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Preface

This preface introduces the RealView Compilation Tools Developer Guide. It contains 
the following sections:

• About this book on page viii

• Feedback on page xi.
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Preface 
About this book

This book contains information that helps you with specific issues when developing 
code for the ARM® family of Reduced Instruction Set Computing (RISC) processors. 
The chapters in this book, and the examples used, assume that you are using the latest 
release of RealView® Compilation Tools (RVCT) to develop your code.

Intended audience

This book is written for all developers writing code for ARM architecture-based 
processors. It assumes that you are an experienced software developer, and that you are 
familiar with the ARM development tools described in RealView Compilation Tools 
v3.0 Essentials Guide.

Using this book

This book is organized into the following chapters and appendixes:

 Chapter 1 Introduction 

Read this chapter for an introduction to RVCT.

Chapter 2 Embedded Software Development 

Read this chapter for details of how to develop embedded applications 
with RVCT. It describes the default RVCT behavior in the absence of a 
target system, and how to tailor the C library and image memory map to 
your target system.

Chapter 3 Writing Position Independent Code and Data 

Read this chapter for details of how to write position independent code 
and data that makes use of the Procedure Call Standard for the ARM 
Architecture (AAPCS). 

Chapter 4 Interworking ARM and Thumb 

Read this chapter for details of how to change between ARM state and 
Thumb state when writing code for processors that implement the Thumb 
instruction set.

Chapter 5 Mixing C, C++, and Assembly Language 

Read this chapter for details of how to write mixed C, C++, and ARM 
assembly language code. It also describes how to use the ARM inline and 
embedded assembler from C and C++.
viii Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G



Preface 
Chapter 6 Handling Processor Exceptions 

Read this chapter for details of how to handle the various types of 
exception supported by ARM processors.

Chapter 7 Debug Communications Channel 

Read this chapter for a description of how to use the Debug 
Communications Channel (DCC).

This book assumes that you have installed your ARM software in the default location 
for example, on Windows this might be volume:\Program Files\ARM. This is assumed to 
be the location of install_directory when referring to path names, for example 
install_directory\Documentation\.... You might have to change this if you have 
installed your ARM software in a different location.

Typographical conventions

The following typographical conventions are used in this book:

monospace Denotes text that can be entered at the keyboard, such as commands, file 
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The 
underlined text can be entered instead of the full command or option 
name.

monospace italic 

Denotes arguments to commands and functions where the argument is to 
be replaced by a specific value.

monospace bold 

Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes 
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for 
emphasis in descriptive lists, where appropriate, and for ARM processor 
signal names.

Further reading

This section lists publications from both ARM Limited and third parties that provide 
additional information on developing code for the ARM family of processors.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. ix



Preface 
ARM periodically provides updates and corrections to its documentation. See 
http://www.arm.com for current errata sheets and addenda, and the ARM Frequently 
Asked Questions.

ARM publications

This book contains general information on developing applications for the ARM family 
of processors. See the following books in the RVCT document suite for information on 
other components:

• RealView Compilation Tools v3.0 Essentials Guide (ARM DUI 0202)

• RealView Compilation Tools v3.0 Compiler and Libraries Guide (ARM DUI 
0205)

• RealView Compilation Tools v3.0 Linker and Utilities Guide (ARM DUI 0206)

• RealView Compilation Tools v3.0 Assembler Guide (ARM DUI 0204)

• RealView Development Suite Glossary (ARM DUI 0324).

For full information about the base standard, software interfaces, and standards 
supported by ARM, see install_directory\Documentation\Specifications\....

In addition, see the following documentation for specific information relating to ARM 
products:

• ARM Architecture Reference Manual (ARM DDI 0100)

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.

Other publications

For a comprehensive introduction to ARM architecture, see Steve Furber, ARM 
system-on-chip architecture (2nd edition, 2000). Addison Wesley, ISBN 
0-201-67519-6.
x Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G



Preface 
Feedback

ARM Limited welcomes feedback on both RealView Compilation Tools, and its 
documentation.

Feedback on RealView Compilation Tools

If you have any problems with RVCT, contact your supplier. To help them provide a 
rapid and useful response, give:

• your name and company

• the serial number of the product

• details of the release you are using

• details of the platform you are running on, such as the hardware platform, 
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you notice any errors or omissions in this book, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. xi
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Chapter 1 
Introduction

This chapter introduces this book and begins to describe how the RealView® 
Compilation Tools (RVCT) can be used to develop code. It contains the following 
sections:

• About RVCT on page 1-2

• General programming issues on page 1-3

• Developing for the ARM processors on page 1-8

• ARM architecture v6 support on page 1-12.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-1



Introduction 
1.1 About RVCT

RVCT consists of a suite of applications, together with supporting documentation and 
examples, that enable you to write applications for the ARM® family of RISC 
processors. You can use RVCT to build C, C++, and ARM assembly language 
programs.

This book contains information that helps you with specific issues when developing 
code for ARM-based systems. The chapters in this book, and the examples used, 
assume that you are using the latest release of RVCT to develop your code.

If you are upgrading to RVCT from a previous release, ensure that you read RealView 
Compilation Tools v3.0 Essentials Guide for details about new features and 
enhancements in this release.

If you are new to RVCT, read RealView Compilation Tools v3.0 Essentials Guide for an 
overview of the ARM tools and an introduction to using them as part of your 
development project.

For information about previous releases of RVCT, see Appendix A in RealView 
Compilation Tools v3.0 Essentials Guide.

See ARM publications on page x for a list of the other books in the RVCT 
documentation suite that give information on the ARM assembler, compiler, and 
supporting software.

