccessType_t on page Appx-B-166.

A Class Reference
A.12 CADIProfiling class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-135
Non-Confidential

A.12.19 CADIProfiling::CADIUnregisterProfileResourceAccess()

This method unregisters the resource access callback.

virtual CADIReturn_t CADIProfiling::CADIProfileUnregisterResourceAccess(
 const char *name) = 0;

A.12.20 CADIProfiling::CADIProfileRegisterCallBack()

This method registers a profiling callback to the target.

virtual CADIReturn_t CADIProfiling::CADIProfileRegisterCallBack(
 CADIProfilingCallbacks *callBackObject) = 0;

callBackObject
is the callback.

Related references
A.11 CADIProfilingCallbacks class on page Appx-A-127.

A.12.21 CADIProfiling::CADIProfileUnregisterCallBack()

This method unregisters a profiling callback from the target.

virtual CADIReturn_t CADIProfiling::CADIProfileUnregisterCallBack(
 CADIProfilingCallbacks *callbackObject) = 0;

callBackObject
is the callback.

Related references
A.11 CADIProfilingCallbacks class on page Appx-A-127.

A Class Reference
A.12 CADIProfiling class

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-A-136
Non-Confidential

Appendix B
Data Structure Reference

This appendix describes the data structures that CADI uses.

 Note

For the full list of data structures and types, see the CADI header files.

It contains the following sections:
• B.1 Factory simulation startup and configuration on page Appx-B-138.
• B.2 Registers and memory on page Appx-B-145.
• B.3 Breakpoints and execution control on page Appx-B-154.
• B.4 Pipelines on page Appx-B-160.
• B.5 Disassembly on page Appx-B-161.
• B.6 Semihosting and message output on page Appx-B-162.
• B.7 Profiling and tracing on page Appx-B-164.

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-137
Non-Confidential

B.1 Factory simulation startup and configuration
This section describes data types associated with CADI configuration.

This section contains the following subsections:
• B.1.1 CADIReturn_t on page Appx-B-138.
• B.1.2 CADIFactoryErrorCode_t on page Appx-B-138.
• B.1.3 CADIFactorySeverityCode_t on page Appx-B-139.
• B.1.4 CADISimulationInfo_t on page Appx-B-139.
• B.1.5 CADIParameterInfo_t on page Appx-B-139.
• B.1.6 CADIParameterValue_t on page Appx-B-140.
• B.1.7 CADITargetFeatures_t on page Appx-B-141.
• B.1.8 CADICallbackType_t on page Appx-B-144.
• B.1.9 CADIRefreshReason_t on page Appx-B-144.

B.1.1 CADIReturn_t

Most methods return this result. It is a general indication of the status of the call.

When an error is detected, the debugger can call CADIXfaceGetError() to retrieve an error message in
text form.

enum CADIReturn_t
{
 CADI_STATUS_OK, // The call was successful.
 CADI_STATUS_GeneralError, // This indicates an error that isn't sufficiently
 // explained by one of the other error status values.
 CADI_STATUS_UnknownCommand, // The command is not recognized.
 CADI_STATUS_IllegalArgument, // An argument value is illegal.
 CADI_STATUS_CmdNotSupported, // The command is recognized but not supported.
 CADI_STATUS_ArgNotSupported, // An argument to the command is recognized but not supported.
 // For example, the target does not support a
 // particular type of complex breakpoint.
 CADI_STATUS_InsufficientResources, // Not enough memory or other resources
 // exist to fulfill the command.
 CADI_STATUS_TargetNotResponding, // A timeout has occurred across the CADI interface
 // - the target did not respond to the command.
 CADI_STATUS_TargetBusy, // The target received a request, but is unable to
 // process the command. The caller can try this call
 // again after some time.
 CADI_STATUS_BufferSize, // Buffer too small (for char* types).
 CADI_STATUS_SecurityViolation, // Request has not been fulfilled due to a security violation.
 CADI_STATUS_PermissionDenied, // Request has not been fulfilled since the permission was denied.
 CADI_STATUS_ENUM_MAX = 0xFFFFFFFF // Max enum value.
};

B.1.2 CADIFactoryErrorCode_t

The CADIFactoryErrorCode_t type specifies the values for the different error conditions.

enum CADIFactoryErrorCode_t
{
 CADIFACT_ERROR_OK, // No error at all,
 // message is empty.
 // License checking
 CADIFACT_ERROR_LICENSE_FOUND_BUT_EXPIRED,
 CADIFACT_ERROR_LICENSE_NOT_FOUND,
 CADIFACT_ERROR_LICENSE_COUNT_EXCEEDED,
 CADIFACT_ERROR_CANNOT_CONTACT_LICENSE_SERVER,
 CADIFACT_ERROR_WARNING_LICENSE_WILL_EXPIRE_SOON, // Always warning = true.
 CADIFACT_ERROR_GENERAL_LICENSE_ERROR, // For all other license errors.
 // Info: the parameter that
 // caused this error is indicated
 // in erroneousParameterId.
 CADIFACT_ERROR_PARAMETER_TYPE_MISMATCH, // dataType != dataType
 CADIFACT_ERROR_PARAMETER_VALUE_OUT_OF_RANGE,
 CADIFACT_ERROR_PARAMETER_VALUE_INVALID, // Not out of range but still
 // invalid.
 CADIFACT_ERROR_UNKNOWN_PARAMETER_ID,
 CADIFACT_ERROR_GENERAL_PARAMETER_ERROR, // For all other errors
 // concerning a specific
 // parameter.
 CADIFACT_ERROR_GENERAL_ERROR, // Other, for everything else

B Data Structure Reference
B.1 Factory simulation startup and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-138
Non-Confidential

 // that prevented the CADI
 // interface from being created.
 CADIFACT_ERROR_GENERAL_WARNING, // Always warning = true, for
 // everything else that still
 // allowed the CADI interface to
 // be created.
 CADIFACT_ERROR_MAX = 0xFFFFFFFF
};

B.1.3 CADIFactorySeverityCode_t

The severity code is based on the error codes in CADIFactoryErrorCode_t and enables easy detection of
errors and warnings.

enum CADIFactorySeverityCode_t
{
 CADIFACT_SEVERITY_OK, // no error at all, model created
 CADIFACT_SEVERITY_WARNING, // only a warning, model still created
 CADIFACT_SEVERITY_ERROR, // error, model not created
 CADIFACT_SEVERITY_MAX = 0xFFFFFFFF
};

B.1.4 CADISimulationInfo_t

This struct contains details about a simulation.

struct CADISimulationInfo_t
{
 public: // methods
 CADISimulationInfo_t(uint32_t id = 0,
 const char *name_par = "",
 const char *description_par = "") :
 id(id)
 {
 AssignString(name, name_par, CADI_NAME_SIZE);
 AssignString(description, description_par, CADI_DESCRIPTION_SIZE);
 }
 public: // data
 uint32_t id;
 char name[CADI_NAME_SIZE];
 char description[CADI_DESCRIPTION_SIZE];
};

id
is for identification.

name
is the simulation name.

description
is the simulation description.

B.1.5 CADIParameterInfo_t

The CADIParameterInfo_t and CADIParameterValue_t structs configure component parameters.

struct CADIParameterInfo_t
{
public: // methods
 CADIParameterInfo_t(uint32_t id=0,
 const char *name_par="",
 CADIValueDataType_t dataType=CADI_PARAM_INVALID,
 const char *description_par = "",
 uint32_t isRunTime = 0,
 int64_t minValue = 0,
 int64_t maxValue = 0,
 int64_t defaultValue = 0,
 const char *defaultString_par = "") :
 id(id), dataType(dataType),
 isRunTime(isRunTime),
 minValue(minValue),
 maxValue(maxValue),
 defaultValue(defaultValue)
 {
 AssignString(name, name_par, CADI_NAME_SIZE);
 AssignString(description, description_par, CADI_DESCRIPTION_SIZE);
 AssignString(defaultString, defaultString_par,
 CADI_DESCRIPTION_SIZE);
 }

B Data Structure Reference
B.1 Factory simulation startup and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-139
Non-Confidential

public: // data
 uint32_t id;
 char name[CADI_NAME_SIZE];
 CADIValueDataType_t dataType;
 char description[CADI_DESCRIPTION_SIZE];
 uint32_t isRunTime;
 int64_t maxValue;
 int64_t defaultValue;
 char defaultString[CADI_DESCRIPTION_SIZE];
};

id
is for identification.

name
is the name of the parameter.

dataType
is the data type for interpretation purposes of the debugger.

description
is the parameter description.

isRunTime
if 0, the parameter is instantiation-time only. If 1, the parameter can be changed at runtime.

minValue
is the minimum admissible value.

maxValue
is the maximum admissible value.

defaultValue
if the type is bool or int, the default value.

defaultString
if the type is CADI_PARAM_STRING, the default string.

B.1.6 CADIParameterValue_t

The CADIParameterInfo_t and CADIParameterValue_t structs configure component parameters.

struct CADIParameterValue_t
{
public: // methods
 CADIParameterValue_t(uint32_t parameterID = static_cast<uint32_t>(-1),
 CADIValueDataType_t dataType=CADI_PARAM_INVALID,
 int64_t intValue = 0,
 const char *stringValue_par="") :
 parameterID(parameterID),
 dataType(dataType),
 intValue(intValue)
 {
 AssignString(stringValue, stringValue_par, CADI_DESCRIPTION_SIZE);
 }
public: // data
 uint32_t parameterID;
 CADIValueDataType_t dataType;
 int64_t intValue;
 char stringValue[CADI_DESCRIPTION_SIZE];
};

parameterID
refers to the id of respective CADIParameterInfo_t.

dataType
is the data type for interpretation by the debugger.

description
is the parameter description.

intValue
if the type is bool or int, the integer value (0 = false, 1 = true).

maxValue
is the maximum admissible value.

stringValue
if the type is string, the string value.

B Data Structure Reference
B.1 Factory simulation startup and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-140
Non-Confidential

B.1.7 CADITargetFeatures_t

The CADIXfaceGetFeatures() call uses the CADITargetFeatures_t struct.

