Juno ARM® Development Platform SoC
Revision: r0p0

Technical Overview
Juno ARM Development Platform SoC
Technical Overview

Copyright © 2014, 2016. All rights reserved.

Release Information

The following changes have been made to this book.

<table>
<thead>
<tr>
<th>Date</th>
<th>Issue</th>
<th>Confidentiality</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 July 2014</td>
<td>A.a</td>
<td>Non-Confidential</td>
<td>First issue of TO, for r0p0</td>
</tr>
<tr>
<td>31 May 2016</td>
<td>A.b</td>
<td>Non-Confidential</td>
<td>Second issue of TO, for r0p0</td>
</tr>
</tbody>
</table>

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM in the EU and other countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
This preface introduces the *Juno ARM Development Platform (ADP) SoC Technical Overview*. It contains the following sections:

- *About this book* on page v.
- *Feedback* on page viii.
About this book

This book is for the Juno ARM Development Platform (ADP) SoC. It provides a high-level overview of the ADP.

Product revision status

The rm\textsubscript{pn} identifier indicates the revision status of the product described in this book, for example, r0p0, where:

- \textit{rm} Identifies the major revision of the product, for example, r0.
- \textit{pn} Identifies the minor revision or modification status of the product, for example, p0.

Intended audience

This book is written for software engineers who want to work with an ARM® reference platform. It describes the high-level functionality of the ADP SoC.

Using this book

This book is organized into the following chapters:

- **Chapter 1 Introduction**
 Read this for an introduction to the ADP SoC and a description of its features and the components that it contains.

- **Chapter 2 Hardware Functional Description**
 Read this for a description of the major interfaces, the components of the ADP, and how the components operate.

- **Chapter 3 Software Functional Description**
 Read this for a description of the ADP software.

- **Appendix A Hardware Components**
 Read this for a description of the hardware components that the ADP SoC and the motherboard contain.

- **Appendix B Revisions**
 Read this for a description of the technical changes between released issues of this book.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning differs from the generally accepted meaning.

Conventions

Conventions that this book can use are described in:

- **Typographical conventions.**
- **Timing diagrams.**
- **Signals on page vii.**

Typographical conventions

The following table describes the typographical conventions:

<table>
<thead>
<tr>
<th>Style</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>italic</td>
<td>Introduces special terminology, denotes cross-references, and citations.</td>
</tr>
<tr>
<td>bold</td>
<td>Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.</td>
</tr>
<tr>
<td>monospace</td>
<td>Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.</td>
</tr>
<tr>
<td>monospace</td>
<td>Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.</td>
</tr>
<tr>
<td>monospace italic</td>
<td>Denotes arguments to monospace text where the argument is to be replaced by a specific value.</td>
</tr>
<tr>
<td>monospace bold</td>
<td>Denotes language keywords when used outside example code.</td>
</tr>
<tr>
<td><and></td>
<td>Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example: MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2></td>
</tr>
<tr>
<td><small>CAPITALS</small></td>
<td>Used in body text for a few terms that have specific technical meanings, that are defined in the ARM glossary. For example, IMPLEMENTATION DEFINED, UNKNOWN, and UNPREDICTABLE.</td>
</tr>
</tbody>
</table>

Timing diagrams

The figure named *Key to timing diagram conventions* explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.
Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to the bus change shown in Key to timing diagram conventions on page vi. If a timing diagram shows a single-bit signal in this way then its value does not affect the accompanying description.

Signals

The signal conventions are:

- **Signal level**: The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:
 - HIGH for active-HIGH signals.
 - LOW for active-LOW signals.

- **Lower-case n**: At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com for access to ARM documentation.

See onARM, http://www.onarm.com for embedded software development resources including the Cortex® Microcontroller Software Interface Standard (CMSIS).

ARM publications

This book contains information that is specific to this product. See the following documents for other relevant information:

Feedback

ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

- The product name.
- The product revision or version.
- An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

- The title.
- The number, ARM DTO 0038A.b.
- The page numbers to which your comments apply.
- A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the represented document when used with any other PDF reader.
Chapter 1
Introduction

This chapter introduces the Juno ARM® Development Platform (ADP) SoC. It contains the following section:

- *Purpose* on page 1-2.
- *Components* on page 1-3.
- *Software development* on page 1-4.
- *Compliance* on page 1-5.
1.1 Purpose

The ADP SoC is a development platform for:
• ARMv8 AArch64 and AArch32 compute.
• big.LITTLE Multit-Processing (MP).
• Graphics Processing Unit (GPU) compute.
• 3D Graphics.
• Control and management of:
 — Security.
 — Power.
 — Thermal.