1.1.1 Using the examples

This book references examples provided with RealView Development Suite in the main 
examples directory install_directory\RVDS\Examples. See RealView Development Suite 
Getting Started Guide for a summary of the examples provided.
1-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G



Introduction 
1.2 General programming issues

ARM processors are Reduced Instruction Set Computing (RISC) processors and many 
of the programming strategies that give efficient code are generic to this type of device.

As with many RISC processors, ARM processors are designed to access aligned data, 
that is, words that lie on addresses that are multiples of four, and halfwords that lie on 
addresses that are multiples of two. This data is located on its natural size boundary.

ARM compilers normally align global variables to these natural size boundaries so that 
these items can be accessed efficiently using the LDR and STR instructions.

This contrasts with most Complex Instruction Set Computing (CISC) architectures 
where instructions are available to directly access unaligned data. Therefore, you must 
take care when porting legacy code from CISC architectures to the ARM processors. In 
particular, accesses to unaligned data can be expensive in code size or performance. 

Note
 ARM11 processors support unaligned accesses in hardware. This section mainly 
applies to ARM processors earlier than the ARM11 processor family.

The following sections discuss these programming issues in more detail:

• Unaligned pointers

• Unaligned fields in structures on page 1-4

• Porting code and detecting unaligned accesses on page 1-6.

1.2.1 Unaligned pointers

The C and C++ standards specify that a pointer to a type cannot be less aligned than the 
natural alignment of the type. This improves code size and performance. Therefore, by 
default, the ARM compiler expects normal C and C++ pointers to point to an aligned 
word in memory. A type qualifier __packed is provided to enable unaligned pointer 
access (see the section describing variable declaration keywords in the compiler 
reference in RealView Compilation Tools v3.0 Compiler and Libraries Guide).

For example, if the pointer int * is used to read a word, the ARM compiler uses an LDR 
instruction in the generated code. This works as expected when the address is a multiple 
of four (that is, on a word boundary). However, if the address is not a multiple of four, 
then an LDR instruction returns a rotated result rather than performing a true unaligned 
word load. The rotated result depends on the offset and endianness of the system.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-3



Introduction 
If your code loads data from a pointer that points to the address 0x8006, for example, you 
might expect to load the contents of bytes from 0x8006, 0x8007, 0x8008, and 0x8009. 
However, on an ARM processor, this access loads the rotated contents of bytes from 
0x8004, 0x8005, 0x8006, and 0x8007.

Therefore, if you want to define a pointer to a word that can be at any address (that is, 
that can be at a non-natural alignment), you must specify this using the __packed 
qualifier when defining the pointer:

__packed int *pi; // pointer to unaligned int

The ARM compiler does not then use an LDR, but generates code that correctly accesses 
the value regardless of the alignment of the pointer. This generated code is a sequence 
of byte accesses or, depending on the compile options, variable alignment-dependent 
shifting and masking. This approach, however, incurs a performance and code size 
penalty.

Note
 Beware of accessing memory-mapped peripheral registers using __packed because the 
ARM compiler can use multiple memory accesses to retrieve the data. Therefore, 
nearby locations can be accessed that might correspond to other peripheral registers. 
When bitfields are used, the ARM compiler currently accesses the entire container, not 
just the field specified.

1.2.2 Unaligned fields in structures

In the same way that global variables are located on their natural size boundary, so are 
the fields in a structure. This means that the compiler often has to insert padding 
between fields to ensure that fields are aligned. The compiler generates the following 
remark when it inserts padding between fields in a structure:

#1301-D: padding inserted in struct mystruct

The compiler also inserts padding at the end of a structure to ensure that the structure 
as a whole is aligned, and generates the following remark:

#2530-D: padding added to end of struct mystruct

Use the --remarks compiler option to display remarks.

Sometimes, you might not want the compiler to insert padding. You can use the 
__packed qualifier to create structures without padding between fields. These structures 
require unaligned accesses.
1-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G
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If the ARM compiler knows the alignment of a particular structure, it can work out 
whether or not the fields it is accessing are aligned within a packed structure. In these 
cases, the compiler carries out the more efficient aligned word or halfword accesses, 
where possible. Otherwise, the compiler uses multiple aligned memory accesses (LDR, 
STR, LDM, and STM) combined with fixed shifting and masking to access the correct bytes 
in memory.

Whether these accesses to unaligned elements are done inline or by calling a function 
is controlled by using the compiler options -Ospace (default, calls a function) and -Otime 
(do unaligned access inline).

For example:

1. Create a file foo.c that contains:

__packed struct mystruct {
    int aligned_i;
    short aligned_s;
    int unaligned_i;
};
struct mystruct S1;

int foo (int a, short b)
{
    S1.aligned_i=a;
    S1.aligned_s=b;
    return S1.unaligned_i;
}

2. Compile this using armcc -c -Otime foo.c. The code produced is:

MOV      r2,r0
LDR      r0,|L1.84|
MOV      r12,r2,LSR #8
STRB     r2,[r0,#0]
STRB     r12,[r0,#1]
MOV      r12,r2,LSR #16
STRB     r12,[r0,#2]
MOV      r12,r2,LSR #24
STRB     r12,[r0,#3]
MOV      r12,r1,LSR #8
STRB     r1,[r0,#4]
STRB     r12,[r0,#5]
ADD      r0,r0,#6
BIC      r3,r0,#3
AND      r0,r0,#3
LDMIA    r3,{r3,r12}
MOV      r0,r0,LSL #3
MOV      r3,r3,LSR r0
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-5
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RSB      r0,r0,#0x20
ORR      r0,r3,r12,LSL r0
BX       lr

However, you can give the compiler more information to enable it to know which 
fields are aligned and which are not. To do this you must declare non-aligned 
fields as __packed, and remove the __packed attribute from the struct itself.

This is the recommended approach, and the only way of guaranteeing fast access 
to naturally aligned members within the struct.