CADITargetFeatures_t(const char *targetName_par = "",
 const char *targetVersion_par = "",
 uint32_t nrBreakpointsAvailable_par = 0,
 uint8_t fOverlaySupportAvailable_par = 0,
 uint8_t fProfilingAvailable_par = 0,
 uint32_t nrResetLevels_par = 0,
 uint32_t nrExecModes_par = 0,
 uint32_t nrExceptions_par = 0,
 uint32_t nrMemSpaces_par = 0,
 uint32_t nrRegisterGroups_par = 0,
 uint32_t nrPipeStages_par = 0,
 uint32_t nPCRegNum_par = CADI_INVALID_REGISTER_ID,
 uint16_t handledBreakpoints_par = 0,
 uint32_t nrOfHWThreads_par = 0,
 uint32_t nExtendedTargetFeaturesRegNum_par = CADI_INVALID_REGISTER_ID,
 char const* canonicalRegisterDescription_par = "",
 char const* canonicalMemoryDescription_par = "",
 uint8_t canCompleteMultipleInstructionsPerCycle_par = 0
) :
 nrBreakpointsAvailable(nrBreakpointsAvailable_par),
 fOverlaySupportAvailable(fOverlaySupportAvailable_par),
 fProfilingAvailable(fProfilingAvailable_par),
 nrResetLevels(nrResetLevels_par),
 nrExecModes(nrExecModes_par),
 nrExceptions(nrExceptions_par),
 nrMemSpaces(nrMemSpaces_par),
 nrRegisterGroups(nrRegisterGroups_par),
 nrPipeStages(nrPipeStages_par),
 nPCRegNum(nPCRegNum_par),
 handledBreakpoints(handledBreakpoints_par),
 nrOfHWThreads(nrOfHWThreads_par),
 nExtendedTargetFeaturesRegNumValid(nExtendedTargetFeaturesRegNum_par !
=CADI_INVALID_REGISTER_ID),
 nExtendedTargetFeaturesRegNum(nExtendedTargetFeaturesRegNum_par),
 canCompleteMultipleInstructionsPerCycle(canCompleteMultipleInstructionsPerCycle_par)
 {
 AssignString(targetName, targetName_par, sizeof(targetName));
 AssignString(targetVersion, targetVersion_par, sizeof(targetVersion));
 AssignString(canonicalRegisterDescription, canonicalRegisterDescription_par,
 sizeof(canonicalRegisterDescription));
 AssignString(canonicalMemoryDescription, canonicalMemoryDescription_par,
 sizeof(canonicalMemoryDescription));
 }

targetName
is the target name.

targetVersion
is the target version.

nrBreakpointsAvailable
is the number of breakpoints available for the interface.

fOverlaySupportAvailable
indicates whether overlays are supported.

fProfilingAvailable
indicates whether profiling is supported for this interface.

nrResetLevels
is the number of reset levels (for example, hard or soft reset). This value must be greater than
zero. If it is greater than one, the debugger must obtain a complete list of supported reset levels
from the target through CADIExecGetResetLevels().

nrExecModes
is the number of execution modes. If the number of execution modes is greater than two, the
debugger must call CADIExecGetModes() to obtain a complete list.

nrExceptions
is the number of exceptions.

nrMemSpaces
is the number of memory spaces.

nrRegisterGroups
is the number of register groups.

B Data Structure Reference
B.1 Factory simulation startup and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-141
Non-Confidential

nrPipeStages
is the number of pipeline stages that are exposed to the debugger. The value can be greater than
one only for cycle-accurate models. The value must be one for all other types of model.

nPCRegNum
is the number of the register that is used for the program counter. If no program counter is
available for the target, this value must be set to CADI_INVALID_REGISTER_ID.

handledBreakpoints
indicates the supported breakpoint types. If no breakpoints are supported, this parameter is set to
0. Otherwise, this value can be a disjunction of these values:
• CADI_TARGET_FEATURE_BPT_PROGRAM.
• CADI_TARGET_FEATURE_BPT_MEMORY.
• CADI_TARGET_FEATURE_BPT_REGISTER.
• CADI_TARGET_FEATURE_BPT_INST_STEP.
• CADI_TARGET_FEATURE_BPT_PROGRAM_RANGE.
• CADI_TARGET_FEATURE_BPT_EXCEPTION.

nrOfHWThreads
is the number of hardware threads.

nExtendedTargetFeaturesRegNumValid
indicates whether the extended target features register is supported for registers.

nExtendedTargetFeaturesRegNum
is the register ID of a string register that contains a static string consisting of colon separated
tokens or arbitrary non colon-ASCII char such as FOO:BAR:ANSWER=42:STARTUP=0xe000.

The set and semantics of supported tokens are out of scope of the CADI interface itself. There is
no length restriction on this feature string. Having such a string register is optional. Models that
do not provide it must set nExtendedTargetFeaturesRegNumValid to false. In this case, the
value of this field must be ignored. Having no such register and having a string register that
provides an empty string is equivalent. These tokens (where n denotes a decimal unsigned 32-bit
integer) are defined for CADI 2.0:

PC_MEMSPACE_REGNUM=n
The ID of the register that contains the memory space that the program counter points
to.

SP_REGNUM=n:
The ID of the register that is used as a stack pointer for the target architecture (or of a
register with similar semantics).

LR_REGNUM=n:
The ID of the register that is used as a link register for the target architecture (or of a
register with similar semantics).

STATUS_REGNUM=n:
The ID of the register that is used as a status register for the target architecture (or of a
register with similar semantics).

STACK_MEMSPACE_REGNUM=n:
The ID of the register holding the ID of the memory space currently containing the
stack memory.

LOCALVAR_MEMSPACE_REGNUM=n:
CADI memory space ID used for local variables. Statically bound to a register that
contains the appropriate memspace ID.

GLOBALVAR_MEMSPACE_REGNUM=n:
CADI memory space ID used for global vars. Statically bound to a register that
contains the appropriate memspace ID.

B Data Structure Reference
B.1 Factory simulation startup and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-142
Non-Confidential

STACK_MEMSPACE_ID=n:
The ID of the memory space that contains the stack.

 Note

A model must only expose either STACK_MEMSPACE_ID or STACK_MEMSPACE_REGNUM,
that is:
• If the memory space containing the stack is static, then expose

STACK_MEMSPACE_ID.
• If the memory space containing the stack is expected to change during the

execution, then expose STACK_MEMSPACE_REGNUM.

LOCALVAR_MEMSPACE_ID=n:
The ID of the memory space that is used for storing local variables.

 Note

A model must only expose either LOCALVAR_MEMSPACE_ID or
LOCALVAR_MEMSPACE_REGNUM, that is:
• If the memory space containing the local variables is static, then expose

LOCALVAR_MEMSPACE_ID.
• If the memory space containing the local variables is expected to change during the

execution, then expose LOCALVAR_MEMSPACE_REGNUM.

GLOBALVAR_MEMSPACE_ID=n:
The ID of the memory space that stores global vars.

 Note

A model must only expose either GLOBALVAR_MEMSPACE_ID or
GLOBALVAR_MEMSPACE_REGNUM, that is:
• If the memory space containing the global variables is static, then expose

GLOBALVAR_MEMSPACE_ID.
• If the memory space containing the global variables is expected to change during

the execution, then expose GLOBALVAR_MEMSPACE_REGNUM.

threadID=s:
If present, this parameter specifies the name of an implementation-specific mechanism
for matching thread-aware breakpoint IDs. One possible value is CONTEXTIDR.

HALT_CORE=n:
The ID of the register that halts or unclocks the current processor. When this register
contains 0, the processor executes normally. If a nonzero value is in this register, then
the processor is halted and does not execute or step.

If a target does not support one of these features, it does not expose the corresponding token.

canonicalRegisterDescription
is a string that describes the contents of the canonicalRegisterNumber field of
CADIRegInfo_t. Canonical register numbers are intended to be target-specific numbers to
identify registers in the device by some scheme other than the DWARF index. The format of this
field is domain_name/string. The domain_name is that of the organization specifying the
scheme. The string part is left to the organization to specify. An example would be
arm.com/my/reg/numbers.

B Data Structure Reference
B.1 Factory simulation startup and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-143
Non-Confidential

canonicalMemoryDescription
is a string that describes the contents of the canonical MemoryNumber field of
CADIMemSpaceInfo_t. Canonical memory numbers are intended to be target-specific numbers
to identify memory spaces in the device by some scheme other than the DWARF index. The
format of this field is 'domain_name/string'. The domain_name is that of the organization
specifying the scheme. The organization specifies the string part: for example,
arm.com/my/mem/numbers.

canCompleteMultipleInstructionsPerCycle
is true if the target can complete multiple instructions in a single simulation cycle.

Related references
B.3.3 Thread-aware breakpoints using CONTEXTIDR on page Appx-B-157.

B.1.8 CADICallbackType_t

The values in this type identify the different callback functions.

enum CADICallbackType_t
{
 CADI_CB_AppliOpen = 0, // Opens the specified filename and returns a streamID
 // that the AppliInput and AppliOutput functions can use.
 CADI_CB_AppliInput = 1, // This value is for input. Data travels from the host to the target.
 CADI_CB_AppliOutput = 2, // This value is for output. Data travels from the target to the host.
 CADI_CB_AppliClose = 3, // Close the stream specified by streamID.
 CADI_CB_String = 4, // The target system calls this to have the debugger display
 // a string. Among other things, it can be used for things
 // like hazard and stall indication.
 CADI_CB_ModeChange = 5, // Call this when the target changes execution modes as defined by
 // CADIExecGetModes. The bptNumber parameter is ignored if
 // the mode is not CADI_EXECMODE_Bpt.
 CADI_CB_Reset = 6, // Called when the target is reset.
 CADI_CB_CycleTick = 7, // This callback, when installed, is called after
 // every cycle that is executed by the target.
 CADI_CB_KillInterface = 8, // This call must ALWAYS be enabled. This is called when
 // the target is dying. No further communication with the
 // target is allowed after this callback is made.
 CADI_CB_Bypass = 9, // Callback to bypass the interface, to allow
 // any string-based communication with the debugger.
 CADI_CB_LookupSymbol = 10, // Lookup a symbol from the debugger.
 CADI_CB_DisasmNotifyModeChange = 11, // Target mode was changed.
 CADI_CB_DisasmNotifyFileChange = 12, // Target file was changed.
 CADI_CB_Refresh = 13, // Used to notify debugger that it needs to refresh its
 // state (e.g., register values changed).
 CADI_CB_ProfileResourceAccess = 14, // Profile resource callback.
 CADI_CB_ProfileRegisterHazard = 15, // Register hazard callback.
 CADI_CB_Count = 16,
 CADI_CB_ENUM_MAX = 0xFFFFFFFF
};

These identifiers are, for example, used in the enable vector that is forwarded to the
CADIXfaceAddCallback() call.

B.1.9 CADIRefreshReason_t

The target uses CADI_REFRESH_REASON_t constants to indicate why it has requested a refresh.

enum CADIRefreshReason_t
{
 CADI_REFRESH_REASON_MEMORY = 1,
 CADI_REFRESH_REASON_REGISTERS = 2, // Also for CADIGetInstructionCount/CADIGetCycleCount.
 CADI_REFRESH_REASON_BREAKPOINTS = 4,
 CADI_REFRESH_REASON_PARAMETERS = 8,
 CADI_REFRESH_REASON_OTHER = (1 << 31), // Something changed which is not one of the above.
 CADI_REFRESH_REASON_ALL = 0xFFFFFFFF // All of the above at the same time.
};

B Data Structure Reference
B.1 Factory simulation startup and configuration

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-144
Non-Confidential

B.2 Registers and memory
This section describes data types associated with registers and memory.

This section contains the following subsections:
• B.2.1 CADIReg_t on page Appx-B-145.
• B.2.2 CADIRegInfo_t on page Appx-B-146.
• B.2.3 CADIRegDisplay_t on page Appx-B-147.
• B.2.4 CADIRegSymbols_t on page Appx-B-148.
• B.2.5 CADIRegAccessAttribute_t on page Appx-B-148.
• B.2.6 CADIRegType_t on page Appx-B-148.
• B.2.7 CADIRegDetails_t on page Appx-B-148.
• B.2.8 CADIRegGroup_t on page Appx-B-149.
• B.2.9 CADIMemSpaceInfo_t on page Appx-B-149.
• B.2.10 CADIMemBlockInfo_t on page Appx-B-151.
• B.2.11 CADIAddr_t on page Appx-B-152.
• B.2.12 CADIMemReadWrite_t on page Appx-B-152.
• B.2.13 CADIAddrComplete_t on page Appx-B-152.
• B.2.14 CADICacheInfo_t on page Appx-B-153.

B.2.1 CADIReg_t

This data buffer is used to read and write register values.