The ADP is enables you to develop software and tooling for ARMv8 AArch64 and AArch32.
1.2 Components

The ADP consists of the following:

• A standalone development motherboard, ARM® Versatile™ Express Juno Development Platform V2M-Juno, instantiating the ADP SoC fabricated in TSMC28HPM.

• A Software Development Kit (SDK) that supports each hardware platform and contains the following:
 — ADP AArch64 firmware with standardized Application Programming Interfaces (APIs).
 — AArch64 Linux kernel with big.LITTLE MP support.
 — AArch32 and AArch64 Linux user space example.

• DS-5 tool support.

The processor clusters contain the following fully coherent processor clusters:

• Dual core Cortex-A57 processor cluster.
• Quad core Cortex-A53 processor cluster.

The GPU cluster contains an IO-coherent Mali™-T624 series GPU.

The compute platform also contains a Cortex-M3 System Control Processor (SCP) for power control and thermal management.

External interfaces include USB2 and a custom SoC to Field Programmable Gate Array (FPGA) prototyping extension interface. External memory capability includes DDR3-1600 dual channel striped memories.
1.3 Software development

The ADP delivers heterogeneous compute to software developers including big.LITTLE64 and General-Purpose computing on Graphics Processing Units (GPGPU) compute, for example:

- OpenCL.
- Direct Compute.
- OpenGL-ES.
- Direct-X graphics.
- Trusted Execution Environment (TEE) integration.
- Advanced power control and thermal management.
1.4 Compliance

The ADP conforms to ARM Platform Design Documents (PDDs) and white paper guidance documents, in particular, the following:

- Trusted Base System Architecture 1 (ARM DEN 0007).
- Trusted Board Boot Requirements (ARM DEN 0006).
- Power State Coordination Interface (ARM DEN 0022).
- Principles of ARM® Memory Maps White Paper (ARM DEN 0001).

This document provides a technical overview of the ADP design and associated software deliverables for the platform.
Chapter 2
Hardware Functional Description

This chapter describes the functionality of the Juno ARM® Development Platform (ADP) SoC hardware.

It contains the following sections:

- *Trusted Execution Environment (TEE)* on page 2-7.
- *Power control and thermal management* on page 2-8.
- *ADP motherboard specification* on page 2-10.
2.1 Functional overview

Figure 2-1 shows a block diagram of the ADP SoC.

The main components are as follows:

- **Cortex-A57 processor cluster subsystem** on page 2-3.
- **Cortex-A53 processor cluster subsystem** on page 2-3.
- **Graphics subsystem** on page 2-3.
- **System Control Processor (SCP) subsystem** on page 2-3.
- **Interconnects and on-system memory** on page 2-4.
- **System Memory Management Unit (SMMU) on page 2-4.**
- **Generic Interrupt Controller (GIC) on page 2-4.**
- **Memory subsystem** on page 2-4.
- **USB 2.0 Enhanced Host Controller Interface (EHCI) on page 2-5.**
- **Direct Memory Access (DMA) on page 2-5.**
- **High Definition Liquid Crystal Display (HDLCD) controllers on page 2-5.**
- **Static Memory Controller (SMC) on page 2-5.**
- **Universal Asynchronous Receiver-Transmitter (UART) on page 2-5.**
- **I2C on page 2-6.**
- **SoC to FPGA prototyping interface on page 2-6.**
- **CoreSight™ on page 2-6.**
2.1.1 Cortex-A57 processor cluster subsystem

The Cortex-A57 processor subsystem consists of the following:

- ARMv8 dual core Cortex-A57 cluster that is configured with an AMBA4 ACE interface and 2MB L2 cache.
- CoreLink™ ADB-400 asynchronous bridge to enable Dynamic Voltage and Frequency Scaling (DVFS).

2.1.2 Cortex-A53 processor cluster subsystem

The Cortex-A53 processor subsystem consists of the following:

- ARMv8 quad core Cortex-A53 cluster that is configured with an AMBA4 ACE interface and 1MB L2 cache.
- CoreLink ADB-400 asynchronous bridge to enable DFVS.

2.1.3 Graphics subsystem

The Mali™-T624 Graphics Processing Unit (GPU) is a high-performance hardware accelerator for 2D and 3D graphics. The GPU subsystem consists of the following:

- Mali-T624 containing:
 - Four shader cores.
 - A hierarchical tiler.
 - A Power-Management Unit (PMU).
- A job manager that distributes workloads to the four shader cores.
- A Memory-Management Unit (MMU) that performs address translation of data reads and writes from components in the system.
- A CoreLink ADB-400 asynchronous bridge to enable DFVS.