It is also clearer which fields are non-aligned, but care is needed when adding or 
deleting fields from the struct.

3. Now modify the definition of the structure in foo.c to:

struct mystruct {
    int aligned_i;
    short aligned_s;
    __packed int unaligned_i;
};
struct mystruct S1;

4. Compile foo.c and the following, more efficient code, is generated:

MOV      r2,r0
LDR      r0,|L1.32|
STR      r2,[r0,#0]
STRH     r1,[r0,#4]
LDMIB    r0,{r3,r12}
MOV      r0,r3,LSR #16
ORR      r0,r0,r12,LSL #16
BX       lr

The same principle applies to unions. Use the __packed attribute on the components of 
the union that will be unaligned in memory.

Note
 Any __packed object accessed through a pointer has unknown alignment, even packed 
structures.

1.2.3 Porting code and detecting unaligned accesses

Legacy C code for other architectures (for example, x86 CISC) might perform accesses 
to unaligned data using pointers that do not work on ARM processors. This is 
non-portable code, and such accesses must be identified and corrected to work on RISC 
architectures, which expect aligned data.
1-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G
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Identifying the unaligned accesses can be difficult, because the use of load or store 
operations with unaligned addresses gives incorrect behavior. It is difficult to trace 
which part of the C source is causing the problem.

ARM processors with full Memory Management Units (MMUs), for example, the 
ARM926™, support optional alignment checking, where the processor checks every 
access to ensure it is correctly aligned. The MMU raises a Data Abort if an incorrectly 
aligned access occurs.

For simple cores such as the ARM7TDMI®, it is recommended that alignment-checking 
be implemented within the Application Specific Integrated Circuit (ASIC) or 
Application Specific Standard Product (ASSP). You can do this with an additional 
hardware block that is external to the ARM core, and that monitors the access size and 
the least significant bits of the address bus for every data access. You can configure the 
ASIC/ASSP to raise the ABORT signal in the case of an unaligned access. ARM 
Limited recommends that such logic is included on ASIC/ASSP devices where code is 
ported from other architectures.

If the system is configured to abort on unaligned accesses, a Data Abort exception 
handler must be installed. When an unaligned access occurs, the Data Abort handler is 
entered, and this can identify the erroneous data access instruction, which is located at 
(r14-8).

When identified, you must fix the data access by changing the C source. These changes 
can be made conditional using the following:

#ifdef __arm
  #define  PACKED  __packed
#else
  #define  PACKED
#endif
...
  PACKED int *pi;
...

It is best to minimize accesses to unaligned data because of code size and performance 
overheads.

See the description of the --pointer_alignment and --min_array_alignment options in 
the section on controlling code generation of RealView Compilation Tools v3.0 
Compiler and Libraries Guide.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-7
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1.3 Developing for the ARM processors

This book gives information and example code for some of the most common ARM 
programming tasks, and includes information for developers working on ARM 
architectures:

• Embedded software development

• Interworking ARM and Thumb code on page 1-9

• Mixing C, C++, and assembly language on page 1-9

• Handling processor exceptions on page 1-10

• Using the AAPCS on page 1-11

• Compatibility with legacy objects and libraries on page 1-11.

1.3.1 Embedded software development

Many applications written for ARM architecture-based systems are embedded 
applications that are contained in ROM and execute on reset. There are a number of 
factors that you must consider when writing embedded operating systems, or embedded 
applications that execute from reset without an operating system, including:

• address remapping, for example initializing with ROM at address 0x0000, then 
remapping RAM to address 0x0000

• initializing the environment and application

• linking an embedded executable image to place code and data in specific locations 
in memory.

The ARM core usually begins executing instructions from address 0x0000 at reset. For 
an embedded system, this means that there must be ROM at address 0x0000 when the 
system is reset. Typically, however, ROM is slow compared to RAM, and often only 8 
or 16 bits wide. This affects the speed of exception handling. Having ROM at address 
0x0000 means that the exception vectors cannot be modified. A common strategy is to 
remap ROM to RAM and copy the exception vectors from ROM to RAM after startup. 
See ROM/RAM remapping on page 2-27 for more information.

After reset, an embedded application or operating system must initialize the system, 
including:

• initializing the execution environment, such as exception vector, stacks, and I/O 
peripherals

• initializing the application, for example copying initial values of nonzero writable 
data to the writable data region and zeroing the ZI data region.

See Initialization sequence on page 2-25 for more information.
1-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G
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Embedded systems often implement complex memory configurations. For example, an 
embedded system might use fast, 32-bit RAM for performance-critical code, such as 
interrupt handlers and the stack, slower 16-bit RAM for application RW data, and ROM 
for normal application code. You can use the linker scatter-loading mechanism to 
construct executable images suitable for complex systems. For example, a scatter-load 
description file can specify the load address and execution address of individual code 
and data regions. See Chapter 2 Embedded Software Development for a series of worked 
examples, and for information on other issues that affect embedded applications, such 
as semihosting.

1.3.2 Interworking ARM and Thumb code

If you are writing code for ARM processors that support the Thumb 16-bit instruction 
set, you can mix ARM and Thumb code as required. If you are writing C or C++ code 
you must compile with the --apcs /interwork option. The linker detects when an ARM 
function is called from Thumb state, or a Thumb function is called from ARM state and 
alters call and return sequences, or inserts interworking veneers to change processor 
state as necessary.

Note
 If you want to use absolute addresses to Thumb functions, see Pointers to functions in 
Thumb state on page 4-16.

If you are writing assembly language code you must ensure that you comply with the 
interworking variant of the Procedure Call Standard for the ARM Architecture 
(AAPCS). There are several ways to change processor state, depending on the target 
architecture version. See Chapter 4 Interworking ARM and Thumb for more 
information.