The register data is into the bytes array byte-by-byte. Data is always encoded in little endian mode. For
example, the lowest address in the bytes array contains the least significant byte of the register.

struct CADIReg_t
{
public: // methods
 CADIReg_t(uint32_t regNumber = 0,
 uint64_t bytes_par = 0,
 uint16_t offset128 = 0,
 bool isUndefined = false,
 CADIRegAccessAttribute_t attribute = CADI_REG_READ_WRITE) :
 regNumber(regNumber), offset128(offset128), isUndefined(isUndefined),
 attribute(attribute)
 {
 for(int i=0; i < 8; ++i)
 bytes[i] = uint8_t(bytes_par >> (i * 8));
 }
public: // data
 uint32_t regNumber;
 uint8_t bytes[16];
 uint16_t offset128;
 bool isUndefined;
 CADIRegAccessAttribute_t attribute;
};

regNumber
From debugger to target. Register ID to be read/written.

bytes[16]
From target to debugger for reads, from debugger to target for writes. Value to be read/written in
little endian (regardless of the endianness of the host or the target).

B Data Structure Reference
B.2 Registers and memory

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-145
Non-Confidential

offset128
From debugger to target. Specify which part of the register value to read/write for long registers
greater than 128 bits. Measured in multiples of 128 bits. For example, 1 means bytes[0..15]
contain bits 128–255. The actual bitwidth of non-string registers is determined by the bitsWide
field in CADIRegInfo_t. Similarly for string registers, specify the offset in units of 16 chars into
the string that is to be read or written, for example, offset128=1 means read/write
str[16..31]. Reads to offsets beyond the length of the string are explicitly permitted and must
result in bytes[0..15] being all zero.

Writes can make the string longer by writing nonzero data to offsets greater than the current
length of a string. Writes can make a string shorter by writing data containing at least one zero
byte to a specific offset.

Write sequences always write lower offsets before higher offsets and must always be terminated
by at least one write containing at least one zero byte. Unused chars in bytes[0..15] (after the
terminating zero byte) must be set to zero. The bitsWide field in CADIRegInfo_t is ignored for
string registers.

isUndefined
From target to debugger. If true, the value of the register is undefined. Bytes[0..15] must be
ignored.

attribute
Undefined for CADI2.0. Targets and debuggers should not set this data member so that the
default value is used.

B.2.2 CADIRegInfo_t

This struct defines information about a register.

struct CADIRegInfo_t
{
public: // methods
 CADIRegInfo_t(const char *name_par = "",
 const char *description_par = "",
 uint32_t regNumber = 0,
 uint32_t bitsWide = 0,
 int32_t hasSideEffects = 0,
 CADIRegDetails_t details = CADIRegDetails_t(),
 CADIRegDisplay_t display = CADI_REGTYPE_HEX,
 CADIRegSymbols_t symbols = CADIRegSymbols_t(),
 CADIRegFloatFormat_t fpFormat = CADIRegFloatFormat_t(),
 uint32_t lsbOffset = 0, uint32_t dwarfIndex = ~0U,
 bool isProfiled = false, bool isPipeStageField = false,
 uint32_t threadID = 0,
 CADIRegAccessAttribute_t attribute = CADI_REG_READ_WRITE,
 uint32_t canonicalRegisterNumber_ = 0):
 regNumber(regNumber),
 bitsWide(bitsWide),
 hasSideEffects(hasSideEffects),
 details(details),
 display(display),
 symbols(symbols),
 fpFormat(fpFormat),
 lsbOffset(lsbOffset),
 dwarfIndex(dwarfIndex),
 isProfiled(isProfiled),
 isPipeStageField(isPipeStageField),
 threadID(threadID),
 attribute(attribute),
 canonicalRegisterNumber(canonicalRegisterNumber_)
 {
 AssignString(name, name_par, CADI_NAME_SIZE);
 AssignString(description, description_par, CADI_DESCRIPTION_SIZE);
 }
public: // data
 char name[CADI_NAME_SIZE];
 char description[CADI_DESCRIPTION_SIZE];
 uint32_t regNumber;
 uint32_t bitsWide;
 int32_t hasSideEffects;
 CADIRegDetails_t details;
 CADIRegDisplay_t display;
 CADIRegSymbols_t symbols;

B Data Structure Reference
B.2 Registers and memory

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-146
Non-Confidential

 CADIRegFloatFormat_t fpFormat;
 uint32_t lsbOffset;
 enum { CADI_REGINFO_NO_DWARF_INDEX = 0xffffffff };
 uint32_t dwarfIndex;
 bool isPipeStageField;
 uint32_t threadID;
 CADIRegAccessAttribute_t attribute;
 uint32_t canonicalRegisterNumber;
};

name
are the names in the info array.

description
are the descriptions in the array.

regNumber
is the register ID. Used by read/write functions to identify the register.

bitsWide
is the bitwidth of non-string register. Ignored for string registers (targets must specify 0 for
string registers).

hasSideEffects
is reserved. Targets must set this parameter to 0 for all registers.

details
is of type CADIRegDetails_t, and used to form the Register/SubRegister/SubSubRegister
hierarchy. It has two fields:
• Simple (contains no subregisters).
• Compound (contains subregisters).

The two register types work with CADIRegGetCompound().

display
is the display format. The default is "HEX".

symbols
used for type "symbolic" only.

fpFormat
used for type "float" only.

lsbOffset
is the offset of the least significant bit relative to bit 0 in the parent register (or 0 if there is no
parent).

dwarfIndex
is the DWARF register index or, if the register has no DWARF register index
CADI_REGINFO_NO_DWARF_INDEX.

isProfiled
indicates that profiling info is available.

isPipeStageField
is pipe stage field, also true for pc and contentInfoRegisterId in CADIPipeStage_t.

threadID
is the hardware thread ID, always set to 0.

attribute
are the register access attributes.

canonicalRegisterNumber
is the canonical register number as defined by the scheme that is specified in
CADITargetFeatures_t::canonicalRegisterDescription. If the scheme is the empty string,
then no meaning can be ascribed to this field.

Related references
A.8.17 CADI::CADIRegGetCompound() on page Appx-A-105.

B.2.3 CADIRegDisplay_t

This section describes the register display values.

B Data Structure Reference
B.2 Registers and memory

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-147
Non-Confidential

This enum defines the best way for a debugger to display a register value by default. A debugger can
display the value in any format on user request. Only CADI_REGTYPE_STRING is special because in this
case the bitsWide field in CADIRegInfo_t is ignored and the debugger retrieves as many ASCII chars
until it receives a NUL char.

enum CADIRegDisplay_t
{
 CADI_REGTYPE_HEX, // Hex display (for addresses, etc) - default.
 CADI_REGTYPE_UINT, // Unsigned integer.
 CADI_REGTYPE_INT, // Signed integer.
 CADI_REGTYPE_BOOL, // Boolean (must be one bit).
 CADI_REGTYPE_FLOAT, // Floating point display (see details).
 CADI_REGTYPE_SYMBOL, // Symbolic values only.
 CADI_REGTYPE_STRING, // Strings.
 CADI_REGTYPE_PC, // You can use the program counter => for disassembly display.
 CADI_REGTYPE_BIN, // Binary format.
 CADI_REGTYPE_OCT // Octal format.
};

B.2.4 CADIRegSymbols_t

This struct is an array of symbolic values.

struct CADIRegSymbols_t
{
public: // methods
 CADIRegSymbols_t(uint32_t numSymbols_par = 0,
 char **Symbols_par = 0) :
 numSymbols(numSymbols_par),
 Symbols(Symbols_par)
 {
 }
public: // data
 uint32_t numSymbols;
 char** Symbols;
};

B.2.5 CADIRegAccessAttribute_t

This enum determines the register access attribute value.

enum CADIRegAccessAttribute_t
{
 CADI_REG_READ_WRITE,
 CADI_REG_READ_ONLY,
 CADI_REG_WRITE_ONLY,
 CADI_REG_READ_WRITE_RESTRICTED,
 CADI_REG_READ_ONLY_RESTRICTED,
 CADI_REG_WRITE_ONLY_RESTRICTED,
 CADI_REG_ATTR_MAX = 0xffffffff // To force the enum to 32 bits, not used
};

B.2.6 CADIRegType_t

This enum determines the register type.

enum CADIRegType_t
{
 CADI_REGTYPE_Simple, // Register which has no subregisters.
 CADI_REGTYPE_Compound // Register which has subregisters.
};

B.2.7 CADIRegDetails_t

This struct defines the register details.

struct CADIRegDetails_t
{
public: // methods
 CADIRegDetails_t(CADIRegType_t type_par = CADI_REGTYPE_Simple,
 uint32_t count_par = 0) :
 type(type_par)
 {
 u.compound.count = count_par;
 }
public: // data

B Data Structure Reference
B.2 Registers and memory

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-148
Non-Confidential

 CADIRegType_t type;
 union
 {
 struct
 {
 uint32_t count;
 } compound; //Only valid for CADI_REGTYPE_Compound.
 } u; // remains a union to leave room for
 // any other register types we might have
 // in the future.
};

B.2.8 CADIRegGroup_t

This struct defines the register group.

All fields are target to debugger fields.

struct CADIRegGroup_t
{
public: // methods
 CADIRegGroup_t(uint32_t groupID = 0,
 const char *description_par = "",
 uint32_t numRegsInGroup = 0,
 const char *name_par = "",
 bool isPseudoRegister = false) :
 groupID(groupID), numRegsInGroup(numRegsInGroup),
 isPseudoRegister(isPseudoRegister)
 {
 AssignString(description, description_par, CADI_DESCRIPTION_SIZE);
 AssignString(name, name_par, CADI_NAME_SIZE);
 }
public: // data
 uint32_t groupID;
 char description[CADI_DESCRIPTION_SIZE];
 uint32_t numRegsInGroup;
 char name[CADI_NAME_SIZE];
 bool isPseudoRegister;
 };

groupID
is the ID.

description
is the total number of registers in the group, including any registers that are not direct children
of this group.

numRegsInGroup
is the number of registers in the group.

name
is the group name.

isPseudoRegister
if true, this register group is not displayed in the register window in the debugger. The registers
in this group are probably serving other purposes such as pipeline stage fields or other special
purpose registers such as the PC memory space.

B.2.9 CADIMemSpaceInfo_t

This struct contains memory space info data.