The Mali-T624 series GPU is configured with 128KB L2 RAM and an AMBA4 ACE-Lite interface.

The GPU and its associated software are compatible with the following graphics standards:

- OpenGL ES 1.1 and 2.0.
- OpenCL 1.1 full profile.
- EGL 1.4.
- Renderscript compute.
- DirectX 11 feature level 9_1, 9_3 through DX9 DDI, including Direct3D.
- DirectX 11 full-feature through DX10/11 DDI:
 - Direct3D.
 - DirectCompute.

2.1.4 System Control Processor (SCP) subsystem

A Cortex-M3 processor controls and manages the SoC. The SCP:

- Controls clocks and resets.
- Is responsible for power state transitions for the power regions in the SoC.
- Has direct control over the Power-Management Integrated Circuit (PMIC).
The Operating System (OS) can send power-management commands to the SCP using a hardware Message Handling Unit (MHU).

2.1.5 Interconnects and on-system memory

The ADP contains a CoreLink CCI-400 Cache Coherent Interconnect that provides:
- Full coherency between the processor clusters.
- I/O coherency between the GPU and processor clusters.

A 128-bit I/O coherent slave and master interface is extended from the coherent interconnect using CoreLink NIC-400 Network Interconnect components and connected to peripherals such as Direct Memory Access (DMA) and interchip interconnect.

The following static RAMs are instantiated for the application processors:
- 128KB trusted.
- 16KB non-trusted.

The following ROMs are instantiated for the application processors:
- 128KB trusted.
- 16KB non-trusted.

The ROM code is fully committed at the time of manufacture. However, it is possible to override the internal code of both ROMs for development and debug purposes.

2.1.6 System Memory Management Unit (SMMU)

Individual CoreLink MMU-400 MMU components connect all non-processor masters such as the following, to the CCI-400 and NIC-400 interconnects:
- Graphics subsystem.
- Universal Serial Bus (USB).
- DMA.
- Debug subsystem.

These SMMUs implement stage 2 address translations, that translates an Intermediate Physical Address (IPA) to a Physical Address (PA).

2.1.7 Generic Interrupt Controller (GIC)

The ADP interrupt controller complies with the GICv2m architecture. GICv2m includes a message-based interrupt feature that is necessary to handle Message Signaled Interrupts (MSIs).

GICv2m enables MSIs to set GICv2 Shared Peripheral Interrupts (SPIs) to pending. This provides a similar mechanism to the message-based interrupt features added in GICv3.

The ADP SoC is compliant to level 1 of the Server Base System Architecture specification. See Compliance on page 1-5.

2.1.8 Memory subsystem

The memory subsystem contains a Dynamic Memory Controller (DMC) that interfaces with external DDR memory using a dual 32-bit DDR3 PHY. The PHY supports both DDR3, and DDR3L and operates to 1600MT/s.

A CoreLink TZC-400 TrustZone Address Space Controller exists at the interface of the DMC-400 to the system. The TZC-400 enables the trusted OS to define multiple regions within the DDR memory that have different security access permissions.
2.1.9 **USB 2.0 Enhanced Host Controller Interface (EHCI)**

The ADP SoC instantiates a bus mastered USB 2.0 Enhanced Host Controller Interface (EHCI) host controller for attaching peripherals such as keyboard, mouse, and flash drive to the system. The EHCI operates with native OS drivers and supports the following available speeds:

- Low speed.
- Full speed.
- Hi speed.

USB 2.0 supports data rates of 480Mbps. The host controller is on the SoC. It is connected to a USB PHY on the board through the 60MHz 12-pin UTMI+ Low Pin Interface (ULPI) Single Data Rate (SDR) interface\(^1\). The USB controller is configured to provide one OHCI controller and one EHCI controller. Debug is an optional feature in EHCI but the ADP does not support it.

The USB 2.0 controller supports 64-bit EHCI addressing capability therefore supports Large Physical Address Extension (LPAE) and 64-bit Operating Systems (OSs).

2.1.10 **Direct Memory Access (DMA)**

The ADP SoC includes a system DMA-330 Direct Memory Access (DMA) controller. You can use the DMA controller to transfer data:

- Within memory.
- Between memory and peripherals.