1.3.3 Mixing C, C++, and assembly language

You can mix separately compiled and assembled C, C++, and ARM assembly language 
modules in your program. You can write small assembly language routines within your 
C or C++ code. These routines are compiled using the inline or embedded assembler of 
the ARM compiler. However, there are a number of restrictions to the assembly 
language code you can write if you are using the inline or embedded assembler. These 
restrictions are described in the chapter on inline and embedded assemblers in RealView 
Compilation Tools v3.0 Compiler and Libraries Guide.

In addition, Chapter 5 Mixing C, C++, and Assembly Language gives general 
guidelines and examples of how to call between C, C++, and assembly language 
modules.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-9
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1.3.4 Handling processor exceptions

The ARM processor recognizes the following exception types:

Reset Occurs when the processor reset pin is asserted. This exception is only 
expected to occur for signaling power-up, or for resetting as if the 
processor has powered up. A soft reset can be done by branching to the 
reset vector, 0x0000.

Undefined Instruction 

Occurs if neither the processor, nor any attached coprocessor, recognizes 
the currently executing instruction.

Supervisor Call (SVC - formerly SWI) 

This is a user-defined interrupt instruction. It enables a program running 
in User mode, for example, to request privileged operations that run in 
Supervisor mode, such as an RTOS function.

Prefetch Abort 

Occurs when the processor attempts to execute an instruction that has 
been prefetched from an illegal address. An illegal address is one at 
which memory does not exist, or one that the memory management 
subsystem has determined is inaccessible to the processor in its current 
mode.

Data Abort Occurs when a data transfer instruction attempts to load or store data at 
an illegal address.

Interrupt (IRQ) 

Occurs when the processor external interrupt request pin is asserted 
(LOW) and IRQ interrupts are enabled (the I bit in the CPSR is clear).

Fast Interrupt (FIQ) 

Occurs when the processor external fast interrupt request pin is asserted 
(LOW) and FIQ interrupts are enabled (the F bit in the CPSR is clear). This 
exception is typically used where interrupt latency must be kept to a 
minimum.

In general, if you are writing an application such as an embedded application that does 
not rely on an operating system to service exceptions, you must write handlers for each 
exception type.

In cases where an exception type can have more than one source, for example SVC or 
IRQ interrupts, you can chain exception handlers for each source. See Chaining 
exception handlers on page 6-43 for more information.
1-10 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G



Introduction 
On processors that support Thumb instructions, the processor switches to ARM state 
when an exception is taken. You can either write your exception handler in ARM code, 
or use a veneer to switch to Thumb state. See The return address and return instruction 
on page 6-10 for more information.

1.3.5 Using the AAPCS

The Procedure Call Standard for the ARM Architecture (AAPCS) defines register usage 
and stack conventions that must be followed to enable separately compiled and 
assembled modules to work together. There are a number of variants on the base 
standard. The ARM compiler always generates code that conforms to the selected 
AAPCS variant. The linker selects an appropriate standard C or C++ library to link 
with, if required. 

When developing code for ARM processors, you must select an appropriate AAPCS 
variant, for example:

• if you are writing code that interworks between ARM and Thumb state you must 
select the --apcs /interwork option in the compiler and assembler

• if you are writing code in C or C++, you must ensure that you have selected 
compatible AAPCS options for each compiled module

• if you are writing your own assembly language routines, you must ensure that you 
conform to the appropriate AAPCS variant.

For more information, see the Procedure Call Standard for the ARM Architecture 
specification, aapcs.pdf, in install_directory\Documentation\Specifications\...

Note
 If you are mixing C and assembly language, ensure that you understand the AAPCS 
implications.

1.3.6 Compatibility with legacy objects and libraries

If you are upgrading to RVCT from a previous release, ensure that you read Appendix 
A in RealView Compilation Tools v3.0 Essentials Guide for details about compatibility 
between the new release and previous releases of RVCT.
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1.4 ARM architecture v6 support

All components of RVCT support ARMv6. armasm accepts all ARMv6 instructions, 
armlink can link-in ARMv6 library objects where required, and fromelf disassembles 
the ARMv6 instructions correctly. The embedded assembler of the compiler supports 
all ARMv6 instructions. The inline assembler supports the majority of ARMv6 
instructions.

To compile code for ARMv6 use:

• --cpu 6 for generic ARMv6 support

To compile code for a specific ARMv6 processor, use the processor name. For example:

• --cpu ARM1136J-S to generate code targeted at the ARM1136J-S with software 
vector floating-point support

• --cpu ARM1136JF-S to generate code targeted at the ARM1136JF-S, that includes 
Vector Floating Point (VFP) hardware.

This section includes:

• Instruction generation

• Alignment support on page 1-13

• Endian support on page 1-13

• Example 1 - Sign/Zero extension on page 1-15

• Example 2 - Packed structures on page 1-15.

1.4.1 Instruction generation

When compiling code for ARMv6, the compiler generates sign-extend and zero-extend 
instructions (for example, SEXT8), where appropriate (see Example 1 - Sign/Zero 
extension on page 1-15). Code scheduling for the specified processor is performed.

In addition, the C libraries contain some functions that are optimized specifically for 
ARMv6, such as memcpy(), memove(), and strcmp().

The compiler does not make use of SIMD instructions, because these do not map well 
onto C expressions. The endian reversal instructions (REV, REV16 and REVSH) are 
generated by the compiler if it can deduce that a C expression performs an endian 
reversal.
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1.4.2 Alignment support

By default the compiler utilizes ARMv6 unaligned access support to speed up access to 
packed structures, by enabling an LDR (or STR) to load from (or store to) a non-word 
aligned address (see Example 2 - Packed structures on page 1-15). Structures remain 
non-packed unless explicitly qualified with __packed.