Each memory space (program and data, for example) in the system has a separate set of addresses. Any
location in the memory of a device can be fully specified with no less than an indication of the memory
space and the address within that space. Only one space can have the isProgramMemory flag set.

struct CADIMemSpaceInfo_t
{
public: // methods
 CADIMemSpaceInfo_t(const char *memSpaceName_par = "",
 const char *description_par = "",
 uint32_t memSpaceId = 0,
 uint32_t bitsPerMau = 0,
 CADIAddrSimple_t maxAddress = 0,
 uint32_t nrMemBlocks = 0,
 int32_t isProgramMemory = false,
 CADIAddrSimple_t minAddress = 0,
 int32_t isVirtualMemory = false,

B Data Structure Reference
B.2 Registers and memory

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-149
Non-Confidential

 uint32_t isCache = false,
 uint8_t endianness = 0,
 uint8_t invariance = 0,
 uint32_t dwarfMemSpaceId = NO_DWARF_ID) :
 memSpaceId(memSpaceId),
 bitsPerMau(bitsPerMau),
 maxAddress(maxAddress),
 nrMemBlocks(nrMemBlocks),
 isProgramMemory(isProgramMemory),
 minAddress(minAddress),
 isVirtualMemory(isVirtualMemory),
 isCache(isCache),
 endianness(endianness),
 invariance(invariance),
 dwarfMemSpaceId(dwarfMemSpaceId)
 {
 AssignString(memSpaceName, memSpaceName_par, CADI_NAME_SIZE);
 AssignString(description, description_par, CADI_DESCRIPTION_SIZE);
 }
public: // data
 char memSpaceName[CADI_NAME_SIZE];
 char description[CADI_DESCRIPTION_SIZE];
 uint32_t memSpaceId;
 uint32_t bitsPerMau;
 CADIAddrSimple_t maxAddress;
 uint32_t nrMemBlocks;
 int32_t isProgramMemory;
 CADIAddrSimple_t minAddress;
 int32_t isVirtualMemory;
 uint32_t isCache;
 uint8_t endianness;
 uint8_t invariance;
 enum { NO_DWARF_ID = 0xffffffff };
 uint32_t dwarfMemSpaceId;
 uint32_t canonicalMemoryNumber;
};

memSpaceName
is the memory space name.

description
is the memory space description.

memSpaceId
is the memory space ID.

bitsPerMau
specifies its per Minimum Addressable Unit (for example, 8 for byte).

maxAddress
is the maximum address of this memory space.

nrMemBlocks
is the number of memory blocks.

isProgramMemory
specifies program memory. Only one space can have the isProgramMemory flag set.

minAddress
specifies the minimum address of this memory space.

isVirtualMemory
specifies that this memory space is a Virtual or a Physical space.

isCache
specifies that this memory space is a cache.

endianness
is the endianness, 0 = variable endianness as defined by the architecture, 1 = always little-
endian, 2 = always big-endian.

invariance
is the unit of invariance in bytes, 0 = fixed invariance (arch defined).

dwarfMemSpaceId
is the DWARF memory space ID (NO_DWARF_ID if memory space has no DWARF memory
space ID).

B Data Structure Reference
B.2 Registers and memory

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-150
Non-Confidential

canonicalMemoryNumber
is the canonical memory number as defined by the scheme that is specified in
CADITargetFeatures_t::canonicalMemoryDescription. If the scheme is the empty string,
then no meaning can be ascribed to this field.

B.2.10 CADIMemBlockInfo_t

This struct is a single block of memory addresses (inside a single memory space) that all have the same
properties.

For example, different memory blocks in the same memory space might be read-only. Blocks can be
nested within one another. Blocks at the root level have CADI_MEMBLOCK_ROOT as the parent ID.

name is used to give you an idea of the type of memory (off chip, for example). If cyclesToAccess is
0, the number is unknown or irrelevant.

struct CADIMemBlockInfo_t
{
public: // methods
 CADIMemBlockInfo_t(const char *name_par = "",
 const char *description_par = "",
 uint16_t id = 0, uint16_t parentID = 0,
 CADIAddrSimple_t startAddr = 0,
 CADIAddrSimple_t endAddr = 0,
 uint32_t cyclesToAccess = 0,
 CADIMemReadWrite_t readWrite = CADI_MEM_ReadWrite,
 uint32_t *supportedMultiplesOfMAU_ = 0,
 uint32_t endianness = 0,
 uint32_t invariance = 0) :
 id(id),
 parentID(parentID),
 startAddr(startAddr),
 endAddr(endAddr),
 cyclesToAccess(cyclesToAccess),
 readWrite(readWrite),
 endianness(endianness),
 invariance(invariance)
 {
 AssignString(name, name_par, CADI_NAME_SIZE);
 AssignString(description, description_par, CADI_DESCRIPTION_SIZE);
 if (supportedMultiplesOfMAU_)
 std::memcpy(supportedMultiplesOfMAU, supportedMultiplesOfMAU_,
 sizeof(supportedMultiplesOfMAU));
 else
 std::memset(supportedMultiplesOfMAU, 0, sizeof(supportedMultiplesOfMAU));
 }
public: // data
 char name[CADI_NAME_SIZE];
 char description[CADI_DESCRIPTION_SIZE];
 uint16_t id;
 uint16_t parentID;
 CADIAddrSimple_t startAddr;
 CADIAddrSimple_t endAddr;
 uint32_t cyclesToAccess;
 CADIMemReadWrite_t readWrite;
 uint32_t supportedMultiplesOfMAU[CADI_MAU_MULTIPLES_LIST_SIZE];
 uint8_t endianness;
 uint8_t invariance;
};

name
is the memory block name.

description
is the memory block description.

id
is the memory block ID.

parentID
The ID of the parent. CADI_MEMBLOCK_ROOT if no parent.

startAddr
is the start address of this memory block.

endAddr
is the end address of this memory block.

B Data Structure Reference
B.2 Registers and memory

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-151
Non-Confidential

cyclesToAccess
specifies the number of cycles that are required for an access to this block.

readWrite
specifies the read/write type of this block.

supportedMultiplesOfMAU
indicates the multiples of 1 byte. If for example the MAU size is 8 bits and the supported access
is 32 bits, the corresponding value is 4 (from 32 bits or 8 bits).

endianness
is the endianness, 0 = same as owning memory space, 1 = little-endian, 2 = big-endian.

invariance
is the unit of invariance in bytes, 0=same as owning memory space.

B.2.11 CADIAddr_t

Variables of type CADIAddr_t describe a basic address with the memory space associated with the
address.

struct CADIAddr_t
{
public: // methods
 CADIAddr_t(CADIMemSpace_t space_par = 0,
 CADIAddrSimple_t addr_par = 0) :
 space(space_par),
 addr(addr_par)
 {
 }
 bool operator == (const CADIAddr_t &other) const
 { return (space == other.space) && (addr == other.addr); }
public: // data
 CADIMemSpace_t space;
 CADIAddrSimple_t addr;
};

space
is the numeric designation of the memory space (uint32_t).

addr
is the actual memory address (uint64_t).

B.2.12 CADIMemReadWrite_t

This enum signifies the read and write status for a block of memory.

enum CADIMemReadWrite_t
{
 CADI_MEM_ReadOnly,
 CADI_MEM_WriteOnly,
 CADI_MEM_ReadWrite,
 CADI_MEM_ENUM_MAX = 0xFFFFFFFF
};

B.2.13 CADIAddrComplete_t

Variables of type CADIAddrComplete_t fully specify a single memory location in the target device.

struct CADIAddrComplete_t
{
public: // methods
 CADIAddrComplete_t(CADIOverlayId_t overlay_par = 0,
 CADIAddr_t location_par = CADIAddr_t()) :
 overlay(overlay_par),
 location(location_par)
 {
 }
 bool operator == (const CADIAddrComplete_t &other)
 const { return (overlay == other.overlay) &&
 (location == other.location); }
public: // data
 CADIOverlayId_t overlay;
 CADIAddr_t location;
};

B Data Structure Reference
B.2 Registers and memory

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-152
Non-Confidential

overlay
identifies a memory image that can share a region of memory with other memory images
(uint32_t).

location
is memory address (space ID + numeric address).

B.2.14 CADICacheInfo_t

This struct contains cache info data.

struct CADICacheInfo_t
{
public: // methods
 CADICacheInfo_t(uint16_t cacheLineSize_par = 0,
 uint16_t cacheTagBits_par = 0,
 uint16_t associativity_par = 0,
 bool writeThrough_par = false) :
 cacheLineSize(cacheLineSize_par),
 cacheTagBits(cacheTagBits_par),
 associativity(associativity_par),
 writeThrough(writeThrough_par)
 {
 }
public: // data
 uint16_t cacheLineSize;
 uint16_t cacheTagBits;
 uint16_t associativity;
 bool writeThrough;
};

cacheLineSize
is the size of a cache line in bytes.

cacheTagBits
is the size of a tag in bits.

associativity
is 1,2,4, or 8-way associative.

writeThrough
if true, the dirty flag is not used.

B Data Structure Reference
B.2 Registers and memory

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-153
Non-Confidential

B.3 Breakpoints and execution control
This section describes data types associated with breakpoints and control of the application running on
the target.

This section contains the following subsections:
• B.3.1 CADIBptRequest_t on page Appx-B-154.
• B.3.2 CADIBptCondition_t and CADIBptConditionOperator_t on page Appx-B-155.
• B.3.3 Thread-aware breakpoints using CONTEXTIDR on page Appx-B-157.
• B.3.4 CADIBptDescription_t on page Appx-B-157.
• B.3.5 CADIBptConfigure_t on page Appx-B-157.
• B.3.6 CADIExecMode_t on page Appx-B-157.
• B.3.7 CADI_EXECMODE_t on page Appx-B-158.
• B.3.8 CADIResetLevel_t on page Appx-B-159.
• B.3.9 CADIException_t on page Appx-B-159.
• B.3.10 CADIExceptionAction_t on page Appx-B-159.

B.3.1 CADIBptRequest_t

The breakpoint request provides the PC address at which a breakpoint must occur and a string that
describes the condition of the breakpoint. The target decides whether it can implement the breakpoint
conditions.

struct CADIBptRequest_t
{
public: // methods
 CADIBptRequest_t(const CADIAddrComplete_t address = CADIAddrComplete_t(),
 uint64_t sizeOfAddressRange=0,
 int32_t enabled=0,
 const char *conditions_par = "",
 bool useFormalCondition = 1,
 CADIBptCondition_t formalCondition = CADIBptCondition_t(),
 CADIBptType_t type = CADI_BPT_PROGRAM,
 uint32_t regNumber = 0,
 int32_t temporary = false,
 uint8_t triggerType = 0,
 uint32_t continueExecution = false) :
 address(address),
 sizeOfAddressRange(sizeOfAddressRange),
 enabled(enabled),
 useFormalCondition(useFormalCondition),
 formalCondition(formalCondition), type(type),
 regNumber(regNumber),
 temporary(temporary),
 triggerType(triggerType),
 continueExecution(continueExecution)
 {
 AssignString(conditions, conditions_par, CADI_DESCRIPTION_SIZE);
 }
public: // data
 CADIAddrComplete_t address;
 uint64_t sizeOfAddressRange;
 int32_t enabled;
 char conditions[CADI_DESCRIPTION_SIZE];
 bool useFormalCondition;
 CADIBptCondition_t formalCondition;
 CADIBptType_t type;
 uint32_t regNumber;
 int32_t temporary;
 uint8_t triggerType;
 uint32_t continueExecution;
};

address
is the PC address at which the breakpoint is to occur.

sizeOfAddressRange
is used only if type is CADI_BPT_PROGRAM_RANGE.

enabled
selects Enable/Disable breakpoint.

B Data Structure Reference
B.3 Breakpoints and execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-154
Non-Confidential

conditions
are the breakpoint conditions. Ultimately the target decides whether or not it can implement
breakpoint conditions.

useFormalCondition
if 0, use free-form conditions. If 1, use formalCondition.

formalCondition
are the formal conditions.

type
is the type.

regNumber
is only used for the register type.

temporary
specifies a temporary breakpoint.

triggerType
enables breakpoints that trigger only on read, write, or modify of the register or memory. Use
these defines to set the trigger:
• CADI_BPT_TRIGGER_ON_READ triggers a breakpoint if the associated memory or register is

read from by either a normal or debug read.
• CADI_BPT_TRIGGER_ON_WRITE triggers a breakpoint if the associated memory or register is

written to by either a normal or debug read.
• CADI_BPT_TRIGGER_ON_MODIFY triggers a breakpoint if the value of the associated register

or memory has been modified. This trigger might be the result of an explicit register or
memory access or (for example in case of registers or memory-mapped registers) of
executing an instruction.