2.1.11 **High Definition Liquid Crystal Display (HDLCD) controllers**

The ADP SoC includes two independent High Definition Liquid Crystal Display (HDLCD) controllers. The HDLCD controllers can run from:

- An HDLCD clock generated by an on-chip PLL.
- A shared clock fed directly from outside through the input pad.

This scheme enables both displays to run at high resolution, and you can switch either or both of the displays to low-resolution mode, such as VGA, if required. The ADP includes a single HDLCD PLL and this means that it is not possible to run both displays at different high-resolution modes. The achievable frame rate of Full-High Definition (FHD) is 60fps.

An I²S controller supplies audio, and the output serves the two High Definition Multimedia Interface (HDMI) connectors that are located on the board.

2.1.12 **Static Memory Controller (SMC)**

The ADP includes a PL352 Static Memory Controller (SMC) to provide access to a 64MB off-chip NOR flash. The interface also provides access to off-chip peripherals such as Non-Volatile (NV) counter for anti-replay protection, secure keypad input, and Real Time Counter (RTC) instantiated within a Field Programmable Gate Array (FPGA).

2.1.13 **Universal Asynchronous Receiver-Transmitter (UART)**

The ADP SoC provides secure and non-secure Universal Asynchronous Receiver-Transmitters (UARTs), PL011s, for:

- Firmware logs and interactive firmware shell.
- Debugging the OS kernel.

Both serial ports operate at up to 115200Bd.

1. **USB 2.0 Transceiver Macrocell Interface (UTMI).**
2.1.14 I2C

The ADP SoC includes the following I2C controllers:

1. I2C controller that is only accessible from the SCP and used for PMIC control.

2. I2C controller that is mapped in the application processor area and used for board functions such as:
 - HDMI controller configuration.
 - Small Outline Dual In-line Memory Module (SODIMM) discovery.

3. I2C controller that is mapped in the application processor area and used exclusively for trusted user input from a keypad.

2.1.15 SoC to FPGA prototyping interface

There is an AXI expansion interface covering both master and slave interfaces for prototyping and driver development for external components such as GPU and I/O peripherals. The expansion interface supports 40-bit addressing, QoS, and I/O coherency. The interface supports the following bandwidths:

- **Slave AXI** 250MB/s on the slave AXI interface.
- **Master AXI** 48MB/s on the master AXI interface.

2.1.16 CoreSight™

ARM CoreSight™ provides debug and trace capability and includes an enhanced capability for extracting bandwidth and latency measurements from the system.
2.2 **Trusted Execution Environment (TEE)**

The ADP provides a software development environment to enable the development of a trusted OS.

Specifically, the following peripherals are instantiated:

- **Trusted entropy sources**.
- **Trusted key storage**.
- **Non-Volatile (NV) counter**.
- **Non-invasive attack prevention**.

2.2.1 **Trusted entropy sources**

Two trusted entropy sources are instantiated.

2.2.2 **Trusted key storage**

The Trusted Board Boot Requirements (TBBR) PDD defines a set of cryptographic keys to store in One Time Programmable (OTP) or eFuse memory. The ADP does not instantiate an OTP or eFuse macro. Instead, keys are tied in hardware, using registers that TIE cells drive, to a default and fixed value. This includes:

- 128-bit **Hardware Unique Key** (HUK).
- 256-bit **Endorsement Key** (EK).
- 256-bit Hash of the **Root Of Trusted Public Key** (ROTPK).

--- **Note** ----

The optional **Secret Symmetric Key** (SSK) is not implemented.

2.2.3 **Non-Volatile (NV) counter**

The Trusted Base System Architecture (TBSA) PDD defines a series of NV counters that retain state even when the SoC has been completely powered off. For the purposes of the development platform, the trusted and non-trusted counters are tied to the limit of increment:

- **31** For the trusted counter.
- **223** For the non-trusted counter.

The 232 state anti-replay counter exists through implementation in an external FPGA and you can access it by using a secure I²C access.

2.2.4 **Non-invasive attack prevention**

The ADP does not instantiate peripherals to prevent non-invasive attacks such as glitch or brown-out detection.
2.3 Power control and thermal management

This section contains the following subsections:

- Voltage domains.
- Power-gated regions on page 2-9.
- Sensor-based power-management on page 2-9.