Note
 Code compiled for ARMv6 only runs correctly if you enable unaligned support on the 
ARM core. You must do this by setting the U bit (bit 22) of CP15 register 1 in your 
initialization code, or by tying the UBITINIT input to the core HIGH.

Code that uses the pre-ARMv6 unaligned accesses behavior can be generated by using 
the compiler option:

--no_unaligned_access

1.4.3 Endian support

The ARM compiler has options for producing either little-endian or big-endian objects. 
ARMv6 supports two different big-endian modes:

BE8 Specifies ARMv6 Byte Invariant Addressing mode. This produces 
little-endian code and big-endian data. This is the default Byte 
Addressing mode for ARMv6 big-endian images.

Byte Invariant Addressing mode is only available on ARM processors 
that support ARMv6.

BE32 This is legacy big-endian mode. It produces big-endian code and data. It 
is identical to the big-endian mode supported prior to ARMv6. This is the 
default Byte Addressing mode for all pre-ARMv6 big-endian images.

When compiling for ARMv6 big endian, the ARM compiler generates big-endian 
objects as BE8 rather than BE32. A flag, set in the object code, labels the code as BE8. 
Therefore, you must enable BE8 support in the ARM core by setting the E-bit in the 
CPSR.

You can link legacy objects (for example, ARMv4T) with ARMv6 objects (for running 
on ARMv6), but in this case the linker switches the byte order of the legacy object code 
into BE8 mode. The resulting image is BE8.

If you want to use the legacy BE32 mode, then you must set the B bit (bit 7) of CP15 
register 1 in your initialization code, or tie the BIGENDINIT input into the core HIGH.

You can then generate BE32-compatible code by using:
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--no_unaligned_access

BE32-compatible code must also be linked using the linker option --BE32. Otherwise, 
the ARMv6 attribute of the objects cause a BE8 image to be produced.
1-14 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G



Introduction 
1.4.4 Example 1 - Sign/Zero extension

This example shows the different instructions generated when compiling for ARMv6 
and earlier architectures.

signed char unpack(int i)
{
    return (signed char)i;
}

Pre-ARMv6 architecture compilations

Compiling with --cpu 5 gives:

unpack PROC
       LSL      r0,r0,#24
       ASR      r0,r0,#24
       BX       lr
       ENDP

ARMv6 architecture compilations

Compiling with --cpu 6 gives:

unpack PROC
       SXTB    r0,r0
       BX       lr
       ENDP

1.4.5 Example 2 - Packed structures

This example shows the different instructions generated for a packed structure when 
compiling for ARMv6 and earlier architectures.

__packed struct{
    char ch;
    short sh;
    int i;
} foo;

signed char unpack()
{
    return (signed char)foo.i;
}
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Pre-ARMv6 architecture compilations

Compiling with --cpu 5 gives:

unpack PROC
       LDR      r0,|L1.24|
       PUSH     {r4,lr}
       BL       __aeabi_uread4
       LSL      r0,r0,#24
       ASR      r0,r0,#24
       POP      {r4,pc}
|L1.24|
       DCD      ||.data$0|| + 3
       ENDP

ARMv6 architecture compilations

Compiling with --cpu 6 gives:

unpack PROC
        LDR      r0,|L1.16|
        LDR      r0,[r0,#3]
        SXTB     r0,r0
        BX       lr
|L1.16|
        DCD      ||.data$0||
        ENDP
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Chapter 2 
Embedded Software Development

This chapter describes how to develop embedded applications with RealView® 
Compilation Tools (RVCT), with or without a target system present. It contains the 
following sections:

• About embedded software development on page 2-2

• Default compilation tool behavior in the absence of a target system on page 2-4

• Tailoring the C library to your target hardware on page 2-11

• Tailoring the image memory map to your target hardware on page 2-14

• Reset and initialization on page 2-24

• Further memory map considerations on page 2-34.
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2.1 About embedded software development

Most embedded applications are initially developed in a prototype environment with 
resources that differ from those available in the final product. Therefore, it is important 
to consider the processes involved in moving an embedded application from one that 
relies on the facilities of the development or debugging environment to a system that 
runs standalone on target hardware.

When developing embedded software using RVCT, you must consider the following:

• How the C library uses hardware.

• Some C library functionality executes by using debug environment resources. If 
used, you must re-implement this functionality to make use of target hardware.

• RVCT has no inherent knowledge of the memory map of any given target. You 
must tailor the image memory map to the memory layout of the target hardware.

• An embedded application must perform some initialization before the main 
application can be run. A complete initialization sequence requires code that you 
implement as well as RVCT C library initialization routines.

2.1.1 Example code

To illustrate the topics covered in this chapter, associated example projects are provided. 
The code for the Dhrystone builds described in this chapter is in the main examples 
directory, in ...\emb_sw_dev. Each build is in a separate directory, and provides an 
example of the techniques discussed in successive sections of this chapter. Specific 
information regarding each build can be found in:

• Example code for Build 1 on page 2-10

• Example code for Build 2 on page 2-13

• Example code for Build 3 on page 2-22

• Example code for Build 4 on page 2-32

• Example code for Build 5 on page 2-40.

The Dhrystone benchmarking program provides the code base for the example projects. 
Dhrystone was chosen because it enables many of the concepts described in this chapter 
to be illustrated.

The example projects are tailored to run on the ARM® Integrator™ development 
platform. However, the principles illustrated by the examples apply to any target 
hardware.
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Note
 The focus of this chapter is not specifically the Dhrystone program, but the steps that 
must be taken to enable it to run on a fully standalone system. For further discussion of 
Dhrystone as a benchmarking tool, see Application Note 93 - Benchmarking with 
ARMulator®. You can find the ARM Application Notes in the Documentation area of 
the ARM website at http://www.arm.com.