The trigger condition defines can be ORed together to make the breakpoint sensitive to more
than one condition.

 Note

triggerType only has meaning for CADI_BPT_REGISTER and CADI_BPT_MEMORY breakpoints:
• The debugger must set triggerType to zero for other breakpoint types.
• Setting triggerType to zero for CADI_BPT_REGISTER and CADI_BPT_MEMORY results in

undefined behavior and must not be done.

continueExecution
if 1, continue execution after breakpoint has been hit. All types of breakpoint must obey this
field, including CADI_BPT_INST_STEP.

B.3.2 CADIBptCondition_t and CADIBptConditionOperator_t

This section describes the CADIBptCondition_t and CADIBptConditionOperator_t structs.

Breakpoint comparison operations only apply to CADI_BPT_MEMORY and CADI_BPT_REGISTER
breakpoints. Other breakpoints must always specify CADI_BPT_COND_UNCONDITIONAL as
conditionOperator. Breakpoint conditions are always applied as a secondary condition after the
primary condition of the breakpoint that depends on the breakpoint type and the trigger type.

If the useFormalCondition is set, CADI_BPT_PROGRAM, CADI_BPT_PROGRAM_RANGE,
CADI_BPT_INST_STEP, CADI_BPT_EXCEPTION must obey the ignoreCount. However, the debugger must
ensure that conditionOperator is CADI_BPT_COND_UNCONDITIONAL, otherwise the behavior is
undefined.

struct CADIBptCondition_t
{
public: // methods
 CADIBptCondition_t(
 CADIBptConditionOperator_t conditionOperator =
CADI_BPT_COND_UNCONDITIONAL,
 int64_t comparisonValue = 0,
 uint32_t threadID = 0,
 uint32_t ignoreCount = 0,

B Data Structure Reference
B.3 Breakpoints and execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-155
Non-Confidential

 uint32_t bitwidth = 0) :
 conditionOperator(conditionOperator),
 comparisonValue(comparisonValue),
 threadID(threadID),
 ignoreCount(ignoreCount),
 bitwidth(bitwidth)
 {
 }
public: // data
 CADIBptConditionOperator_t conditionOperator;
 int64_t comparisonValue;
 uint32_t threadID;
 uint32_t ignoreCount;
 uint32_t bitwidth;
};

conditionOperator
specifies the types of condition that determine whether a breakpoint matches. It specifies how
the fields comparisonValue and threadID are interpreted. If this field is set to a value that the
target does not support, targets must return CADI_STATUS_ArgNotSupported from
CADIBptSet().

comparisonValue
if the bottom 30-bits of conditionOperator have a value other than
CADI_BPT_COND_UNCONDITIONAL (0), then they specify how to compare comparisonValue
with the value associated with the breakpoint hit. See the list of the enumerated condition values
for CADIBptConditionOperator_t.

threadID
if bit 31 of conditionOperator is set (CADI_BPT_COND_THREADID), then this field specifies that
the breakpoint only hits if threadID matches the current thread. It is up to the target to specify
how to match thread IDs. Targets must use the extendedTargetFeatures register to identify
the mechanism being used. (See the CADITargetFeatures_t struct under the
nExtendedTargetFeaturesRegNum entry.) One possible mechanism for ARM targets is to
match against CONTEXTIDR. If threadID is nonzero and bit 31 of conditionOperator is not set,
targets must return CADI_STATUS_ArgNotSupported from CADIBptSet().

ignoreCount
is the number of breaks to ignore.

bitwidth
is the width of comparison value.

The conditional breakpoint operations are enumerated in CADIBptConditionOperator_t.

enum CADIBptConditionOperator_t
{
 CADI_BPT_COND_UNCONDITIONAL, // Normal breakpoint, always break, no additional condition.
 CADI_BPT_COND_EQUALS, // Only break if value == comparisionValue (unsigned comparison).
 CADI_BPT_COND_NOT_EQUALS, // Only break if value != comparisionValue (unsigned comparison).

 // signed comparison
 CADI_BPT_COND_GREATER_THAN_SIGNED, // Only break if value > comparisionValue.
 CADI_BPT_COND_GREATER_THAN_OR_EQUALS_SIGNED, // Only break if value >= comparisionValue.
 CADI_BPT_COND_LESS_THAN_SIGNED, // Only break if value < comparisionValue.
 CADI_BPT_COND_LESS_THAN_OR_EQUALS_SIGNED, // Only break if value <= comparisionValue.

 // unsigned comparison
 CADI_BPT_COND_GREATER_THAN_UNSIGNED, // Only break if value > comparisionValue.
 CADI_BPT_COND_GREATER_THAN_OR_EQUALS_UNSIGNED, // Only break if value >= comparisionValue.
 CADI_BPT_COND_LESS_THAN_UNSIGNED, // Only break if value < comparisionValue.
 CADI_BPT_COND_LESS_THAN_OR_EQUALS_UNSIGNED, // Only break if value <= comparisionValue.

 CADI_BPT_COND_ENUM_COUNT, // Not a valid condition operator.

 // legacy support, same as signed comparison.
 CADI_BPT_COND_GREATER_THAN = CADI_BPT_COND_GREATER_THAN_SIGNED,
 CADI_BPT_COND_GREATER_THAN_OR_EQUALS = CADI_BPT_COND_GREATER_THAN_OR_EQUALS_SIGNED,
 CADI_BPT_COND_LESS_THAN = CADI_BPT_COND_LESS_THAN_SIGNED,
 CADI_BPT_COND_LESS_THAN_OR_EQUALS = CADI_BPT_COND_LESS_THAN_OR_EQUALS_SIGNED,

 CADI_BPT_COND_THREADID = 0x80000000, // Thread-aware breakpoint.

 // these are no breakpoint conditions:
 CADI_BPT_COND_ENUM_MAX = 0xFFFFFFFF
};

B Data Structure Reference
B.3 Breakpoints and execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-156
Non-Confidential

Related references
B.1.7 CADITargetFeatures_t on page Appx-B-141.
B.3.3 Thread-aware breakpoints using CONTEXTIDR on page Appx-B-157.

B.3.3 Thread-aware breakpoints using CONTEXTIDR

ARM targets support thread-aware breakpoints by matching the threadID field against the 32-bit
CONTEXTIDR register in the target.

Targets must indicate support for this mechanism by including the string threadID=CONTEXTIDR in the
extendedTargetFeatures register as an nExtendedTargetFeaturesRegNum entry.

Using this mechanism, whenever a breakpoint condition is met and bit 31 of conditionOperator field is
set, the threadID field is compared against CONTEXTIDR. If threadID and CONTEXTIDR are equal, the
breakpoint hits. If they differ, the breakpoint does not hit and is ignored. If bit 31 of conditionOperator
is 0, the threadID field is ignored.

Related references
B.1.7 CADITargetFeatures_t on page Appx-B-141.

B.3.4 CADIBptDescription_t

This section describes the CADIBptDescription_t struct.

struct CADIBptDescription_t
{
public: // methods
 CADIBptDescription_t(CADIBptNumber_t bptNumber_par = 0,
 CADIBptRequest_t bptInfo_par = CADIBptRequest_t()) :
 bptNumber(bptNumber_par),
 bptInfo(bptInfo_par)
 {
 }
public: // data
 CADIBptNumber_t bptNumber;
 CADIBptRequest_t bptInfo;
};

bptNumber
is the breakpoint number (uint32_t).

bptInfo
is the breakpoint information such as address or condition.

B.3.5 CADIBptConfigure_t

This section describes the definition of CADIBptConfigure_t.

enum CADIBptConfigure_t
 {
 CADI_BPT_Disable,
 CADI_BPT_Enable
 };

B.3.6 CADIExecMode_t

This struct returns the execution mode.

struct CADIExecMode_t
{
public:
 CADIExecMode_t(uint32_t number = 0,
 const char *name_par = "") :
 number(number)
 {
 AssignString(name, name_par, CADI_NAME_SIZE);
 }
 uint32_t number;
 char name[CADI_NAME_SIZE];
}

B Data Structure Reference
B.3 Breakpoints and execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-157
Non-Confidential

number
indicates the execution mode and must be one of the CADI_EXECMODE_t values.

name
is the mode name.

Related references
B.3.7 CADI_EXECMODE_t on page Appx-B-158.

B.3.7 CADI_EXECMODE_t

This section describes the values in the CADI_EXECMODE_t enum.

enum CADI_EXECMODE_t {
 CADI_EXECMODE_Stop = 0,
 CADI_EXECMODE_Run = 1,
 CADI_EXECMODE_Bpt = 2,
 CADI_EXECMODE_Error = 3,
 CADI_EXECMODE_HighLevelStep = 4, // Reserved for future use.
 CADI_EXECMODE_RunUnconditionally = 5, // Reserved for future use.
 CADI_EXECMODE_ResetDone = 5,
 CADI_EXECMODE_ENUM_MAX = 0xFFFFFFFF };

modeChange() uses the enum values:

modeChange(CADI_EXECMODE_Stop)
The simulation was in state “running” and has now stopped. This callback is always the last one
in a sequence of callbacks when the simulation stopped. If the stop was because one or more
breakpoints have been hit, then this callback follows one or more
modeChange(CADI_EXECMODE_Bpt, num) callbacks where num is the breakpoints being hit.
CADIExecStop() eventually results in a modeChange(CADI_EXECMODE_Stop) callback. This
callback implies a refresh(REGISTERS|MEMORY) callback that indicates a debugger must that
assume registers and memory have changed.

modeChange(CADI_EXECMODE_Run)
The simulation was in state “stopped” and is now running. CADIExecContinue() and
CADIExecSingleStep() eventually result in a modeChange(CADI_EXECMODE_Run) callback.

modeChange(CADI_EXECMODE_Bpt, num)
The breakpoint number num of the breakpoint being hit is passed as the second parameter in the
modeChange callback. This callback can be called several times in a straight sequence if
multiple breakpoints have been hit at the same time. A modeChange(CADI_EXECMODE_Stop)
callback is always following and terminating this sequence, except if continueExecution was
true for all breakpoints being hit.

 Note

This callback does not mean that the simulation stopped. It can precede more
modeChange(CADI_EXECMODE_Bpt, num) callbacks. The final
modeChange(CADI_EXECMODE_Stop) is responsible for signaling that the simulation stopped.

modeChange(CADI_EXECMODE_Error)
This callback is the same as modeChange(CADI_EXECMODE_Stop), but the model is in a state
“stopped and error” after this callback. Consequently, all execution control functions are
disabled. CADIExecReset() must be called first to enable them again. This callback does not
precede another modeChange(CADI_EXECMODE_Stop) callback, it implies
modeChange(CADI_EXECMODE_Stop). This callback implies a refresh(REGISTERS|MEMORY)
callback which means that a debugger must assume that registers and memory have changed.

B Data Structure Reference
B.3 Breakpoints and execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-158
Non-Confidential

modeChange(CADI_EXECMODE_ResetDone)
The CADIExecReset() request that was recently requested by a debugger is now complete. This
callback is always the last one in a sequence of callbacks that are caused by a
CADIExecReset(). If the model was running when CADIExecReset() was issued, a
modeChange(CADI_EXECMODE_Stop) might happen before this callback.

CADIExecReset() is an asynchronous call. Each debugger that is connected to a target,
including the caller, receives this callback after the simulation finishes the reset.