2.3.1 Voltage domains

The following core voltage domains exist on the ADP SoC:

- **VA57**: Core supply to the dual core Cortex-A57 cluster. 0.8-1.0V. Switchable on the board.
- **VA53**: Core supply to the dual core Cortex-A53 cluster. 0.8-1.0V. Switchable on the board.
- **VGPU**: Core supply to the Mali-T624 GPU. 0.8-1.0V. Switchable on the board.
- **VSYSTOP**: Main 0.9V supply to the SoC top-level, including peripherals such as USB, top-level logic, and the CoreSight subsystem. Switchable on the board.
- **VAON**: Always on 0.9V supply to the SCP subsystem, debug access ports, and the digital side of the General Purpose Input and Output (GPIO).

The ADP contains asynchronous clock domains that fully support DVFS of the Cortex-A57 cluster, Cortex-A53 cluster, and the GPU. Figure 2-2 shows the ADP voltage domains.

![Figure 2-2 ADP voltage domains](image-url)
2.3.2 Power-gated regions

The ADP contains the following gated power components:

- The two Cortex-A57 cores, the *Snoop Control Unit* (SCU), and the L2 can be power-gated separately.

- The four Cortex-A53 cores, the SCU, and the L2 can be power-gated separately. The *Embedded Trace Macrocell* (ETM) is not separately gated.

The GPU has no provision for individual power-gating of each shader core.

2.3.3 Sensor-based power-management

Sensor-based power-management provides feedback to the SCP and application processors to enable real-time thermal management. *Power, Voltage, Temperature* (PVT) monitors are instantiated at key locations in the ADP, such as physically close to the GPU and Cortex-A57 processor clusters. Unique SQ adjustment parameters for each device support sensor calibration.
2.4 ADP motherboard specification

The ADP motherboard includes the following hardware:

- PMIC.
- Ball Grid Array (BGA), BGA-1156 socket instantiating an ADP SoC.
- Dual HDMI Controllers.
- USB 2.0 PHY and USB hub.
- Two SODIMM sockets for DDR3-1600, 800MHz, providing 8GB of memory.
- NOR Flash, 64MB, two banks of 32MB.
- Two RS232 UARTs.
- I/O component FPGA providing:
 - Secure I²C anti-replay counters.
 - Battery-backed Real Time Clock (RTC).
 - Secure keyboard and keypad socket.
- ARM CoreSight Interfaces, Joint Test Action Group (JTAG), and trace.

Figure 2-3 on page 2-11 shows a block diagram of the ADP board.
Figure 2-3 ADP board block diagram
Chapter 3
Software Functional Description

This chapter contains links to information about the Juno ARM® Development Platform (ADP) SoC software.

- The following website describes the Juno software stacks:
 https://community.arm.com/groups/arm-development-platforms

- The Juno ARM® Development Platform Getting Started Guide in the following location describes the firmware:
Appendix A
Hardware Components

This chapter describes the Juno ARM Development Platform (ADP) SoC hardware. It contains the following sections:

• ADP SoC on page A-2.
• ADP motherboard on page A-3.
A.1 ADP SoC

The ADP SoC includes the following hardware:

- Dual core Cortex-A57 processor cluster.
- Quad core Cortex-A53 processor cluster.
- Mali™-T624 series GPU with four shader cores.
- System Control Processor (SCP) based on a Cortex-M3 processor.
- CoreLink™ CCI-400 Cache Coherent Interconnect.
- CoreLink NIC-400 Network Interconnect.
- CoreLink MMU-400 System Memory Management Unit.
- CoreLink GIC-400 Generic Interrupt Controller.
- CoreLink DMC-400 DDR3 Dynamic Memory Controller.
- CoreLink DMA-330.
- Dual 32-bit DDR3, two × 1600MT/s.
- Dual ARM HDLCD display controllers, 1920 × 1080 at 60fps, with single I²S with four stereo channels.
- Bus mastered EHCI USB2 host controller, 480Mbps, UTMI+ Low Pin Interface (ULPI) interface to off-chip PHY.
- CoreLink PL352 Static Memory Controller, 64MB NOR flash and board peripherals.
- UART, two × PL011.
- PCI, high-speed mode, 3.4Mb/s.
- PVT sensor subsystem.
- Security peripherals, RNG, NV counters, fuses, 32KHz oscillator.
- AXI master and slave SoC to FPGA interface based on TLX-400, Thin-Links technology.

1. USB 2.0 Transceiver Macrocell Interface (UTMI).
A.2 ADP motherboard

See *ADP motherboard specification* on page 2-10.
Appendix B
Revisions

This appendix describes the technical changes between released issues of this book.

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>First release</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated and corrected chapter 3, Software Functional Description.</td>
<td>Chapter 3 Software Functional Description</td>
<td>r0p0</td>
</tr>
</tbody>
</table>