Running the Dhrystone builds on an Integrator

To run the Dhrystone builds described in this chapter on an Integrator, you must:

• Perform ROM/RAM remapping. To achieve this, run the Boot Monitor by setting 
switches 1 and 4 to ON, and then reset the board.

• Set top_of_memory to 0x40000, or fit a DIMM memory module. If this is not done, 
the stack, with a default setting of 0x80000, might not be in valid memory.
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2.2 Default compilation tool behavior in the absence of a target system

When you start work on software for an embedded application, you might not be aware 
of the full technical specifications of the target hardware. For example, you might not 
know the details of target peripheral devices, the memory map, or even the processor 
itself.

To enable you to proceed with software development before such details are known, the 
compilation tools have a default behavior that enables you to start building and 
debugging application code immediately. It is useful to be aware of this default 
behavior, so that you appreciate the steps necessary to move from a default build to a 
fully standalone application.

This section includes:

• Semihosting on page 2-5

• C library structure on page 2-6

• Default memory map on page 2-7

• Linker placement rules on page 2-8

• Application startup on page 2-9

• Example code for Build 1 on page 2-10.
2-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G



Embedded Software Development 
2.2.1 Semihosting

In the ARM C Library, support for some ISO C functionality is provided by the host 
debugging environment. The mechanism that provides this functionality is known as 
semihosting.

Semihosting is implemented by a set of defined Supervisor Call (SVC) operations. 
When semihosting is executed, the debug agent identifies it and briefly suspends 
program execution. The semihosting operation is then serviced by the debug agent 
before code execution is resumed. Therefore, the task performed by the host itself is 
transparent to the program.

Figure 2-1 shows an example of semihosting operation that prints a string to the 
debugger console.

Figure 2-1 Example semihosting operation

Note
 For more information, see the chapter describing semihosting in RealView Compilation 
Tools v3.0 Compiler and Libraries Guide.
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2.2.2 C library structure

Conceptually, the C library can be divided into functions that are part of the ISO C 
Language specification and functions that provide support to the ISO C language 
specification. This is shown in Figure 2-2.

Figure 2-2 C library structure

Support for some ISO C functionality is provided by the host debugging environment 
at the device driver level.

For example, the RVCT C library implements the ISO C printf() family of functions 
by writing to the debugger console window. This functionality is provided by calling 
__sys_write(). This is a support function that executes a semihosting call, resulting in a 
string being written to the console.
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2.2.3 Default memory map

In an image where you have not described the memory map, the linker places code and 
data according to a default memory map, as shown in Figure 2-3.

Figure 2-3 Default memory map

The default memory map can be described as follows:

• The image is linked to load and run at address 0x8000. All RO (Read Only) 
sections are placed first, followed by RW (Read-Write) sections, then ZI (Zero 
Initialized) sections.

• The heap follows directly on from the top of the ZI section, so the exact location 
is decided at link time.

• The stack base location is provided by a semihosting operation during application 
startup. The value returned by this semihosting operation depends on the debug 
environment:

— RealView ARMulator ISS (RVISS) returns the value set in the 
configuration file peripherals.ami. The default is 0x08000000.

— Multi-ICE® and RealView ICE return the value of the debugger internal 
variable top_of_memory. The default is 0x00080000.
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2.2.4 Linker placement rules

The linker observes a set of rules, shown in Figure 2-4, to decide where in memory code 
and data is located.

Figure 2-4 Linker placement rules

The image is organized first of all by attribute, with RO at the lowest memory address, 
then RW, then ZI. Within each attribute code precedes the data.

From there, the linker places input sections alphabetically by name. Input section names 
correspond with assembler AREA directives.

In input sections, code and data from individual objects are placed according to the 
order of object files given on the linker command line.

ARM does not recommend relying on these rules for precise placement of code and 
data. Instead, you must use the scatter-loading mechanism for full control of placement 
of code and data. See Tailoring the image memory map to your target hardware on 
page 2-14.

Note
 See RealView Compilation Tools v3.0 Linker and Utilities Guide for more information 
on placement rules and scatter-loading.
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2.2.5 Application startup

In most embedded systems, an initialization sequence executes to set up the system 
before the main task is executed.

Figure 2-5 shows the default initialization sequence.

Figure 2-5 Default initialization sequence

At a high level, the initialization sequence can be divided into three functional blocks. 
__main branches directly to __scatterload. __scatterload is responsible for setting the 
runtime image memory map, whereas __rt_entry (runtime entry) is responsible for 
initializing the C library.

__scatterload carries out code and data copying, decompression of RW data if 
necessary, and zeroing of ZI data.

__scatterload branches to __rt_entry. This sets up the application stack and heap, 
initializes library functions and their static data, and calls any constructors of globally 
declared objects (C++ only).
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__rt_entry then branches to main(), the entry to your application. When the main 
application has finished executing, __rt_entry shuts down the library, then hands 
control back to the debugger.

The function label main() has a special significance. The presence of a main() function 
forces the linker to link in the initialization code in __main and __rt_entry. Without a 
function labeled main() the initialization sequence is not linked in, and as a result, some 
standard C library functionality is not supported.

2.2.6 Example code for Build 1

Build 1 is a default build of the Dhrystone benchmark. Therefore, it adheres to the 
default RVCT behavior described in this section. See Running the Dhrystone builds on 
an Integrator on page 2-3, and the example build files in the main examples directory, 
in ...\emb_sw_dev\build1.
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2.3 Tailoring the C library to your target hardware

By default the C library makes use of semihosting to provide device driver level 
functionality, enabling a host computer to act as an input and an output device. This is 
useful because development hardware often does not have all the input and output 
facilities of the final system.