This callback implies a refresh(REGISTERS|MEMORY) callback that indicates that a debugger
must assume that registers and memory have changed.

B.3.8 CADIResetLevel_t

This section describes the definition of CADIResetLevel_t.

struct CADIResetLevel_t
{
public: // methods
 CADIResetLevel_t(uint32_t number_par = 0,
 const char *name_par = "") :
 number(number_par)
 {
 AssignString(name, name_par, sizeof(name));
 }
public: // data
 uint32_t number;
 char name[CADI_NAME_SIZE];
};

B.3.9 CADIException_t

This section describes the definition of CADIException_t.

struct CADIException_t
{
public: // methods
 CADIException_t(uint32_t number_par = 0,
 const char *name_par = "",
 CADIAddr_t vector_par = CADIAddr_t()) :
 number(number_par),
 vector(vector_par)
 {
 AssignString(name, name_par, sizeof(name));
 }
public: // data
 uint32_t number;
 char name[CADI_NAME_SIZE];
 CADIAddr_t vector;
};

B.3.10 CADIExceptionAction_t

This section describes the definition of CADIExceptionAction_t.

// Exception action data
enum CADIExceptionAction_t
{
 CADI_EXCEPTION_Raise, ///< For targets that can raise an exception
 CADI_EXCEPTION_Lower, ///< ... and leave it raised
 CADI_EXCEPTION_Pulse,
 CADI_EXCEPTION_ENUM_MAX = 0xFFFFFFFF
};

B Data Structure Reference
B.3 Breakpoints and execution control

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-159
Non-Confidential

B.4 Pipelines
This section describes data types associated with instruction pipelines.

This section contains the following subsections:
• B.4.1 CADIPipeStage_t on page Appx-B-160.
• B.4.2 CADIPipeStageContentInfo_t on page Appx-B-160.

B.4.1 CADIPipeStage_t

An object of type CADIPipeStage_t describes a single pipe stage.

struct CADIPipeStage_t
{
public: // methods
 CADIPipeStage_t(uint32_t id_par = 0, const char *name_par = "",
 uint32_t pc_par = CADI_INVALID_REGISTER_ID,
 uint32_t contentInfoRegisterId_par = CADI_INVALID_REGISTER_ID) :
 id(id_par), pc(pc_par),
 contentInfoRegisterId(contentInfoRegisterId_par)
 {
 AssignString(name, name_par, sizeof(name));
 }
public: // data
 uint32_t id;
 char name[CADI_NAME_SIZE];
 uint32_t pc;
 uint32_t contentInfoRegisterId;
};

id
is the ID.

name
is the stage name.

pc
is the register ID that holds the address of the instruction.

contentInfoRegisterId
is the register id that holds the current content info for this pipe stage. The values of this register
correspond to the CADIPipeStageContentInfo_t enum.

B.4.2 CADIPipeStageContentInfo_t

This section describes the definition of CADIPipeStageContentInfo_t.

enum CADIPipeStageContentInfo_t
{
 CADI_PIPESTAGE_Invalid, // This pipe stage is empty or invalid, nothing is displayed.
 CADI_PIPESTAGE_OpcodeOnly, // An instruction is in this stage, only the opcode is valid.
 CADI_PIPESTAGE_DisassemblyOnly, // An instruction is in this stage, only the disassembly is valid.
 CADI_PIPESTAGE_Instruction, // An instruction is in this stage, both the
 // opcode and the disassembly are valid.
 CADI_PIPESTAGE_ENUM_COUNT,
 CADI_PIPESTAGE_MAX = 0xFFFFFFFF
};

B Data Structure Reference
B.4 Pipelines

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-160
Non-Confidential

B.5 Disassembly
This section describes data types associated with disassembly of the application code running on the
target.

This section contains the following subsections:
• B.5.1 CADIDisassemblerStatus on page Appx-B-161.
• B.5.2 CADIDisassemblerType on page Appx-B-161.
• B.5.3 CADIDisassemblerInstructionType on page Appx-B-161.

B.5.1 CADIDisassemblerStatus

This section describes the CADIDisassemblerStatus enum.

enum CADIDisassemblerStatus
{
 CADI_DISASSEMBLER_STATUS_OK, // Disassembling completed successfully.
 CADI_DISASSEMBLER_STATUS_NO_INSTRUCTION, // Current address points to illegal instructions/data.
 CADI_DISASSEMBLER_STATUS_ILLEGAL_ADDRESS, // Address out of range (memory read failed).
 CADI_DISASSEMBLER_STATUS_ERROR // Other error.
};

B.5.2 CADIDisassemblerType

This section describes the CADIDisassemblerType enum.

enum CADIDisassemblerType
{
 CADI_DISASSEMBLER_TYPE_STANDARD, // Disassembly supporting a PC and lookahead.
 CADI_DISASSEMBLER_TYPE_SOURCELEVEL=2, // Source level assembly / C.
 CADI_DISASSEMBLER_TYPE_INTERPRETER // Interpreter window (e.g. for scripts).
};

B.5.3 CADIDisassemblerInstructionType

This section describes the CADIDisassemblerInstructionType enum.

enum CADIDisassemblerInstructionType
{
 CADI_DISASSEMBLER_INSTRUCTION_TYPE_NOCALL, // The instruction is not a call, so for example an ALU
 // instruction, memory access, or a jump.
 CADI_DISASSEMBLER_INSTRUCTION_TYPE_CALL // The instruction is a call into a subroutine.
 // Program flow is expected to return after the subroutine has finished.
};

B Data Structure Reference
B.5 Disassembly

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-161
Non-Confidential

B.6 Semihosting and message output
This section describes data types related to semihosting and message output.

This section contains the following subsections:
• B.6.1 CADISemiHostingInputChannelType_t on page Appx-B-162.
• B.6.2 CADISemiHostingInputChannel_t on page Appx-B-162.
• B.6.3 CADIConsoleChannel_t on page Appx-B-162.
• B.6.4 CADIStreamId on page Appx-B-163.

B.6.1 CADISemiHostingInputChannelType_t

Reverse semihosting for interrupts from the debugger towards the target.

enum CADISemiHostingInputChannelType_t
{
 CADI_INPUT_KEYBOARD,
 CADI_INPUT_POINTING_DEVICE
};

B.6.2 CADISemiHostingInputChannel_t

Reverse semihosting for interrupts from the debugger towards the target.

struct CADISemiHostingInputChannel_t{public: // methods
 CADISemiHostingInputChannel_t(uint32_t ID_par = 0,
 const char *name_par = "",
 CADISemiHostingInputChannelType_t type_par = CADI_INPUT_KEYBOARD) :
 ID(ID_par), type(type_par)
 {
 AssignString(name, name_par, sizeof(name));
 }
public: // data
 uint32_t ID;
 char name[CADI_NAME_SIZE];
 CADISemiHostingInputChannelType_t type;
};

B.6.3 CADIConsoleChannel_t

Reverse semihosting for interrupts from the debugger towards the target.

struct CADIConsoleChannel_t{public: // methods
 CADIConsoleChannel_t(uint32_t streamID_par,
 const char *name_par = "",
 bool blocking_par = false,
 bool characterInput_par = false) :
 streamID(streamID_par),
 blocking(blocking_par),
 characterInput(characterInput_par)
 {
 AssignString(name, name_par, sizeof(name));
 }
public: // data
 uint32_t streamID;
 char name[CADI_NAME_SIZE];
 bool blocking;
 bool characterInput;
};

streamID
is the stream identifier.

name
is the stream name.

blocking
if true, the console is blocking for the appliInput() function.

characterInput
if true, then the notify/return from call is on a per character basis. If false, then the notify/
return from call is on a per line basis.

B Data Structure Reference
B.6 Semihosting and message output

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-162
Non-Confidential

B.6.4 CADIStreamId

This set of streamIds is reserved for special cases.

These cases are the special ones:

CADICallbackObj::appliInput(uint32_t, uint32_t, uint32_t*, char*)
CADICallbackObj::appliOutput(uint32_t, uint32_t, uint32_t*, char const*)

They automatically exist and no special action is required to use them. Attempting to
CADICallbackObj::appliClose(uint32_t) these handles results in undefined behavior. Do not do so.

enum CADIStreamId{
 CADI_STREAMID_STDIN = 0,
 CADI_STREAMID_STDOUT = 1,
 CADI_STREAMID_STDERR = 2
};

B Data Structure Reference
B.6 Semihosting and message output

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-163
Non-Confidential

B.7 Profiling and tracing
This section describes data types associated with profiling and tracing.

This section contains the following subsections:
• B.7.1 CADIProfileResultType_t on page Appx-B-164.
• B.7.2 CADIProfileResults_t on page Appx-B-164.
• B.7.3 CADIProfileRegion_t on page Appx-B-164.
• B.7.4 CADIProfileType_t on page Appx-B-165.
• B.7.5 CADIProfileControl_t on page Appx-B-165.
• B.7.6 CADIRegProfileResults_t on page Appx-B-165.
• B.7.7 CADIMemProfileResults_t on page Appx-B-165.
• B.7.8 CADIInstructionProfileResults_t on page Appx-B-166.
• B.7.9 CADIProfileResourceAccessType_t on page Appx-B-166.
• B.7.10 CADIProfileHazardTypes_t on page Appx-B-166.
• B.7.11 CADIProfileHazardDescription_t on page Appx-B-166.
• B.7.12 CADITraceControl_t on page Appx-B-167.
• B.7.13 CADITraceBufferControl_t on page Appx-B-167.
• B.7.14 CADITraceOverlayControl_t on page Appx-B-167.
• B.7.15 CADITraceBlockType_t on page Appx-B-167.
• B.7.16 CADITraceBlock_t on page Appx-B-167.

B.7.1 CADIProfileResultType_t

This enum enables the target to specify whether the results represent a percentage of the whole or a total
count.

enum CADIProfileResultType_t
 {
 CADI_PROF_RESULT_Percentage,
 CADI_PROF_RESULT_Count
 };

B.7.2 CADIProfileResults_t

Objects of this type contain the results of a profiling session.

class CADIProfileResults_t
 public: // methods
 CADIProfileResults_t(uint32_t regionNumber_par = 0,
 uint32_t accesses_par = 0) :
 regionNumber(regionNumber_par),
 accesses(accesses_par)
 {
 }
 public: // data
 uint32_t regionNumber;
 uint32_t accesses;
 };

B.7.3 CADIProfileRegion_t

This section defines CADIProfileRegion_t.

Objects of this type describe a memory range to be profiled. A region is part of a group of one or more
regions. If addressesAreValid is not true, then the object refers to the entire memory space that
another region does not include.

 Note

Two overlays for the same memory addresses do not constitute a shared memory space.

class CADIProfileRegion_t
 {
 public: // methods
 CADIProfileRegion_t(int32_t addressesAreValid_par = false,

B Data Structure Reference
B.7 Profiling and tracing

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-164
Non-Confidential

 CADIOverlayId_t overlay_par = 0,
 CADIMemSpace_t memorySpace_par = 0,
 CADIAddrSimple_t start_par = 0,
 CADIAddrSimple_t finish_par = 0) :
 addressesAreValid(addressesAreValid_par),
 overlay(overlay_par),
 memorySpace(memorySpace_par),
 start(start_par),
 finish(finish_par)
 {
 }
 public: // data
 int32 addressesAreValid;
 CADIOverlayId_t overlay;
 CADIMemSpace_t memorySpace;
 CADIAddrSimple_t start;
 CADIAddrSimple_t finish;
};

B.7.4 CADIProfileType_t

This enum determines the type of profiling to which the region definition applies.

enum CADIProfileType_t
 {
 CADI_PROF_TYPE_Execution,
 CADI_PROF_TYPE_Memory, // Used with CADIProfileGetMemory.
 CADI_PROF_TYPE_Trace // Used with CADIProfileGetTrace.
 };

B.7.5 CADIProfileControl_t

This enum describes the action the call is trying to apply to the target profiling mechanism.

enum CADIProfileControl_t
 {
 CADI_PROF_CNTL_Start,
 CADI_PROF_CNTL_Stop,
 CADI_PROF_CNTL_Reset
 };

B.7.6 CADIRegProfileResults_t

Objects of this type hold access information for a register.

class CADIRegProfileResults_t
{
public: // methods
 CADIRegProfileResults_t(uint32_t regID_par = 0,
 uint64_t readAccesses_par = 0,
 uint64_t writeAccesses_par = 0) :
 regID(regID_par), readAccesses(readAccesses_par),
writeAccesses(writeAccesses_par)
 {
 }
public: // data
 uint32_t regID;
 uint64_t readAccesses;
 uint64_t writeAccesses;
};

B.7.7 CADIMemProfileResults_t

Objects of this type hold access information for a memory range.

class CADIMemProfileResults_t
{
public: // methods
 CADIMemProfileResults_t(CADIAddrSimple_t address_par = 0,
 uint64_t readAccesses_par = 0,
 uint64_t writeAccesses_par = 0) :
 address(address_par),
 readAccesses(readAccesses_par),
 writeAccesses(writeAccesses_par)
 {
 }
public: // data
 CADIAddrSimple_t address;

B Data Structure Reference
B.7 Profiling and tracing

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-165
Non-Confidential

 uint64_t readAccesses;
 uint64_t writeAccesses;
};

B.7.8 CADIInstructionProfileResults_t

Objects of this type hold execution information for an instruction.

class CADIInstructionProfileResults_t
{
public: // methods
 CADIInstructionProfileResults_t(uint32_t FID_par = 0,
 const char *name_par = "",
 const char *pathToInstructionInLISASource_par = "",
 uint64_t executionCount_par = 0) :
 FID(FID_par),
 executionCount(executionCount_par)
 {
 AssignString(name, name_par, sizeof(name));
 AssignString(pathToInstructionInLISASource, pathToInstructionInLISASource_par,
 sizeof(pathToInstructionInLISASource_par));
 }
public: // data
 uint32_t FID;
 char name[CADI_DESCRIPTION_SIZE];
 char pathToInstructionInLISASource[CADI_DESCRIPTION_SIZE];
 uint64_t executionCount;
};

B.7.9 CADIProfileResourceAccessType_t

This enum defines the accesses that are permitted for the resource.

enum CADIProfileResourceAccessType_t
{
 CADI_PROF_ACCESS_READ,
 CADI_PROF_ACCESS_WRITE,
 CADI_PROF_ACCESS_READ_OR_WRITE
};

B.7.10 CADIProfileHazardTypes_t

This enum defines hazard information for the resource.

enum CADIProfileHazardTypes_t
{
 CADI_PROF_HAZARD_RESOURCE_MAX_ACCESS,
 CADI_PROF_HAZARD_RESOURCE_MIN_ACCESS,
 CADI_PROF_HAZARD_RESOURCE_MAX_WRITE_ACCESS,
 CADI_PROF_HAZARD_RESOURCE_MAX_READ_ACCESS,
 CADI_PROF_HAZARD_RESOURCE_READ_AFTER_WRITE,
 CADI_PROF_HAZARD_RESOURCE_WRITE_AFTER_READ,
 CADI_PROF_HAZARD_CONTROL,
 CADI_PROF_HAZARD_OTHER
};

B.7.11 CADIProfileHazardDescription_t

Objects of this type provide information about the hazard.

class CADIProfileHazardDescription_t
{
public: // methods
 CADIProfileHazardDescription_t(
 CADIProfileHazardTypes_t type_par =
 CADI_PROF_HAZARD_RESOURCE_MAX_ACCESS,
 uint32_t numberOfAccesses_par = 0,
 uint32_t originInstructionFID_par = 0,
 uint32_t affectedInstructionFID_par = 0,
 const char *resource_par = "",
 const char *messages_par = "") :
 type(type_par),
 numberOfAccesses(numberOfAccesses_par),
 originInstructionFID(originInstructionFID_par),
 affectedInstructionFID(affectedInstructionFID_par)
 {
 AssignString(resource, resource_par, sizeof(resource));
 AssignString(message, messages_par, sizeof(message));

B Data Structure Reference
B.7 Profiling and tracing

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-166
Non-Confidential

 }
public: // data
 CADIProfileHazardTypes_t type;
 uint32_t numberOfAccesses;
 uint32_t originInstructionFID;
 uint32_t affectedInstructionFID;
 char resource[CADI_DESCRIPTION_SIZE];
 char message[CADI_DESCRIPTION_SIZE];
};

type
is the number of accesses to affected resource.

numberOfAccesses
is the FID of the originator resource or instruction.

affectedInstructionFID
is the name of the affected resource or instruction.

resource
is the resource.

message
is the hazard message.

B.7.12 CADITraceControl_t

This enum describes the type of control being exerted on the trace mechanism.

enum CADITraceControl_t
 {
 CADI_TRACE_CNTL_StartContinuous,
 CADI_TRACE_CNTL_StartDiscontinuity,
 CADI_TRACE_CNTL_Stop
 };

B.7.13 CADITraceBufferControl_t

This enum describes the type of control being exerted on the trace mechanism.

enum CADITraceBufferControl_t
 {
 CADI_TRACE_BUFF_Wrap,
 CADI_TRACE_BUFF_StopOnFull
 };

B.7.14 CADITraceOverlayControl_t

This enum describes the type of control being exerted on the trace mechanism.

enum CADITraceOverlayControl_t
 {
 CADI_TRACE_OVERLAY_Manager,
 CADI_TRACE_OVERLAY_Memory
 };

B.7.15 CADITraceBlockType_t

This enum describes the type of data in a CADITraceBlock_t.

enum CADITraceBlockType_t
 {
 CADI_TRACE_BLK_Address,
 CADI_TRACE_BLK_Overlay
 };

B.7.16 CADITraceBlock_t

This struct describes a single piece of trace data that either contains an overlay ID or an address.

struct CADITraceBlock_t
{
public: // methods
 CADITraceBlock_t(CADITraceBlockType_t blockType_par = CADI_TRACE_BLK_Address,
 CADIAddr_t address_par = CADIAddr_t(),
 CADIOverlayId_t overlay_par = CADIOverlayId_t()) :

B Data Structure Reference
B.7 Profiling and tracing

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-167
Non-Confidential

 blockType(blockType_par)
 {
 u.address = address_par;
 u.overlay = overlay_par;
 }
public: // data
 CADITraceBlockType_t blockType;
 struct
 {
 CADIAddr_t address;
 CADIOverlayId_t overlay;
 } u;
};

B Data Structure Reference
B.7 Profiling and tracing

ARM 100963_0200_00_en Copyright © 2014–2017 ARM Limited or its affiliates. All rights reserved. Appx-B-168
Non-Confidential

	Component Architecture Debug Interface Developer Guide
	Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Introduction
	1.1 : About the Component Architecture Debug Interface
	1.2 : Class hierarchy
	1.3 : CADI classes used to connect to a simulation
	1.3.1 : About the CADI classes used to connect to a simulation
	1.3.2 : CADI classes used to control the simulation target
	1.3.3 : Optional implementation

	2 : Target Connection Mechanism
	2.1 : About the target connection mechanism
	2.2 : Requirements for the target connection mechanism
	2.2.1 : CADIBroker
	CADIBroker creation
	CADI simulation connection
	Preprocessor define settings

	2.2.2 : CADISimulationFactory
	2.2.3 : CADISimulation
	2.2.4 : ObtainInterface()
	2.2.5 : Callback objects

	2.3 : Connecting to a simulation
	2.3.1 : Opening the model library
	2.3.2 : Creating the CADIBroker

	2.4 : Using GetSimulationFactories()
	2.5 : Getting existing CADI simulations
	2.6 : Getting a target interface
	2.7 : Disconnecting from a target
	2.7.1 : About disconnecting from a target
	2.7.2 : Deleting pointers to registered callbacks
	2.7.3 : Releasing the objects of the target connection mechanism
	2.7.4 : Typical shutdown scenarios
	Single caller and the caller initiates shutdown
	Single caller and the simulation initiates shutdown
	Multiple callers and one of the callers initiates shutdown
	Multiple callers and the simulation initiates shutdown

	3 : Using the CADI Interface Methods from a Debugger
	3.1 : CADI accesses from a debugger
	3.1.1 : About CADI accesses from a debugger
	3.1.2 : CADI and threads

	3.2 : CADIReturn_t return values
	3.3 : Target connection and configuration
	3.3.1 : Connecting to targets
	3.3.2 : Obtaining an interface pointer to the target
	3.3.3 : Target interface setup
	3.3.4 : Setting runtime parameters
	3.3.5 : CADI target characteristics
	About CADI target characteristics
	Extended Target Features Register

	3.3.6 : Querying the hardware resource for register information
	3.3.7 : Querying the hardware resource for memory information

	3.4 : Register access
	3.4.1 : About accessing registers
	3.4.2 : Reading from string registers
	3.4.3 : Writing to string registers

	3.5 : Memory access
	3.6 : Execution control
	3.6.1 : Breakpoints
	Predefined breakpoint types
	Breakpoint properties
	Breakpoint configuration
	Breakpoint management

	3.6.2 : Execution mode control
	About execution mode control
	Starting and stopping the target
	Stepping the target
	Using CADI resets
	Using CADIExecReset()
	Callback behavior

	3.7 : Application loading
	3.8 : CADI Disassembler
	3.8.1 : About the CADI Disassembler
	3.8.2 : Obtaining a CADI Disassembler
	3.8.3 : CADI Disassembler callbacks
	3.8.4 : Disassembly modes
	3.8.5 : CADIDisassemblerStatus
	3.8.6 : Disassembly acquisition

	3.9 : Using the semihosting API
	3.10 : Profiling

	4 : CADI Extension Mechanism
	4.1 : Overview of the extension mechanism
	4.2 : Extending the target side
	4.3 : Obtaining a custom interface

	A : Class Reference
	A.1 : CAInterface class
	A.1.1 : About the CAInterface class
	A.1.2 : CAInterface class declaration
	A.1.3 : CAInterface::IFNAME()
	A.1.4 : CAInterface::IFREVISION()
	A.1.5 : CAInterface::ObtainInterface()

	A.2 : CADIBroker class
	A.2.1 : CADIBroker class definition
	A.2.2 : Creating the CADIBroker
	A.2.3 : CADIBroker::GetSimulationFactories()
	A.2.4 : CADIBroker::GetSimulationInfos()
	A.2.5 : CADIBroker::SelectSimulation()
	A.2.6 : CADIBroker::Release()

	A.3 : CADISimulationFactory class
	A.3.1 : CADISimulationFactory class definition
	A.3.2 : CADISimulationFactory::Release()
	A.3.3 : CADISimulationFactory::GetName()
	A.3.4 : CADISimulationFactory::GetDescription()
	A.3.5 : CADISimulationFactory::GetParameterInfos()
	A.3.6 : CADISimulationFactory::Instantiate()