This section includes:

• Retargeting the C library

• Avoiding C library semihosting on page 2-12

• Example code for Build 2 on page 2-13.

2.3.1 Retargeting the C library

You can provide your own implementation of C Library functions that make use of 
target hardware, and that are automatically linked in to your image in favor of the C 
library implementations. This process, known as retargeting the C library, is shown in 
Figure 2-6.

Figure 2-6 Retargeting the C library
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For example, you might have a peripheral I/O device such as a UART, and you might 
want to override the library implementation of fputc(), that writes to the debugger 
console, with one that outputs to the UART. Because this implementation of fputc() is 
linked in to the final image, the entire printf() family of functions prints out to the 
UART.

Example 2-1 shows an example implementation of fputc(). The example redirects the 
input character parameter of fputc() to a serial output function sendchar() that is 
assumed to be implemented in a separate source file. In this way, fputc() acts as an 
abstraction layer between target dependent output and the C library standard output 
functions.

Example 2-1 Implementation of fputc()

extern void sendchar(char *ch);

int fputc(int ch, FILE *f)
{   /* e.g. write a character to an UART */
    char tempch = ch;
    sendchar(&tempch);
    return ch;
}

2.3.2 Avoiding C library semihosting

In a standalone application, you are unlikely to support semihosting operations. 
Therefore, you must be certain that no C library semihosting functions are being linked 
into your application.

To ensure that no functions that use semihosting are linked in from the C library, you 
must import the symbol __use_no_semihosting. This can be done in any C or assembler 
source file in your project as follows:

• In a C module, use the #pragma directive:

#pragma import(__use_no_semihosting)

• In an assembler module, use the IMPORT directive:

IMPORT __use_no_semihosting

If functions that use semihosting are still being linked in, the linker reports an error.

To identify these functions, link using the --verbose option. In the resulting output, C 
library functions are tagged with __I_use_semihosting, for example:
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Loading member sys_exit.o from c_a__un.l.
              definition:  _sys_exit
              reference :  __I_use_semihosting

You must provide your own implementations of these functions (_sys_exit in this 
example).

Note
 The linker does not report any semihosting functions in your application code. An error 
only occurs if this type of function is linked in from the C library.

For a full list of C library functions that use semihosting, see the chapter describing 
semihosting in RealView Compilation Tools v3.0 Compiler and Libraries Guide.

2.3.3 Example code for Build 2

Build 2 of the Dhrystone benchmark uses the hardware of the Integrator platform for 
clocking and string I/O. See the example build files in the main examples directory, in 
...\emb_sw_dev\build2.

The following changes have been made to Build 1 of the example project:

C Library Retargeting 

A retargeted layer of ISO C functions has been added. These include 
standard I/O functions and clock functionality, as well as some additional 
error signaling and program exit.

Target Dependent Device Driver 

A device driver layer has been added that interacts directly with target 
hardware peripherals.

See Running the Dhrystone builds on an Integrator on page 2-3.

The symbol __use_no_semihosting is not imported into this project. This is because a 
semihosting call is executed during C library initialization to set up the application stack 
and heap location. Retargeting stack and heap setup is described in detail in Placing the 
stack and heap on page 2-19.

Note
 To see the output, a terminal or terminal emulator must be connected to serial port A. 
The serial port settings must be set to 38400 baud, no parity, 1 stop bit and no flow 
control. The terminal must be configured to append line feeds to incoming line ends, 
and echo typed characters locally.
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2.4 Tailoring the image memory map to your target hardware

In your final embedded system, without semihosting functionality, you are unlikely to 
use the default memory map. Your target hardware usually has several memory devices 
located at different address ranges. To make the best use of these devices, you must have 
separate views of memory at load and runtime.

This section includes:

• Scatter-loading

• Scatter-loading description file syntax on page 2-15

• Scatter-loading description file example on page 2-16

• Placing objects in a scatter-loading description file on page 2-17

• Root regions on page 2-18

• Placing the stack and heap on page 2-19

• Runtime memory models on page 2-20

• Example code for Build 3 on page 2-22.

2.4.1 Scatter-loading

Scatter-loading enables you to describe the load-time and runtime location of code and 
data in memory in a textual description file known as a scatter-loading description file. 
The file is passed to the linker on the command line using the --scatter option. For 
example:

armlink --scatter scat.txt file1.o file2.o

The scatter-loading description file describes to the linker the desired location of code 
and data at both load-time and runtime, in terms of addressed memory regions. 

Scatter-loading regions

Scatter-loading regions fall into two categories:

• Load Regions that contain application code and data at reset and load-time.

• Execution Regions that contain code and data while the application is executing. 
One or more execution regions are created from each load region during 
application startup.

All code and data in the image falls into exactly one load region and one execution 
region.

During startup, C library initialization code in __main carries out the copying and 
zeroing of code and data necessary to move from the image load view to the execute 
view.
2-14 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G



Embedded Software Development 
2.4.2 Scatter-loading description file syntax

The scatter-loading description file syntax reflects the functionality provided by 
scatter-loading itself. Figure 2-7 shows the file syntax.

Figure 2-7 Scatter-loading description file syntax

A region is defined by a header tag that contains, as a minimum, a name for the region 
and a start address. Optionally, a maximum length and various attributes can be added. 

The contents of the region depend on the type of region:

• Load regions must contain at least one execution region. In practice, there are 
usually several execution regions for each load region.

• Execution regions must contain at least one code or data section, unless a region 
is declared with the EMPTY attribute (see Using the scatter file EMPTY attribute on 
page 2-38). Non-EMPTY regions usually contain source or library object files. The 
wildcard (*) syntax can be used to group all sections of a given attribute not 
specified elsewhere in the scatter-loading description file.