	A.4 : CADIErrorCallback class
	A.4.1 : CADIErrorCallback class definition
	A.4.2 : CADIErrorCallback::Error()

	A.5 : CADISimulationCallback class
	A.5.1 : CADISimulationCallback class definition
	A.5.2 : CADISimulationCallback::simMessage()
	A.5.3 : CADISimulationCallback::simShutdown()
	A.5.4 : CADISimulationCallback::simKilled()

	A.6 : CADISimulation class
	A.6.1 : CADISimulation class definition
	A.6.2 : CADISimulation::IFNAME()
	A.6.3 : CADISimulation::IFREVISION()
	A.6.4 : CADISimulation::Release()
	A.6.5 : CADISimulation::AddCallbackObject()
	A.6.6 : CADISimulation::RemoveCallbackObject()
	A.6.7 : CADISimulation::GetTargetInfos()
	A.6.8 : CADISimulation::GetTarget()

	A.7 : CADICallbackObj class
	A.7.1 : CADICallbackObj class declaration
	A.7.2 : CADICallbackObj::appliOpen()
	A.7.3 : CsADICallbackObj::appliInput()
	A.7.4 : CADICallbackObj::appliOutput()
	A.7.5 : CADICallbackObj::appliClose()
	A.7.6 : CADICallbackObj::doString()
	A.7.7 : CADICallbackObj::modeChange()
	A.7.8 : CADICallbackObj::reset()
	A.7.9 : CADICallbackObj::cycleTick()
	A.7.10 : CADICallbackObj::killInterface()
	A.7.11 : CADICallbackObj::bypass()
	A.7.12 : CADICallbackObj::lookupSymbol()
	A.7.13 : CADICallbackObj::refresh()

	A.8 : CADI class
	A.8.1 : Methods in the CADI class
	About the methods in the CADI class
	Setup API
	Breakpoint API
	Execution API
	Register API
	Memory API
	Cache API
	Parameters API

	A.8.2 : Component CADI class declaration
	A.8.3 : The CADI class constructor
	A.8.4 : CADI::CADIXfaceGetFeatures()
	A.8.5 : CADI::CADIXfaceGetError()
	A.8.6 : CADI::CADIGetDisassembler()
	A.8.7 : CADI::CADIXfaceAddCallback()
	A.8.8 : CADI::CADIXfaceRemoveCallback()
	A.8.9 : CADI::CADIXfaceBypass()
	A.8.10 : CADI::CADIGetTargetInfo()
	A.8.11 : CADI::CADIGetParameterInfo()
	A.8.12 : CADI::CADIGetParameterValues()
	A.8.13 : CADI::CADIGetParameters()
	A.8.14 : CADI::CADISetParameters()
	A.8.15 : CADI::CADIRegGetGroups()
	A.8.16 : CADI::CADIRegGetMap()
	A.8.17 : CADI::CADIRegGetCompound()
	A.8.18 : CADI::CADIRegWrite()
	A.8.19 : CADI::CADIRegRead()
	A.8.20 : CADI::CADIGetPC()
	A.8.21 : CADI::CADIGetCommittedPCs()
	A.8.22 : CADI::CADIMemGetSpaces()
	A.8.23 : CADI::CADIMemGetBlocks()
	A.8.24 : CADI::CADIMemRead()
	A.8.25 : CADI::CADIMemWrite()
	A.8.26 : CADI::CADIMemGetOverlays()
	A.8.27 : CADI::VirtualToPhysical()
	A.8.28 : CADI::PhysicalToVirtual()
	A.8.29 : CADI::CADIGetCacheInfo()
	A.8.30 : CADI::CADICacheRead()
	A.8.31 : CADI::CADICacheWrite()
	A.8.32 : About the CADI execution modes
	A.8.33 : CADI::CADIExecGetModes()
	A.8.34 : CADI::CADIExecGetResetLevels()
	A.8.35 : CADI::CADIExecSetMode()
	A.8.36 : CADI::CADIExecGetMode()
	A.8.37 : CADI::CADIExecSingleStep()
	A.8.38 : CADI::CADIExecReset()
	A.8.39 : CADI::CADIExecContinue()
	A.8.40 : CADI::CADIExecStop()
	A.8.41 : CADI::CADIExecGetExceptions()
	A.8.42 : CADI::CADIExecAssertException()
	A.8.43 : CADI::CADIExecGetPipeStages()
	A.8.44 : CADI::CADIExecGetPipeStageFields()
	A.8.45 : CADI::CADIExecLoadApplication()
	A.8.46 : CADI::CADIExecUnLoadApplication()
	A.8.47 : CADI::CADIExecGetLoadedApplication()
	A.8.48 : CADI::CADIGetInstructionCount()
	A.8.49 : CADI::CADIGetCycleCount()
	A.8.50 : CADI::CADIBptGetList()
	A.8.51 : Special purpose registers with permanent breakpoints for vector catching with CADIBptGetList()
	A.8.52 : CADI::CADIBptRead()
	A.8.53 : CADI::CADIBptSet()
	A.8.54 : CADI::CADIBptClear()
	A.8.55 : CADI::CADIBptConfigure()

	A.9 : CADIDisassemblerCB class
	A.9.1 : CADIDisassemblerCB class definition
	A.9.2 : CADIDisassemblerCB::IFNAME()
	A.9.3 : CADIDisassemblerCB::IFREVISION()
	A.9.4 : CADIDisassemblerCB::ReceiveModeName()
	A.9.5 : CADIDisassemblerCB::ReceiveSourceReference()
	A.9.6 : CADIDisassemblerCB::ReceiveDissassembly()

	A.10 : CADIDisassembler class
	A.10.1 : CADIDisassembler class definition
	A.10.2 : CADIDisassembler::GetType()
	A.10.3 : CADIDisassembler::GetModeCount()
	A.10.4 : CADIDisassembler::GetModeNames()
	A.10.5 : CADIDisassembler::GetCurrentMode()
	A.10.6 : CADIDisassembler::GetSourceReferenceForAddress()
	A.10.7 : CADIDisassembler::GetAddressForSourceReference()
	A.10.8 : CADIDisassembler::GetDisassembly()
	A.10.9 : CADIDisassembler::GetInstructionType()
	A.10.10 : CADIDisassembler::ObtainInterface()

	A.11 : CADIProfilingCallbacks class
	A.11.1 : CADIProfilingCallbacks class definition
	A.11.2 : CADIProfilingCallbacks::profileResourceAccess()
	A.11.3 : CADIProfilingCallbacks::profileRegisterHazard()

	A.12 : CADIProfiling class
	A.12.1 : CADIProfiling class definition
	A.12.2 : CADIProfiling::CADIProfileSetup()
	A.12.3 : CADIProfiling::CADIProfileControl()
	A.12.4 : CADIProfiling::CADIProfileTraceControl()
	A.12.5 : CADIProfiling::CADIProfileGetExecution()
	A.12.6 : CADIProfiling::CADIProfileGetMemory()
	A.12.7 : CADIProfiling::CADIProfileGetTrace()
	A.12.8 : CADIProfiling::CADIProfileGetRegAccesses()
	A.12.9 : CADIProfiling::CADIProfileSetRegAccesses()
	A.12.10 : CADIProfiling::CADIProfileGetMemAccesses()
	A.12.11 : CADIProfiling::CADIProfileSetMemAccesses()
	A.12.12 : CADIProfiling::CADIProfileGetAddrExecutionFrequency()
	A.12.13 : CADIProfiling::CADIProfileSetAddrExecutionFrequency()
	A.12.14 : CADIProfiling::CADIGetNumberOfInstructions()
	A.12.15 : CADIProfiling::CADIProfileInitInstructionResultArray()
	A.12.16 : CADIProfiling::CADIProfileGetInstructionExecutionFrequency()
	A.12.17 : CADIProfiling::CADIProfileSetInstructionExecutionFrequency()
	A.12.18 : CADIProfiling::CADIRegisterProfileResourceAccess()
	A.12.19 : CADIProfiling::CADIUnregisterProfileResourceAccess()
	A.12.20 : CADIProfiling::CADIProfileRegisterCallBack()
	A.12.21 : CADIProfiling::CADIProfileUnregisterCallBack()

	B : Data Structure Reference
	B.1 : Factory simulation startup and configuration
	B.1.1 : CADIReturn_t
	B.1.2 : CADIFactoryErrorCode_t
	B.1.3 : CADIFactorySeverityCode_t
	B.1.4 : CADISimulationInfo_t
	B.1.5 : CADIParameterInfo_t
	B.1.6 : CADIParameterValue_t
	B.1.7 : CADITargetFeatures_t
	B.1.8 : CADICallbackType_t
	B.1.9 : CADIRefreshReason_t

	B.2 : Registers and memory
	B.2.1 : CADIReg_t
	B.2.2 : CADIRegInfo_t
	B.2.3 : CADIRegDisplay_t
	B.2.4 : CADIRegSymbols_t
	B.2.5 : CADIRegAccessAttribute_t
	B.2.6 : CADIRegType_t
	B.2.7 : CADIRegDetails_t
	B.2.8 : CADIRegGroup_t
	B.2.9 : CADIMemSpaceInfo_t
	B.2.10 : CADIMemBlockInfo_t
	B.2.11 : CADIAddr_t
	B.2.12 : CADIMemReadWrite_t
	B.2.13 : CADIAddrComplete_t
	B.2.14 : CADICacheInfo_t

	B.3 : Breakpoints and execution control
	B.3.1 : CADIBptRequest_t
	B.3.2 : CADIBptCondition_t and CADIBptConditionOperator_t
	B.3.3 : Thread-aware breakpoints using CONTEXTIDR
	B.3.4 : CADIBptDescription_t
	B.3.5 : CADIBptConfigure_t
	B.3.6 : CADIExecMode_t
	B.3.7 : CADI_EXECMODE_t
	B.3.8 : CADIResetLevel_t
	B.3.9 : CADIException_t
	B.3.10 : CADIExceptionAction_t

	B.4 : Pipelines
	B.4.1 : CADIPipeStage_t
	B.4.2 : CADIPipeStageContentInfo_t

	B.5 : Disassembly
	B.5.1 : CADIDisassemblerStatus
	B.5.2 : CADIDisassemblerType
	B.5.3 : CADIDisassemblerInstructionType

	B.6 : Semihosting and message output
	B.6.1 : CADISemiHostingInputChannelType_t
	B.6.2 : CADISemiHostingInputChannel_t
	B.6.3 : CADIConsoleChannel_t
	B.6.4 : CADIStreamId

	B.7 : Profiling and tracing
	B.7.1 : CADIProfileResultType_t
	B.7.2 : CADIProfileResults_t
	B.7.3 : CADIProfileRegion_t
	B.7.4 : CADIProfileType_t
	B.7.5 : CADIProfileControl_t
	B.7.6 : CADIRegProfileResults_t
	B.7.7 : CADIMemProfileResults_t
	B.7.8 : CADIInstructionProfileResults_t
	B.7.9 : CADIProfileResourceAccessType_t
	B.7.10 : CADIProfileHazardTypes_t
	B.7.11 : CADIProfileHazardDescription_t
	B.7.12 : CADITraceControl_t
	B.7.13 : CADITraceBufferControl_t
	B.7.14 : CADITraceOverlayControl_t
	B.7.15 : CADITraceBlockType_t
	B.7.16 : CADITraceBlock_t