Note
 For a more detailed description of scatter-loading description file syntax, see RealView 
Compilation Tools v3.0 Linker and Utilities Guide.

�@35:A)�B��������������������
C
�����������
��(�������
D

�
����(������� 
�
���
����



�	����
�������&
	
�
�����
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-15



Embedded Software Development 
2.4.3 Scatter-loading description file example

Figure 2-8 shows a simple example of scatter-loading.

Figure 2-8 Simple scatter-loading example

This example has one load region containing all code and data, starting at address 
0x0000. From this load region two execution regions are created. One contains all RO 
code and data that executes at the same address where it is loaded. The other is at 
address 0x10000, and contains all RW and ZI data.

Example 2-2 shows the description file that describes the memory map given in 
Figure 2-8.

Example 2-2 Simple scatter-loading description file

ROM_LOAD 0x0000 0x4000
{ 
     ROM_EXEC 0x0000 0x4000; Root region
     { 
          * (+RO); All code and constant data
     }
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     RAM 0x10000 0x8000
     {
          * (+RW, +ZI); All non-constant data
     }
}

2.4.4 Placing objects in a scatter-loading description file

For most images, you control the placement of specific code and data sections, rather 
than grouping all attributes together as in Example 2-2 on page 2-16. You can do this by 
specifying individual objects directly in the description file, instead of relying only on 
the wildcard syntax.

Note
 The ordering of objects in a description file execution region does not affect how they 
are ordered in the output image. The linker placement rules described in Linker 
placement rules on page 2-8 apply to each execution region.

To override the standard linker placement rules, you can use the +FIRST and +LAST 
scatter-loading directives. Example 2-3 shows a scatter-loading description file that 
places the vector table at the beginning of an execution region. In this example, the area 
Vect in vectors.o is placed at address 0x0000.

Example 2-3 Placing a section

ROM_LOAD 0x0000 0x4000
{
  ROM_EXEC 0x0000 0x4000
  { 
    vectors.o (Vect, +FIRST)
    * (+RO)
  }
  ; more exec regions...
}

See RealView Compilation Tools v3.0 Linker and Utilities Guide for further information 
on placing objects in scatter-loading description files.
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2.4.5 Root regions

A root region is an execution region with a load address that is the same as its execution 
address. Each scatter-loading description file must have at least one root region.

One restriction placed on scatter-loading is that the code and data responsible for 
creating execution regions, for example, copying and zeroing code and data, cannot 
itself be copied to another location. As a result, the following sections must be included 
in a root region:

• __main.o and __scatter*.o containing the code that copies code and data

• __dc*.o that performs decompression

• Region$$Table section containing the addresses of the code and data to be copied 
or decompressed.

However, these can be described using InRoot$$Sections.

Because these sections are defined as read-only, they are grouped by the * (+RO) 
wildcard syntax. As a result, if * (+RO) is specified in a non-root region, these sections 
must be explicitly declared in a root region. This is shown in Example 2-4.

Example 2-4 Specifying a root region

ROM_LOAD 0x0000 0x4000
{
  ROM_EXEC 0x0000 0x4000      ; root region
  {
    vectors.o (Vect, +FIRST)  ; Vector table
    * (InRoot$$Sections)      ; All library sections that must be in a
                              ; root region, for example, __main.o,
                              ; __scatter*.o, __dc*.o, and * Region$$Table
  }
  RAM 0x10000 0x8000
  {
    * (+RO, +RW, +ZI)         ; all other sections
  }
}

Failing to include __main.o, __scatter.o, __dc*.o and Region$$Table in a root region 
results in the linker generating an error message such as:

Error: L6202E: Section Region$$Table cannot be assigned to a non-root region.
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2.4.6 Placing the stack and heap

Scatter-loading provides a method for specifying the placement of code and statically 
allocated data in your image. This section covers how to place the application stack and 
heap.

The application stack and heap are set up during C library initialization. You can tailor 
stack and heap placement by re-implementing the routine responsible for stack and heap 
setup. In the ARM C library, this routine is __user_initial_stackheap().

Figure 2-9 shows the C library initialization process with a re-implemented 
__user_initial_stackheap().

Figure 2-9 Retargeting __user_initial_stackheap()

__user_initial_stackheap() can be coded in C or ARM assembler. It must return the 
following parameters:

• heap base in r0

• stack base in r1

• heap limit in r2, if required

• r3 (not used).
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You must re-implement __user_initial_stackheap() if you are scatter-loading your 
image. Otherwise, the linker generates the following error: 

Error: L6218E: Undefined symbol Image$$ZI$$Limit (referred from sys_stackheap.o)

2.4.7 Runtime memory models

Two runtime memory models are provided:

• One-region model, the default

• Two-region model on page 2-21.

In both runtime memory models, the stack grows unchecked.

Note
 Both these examples are suitable for the Integrator system.

One-region model

In the default, one-region model, the application stack and heap grow towards each 
other in the same region of memory. In this case, the heap is checked against the value 
of the stack pointer when new heap space is allocated (for example, when malloc() is 
called).

Figure 2-10 on page 2-21 and Example 2-5 on page 2-21 show an example of 
__user_initial_stackheap() implementing a simple one-region model, where the stack 
grows downwards from address 0x40000, and the heap grows upwards from 0x20000.

The routine loads the appropriate values into the registers r0 and r1, and then returns. 
Register r2 remains unchanged, because a heap limit is not used in a one-region model. 
Register r3 is not used.
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Figure 2-10 One-region model

Example 2-5 One-region model routine

    EXPORT __user_initial_stackheap

__user_initial_stackheap
    LDR r0, =0x20000 ;HB
    LDR r1, =0x40000 ;SB
    ; r2 not used (HL)
    ; r3 not used
    MOV pc, lr

Two-region model

Your system design might require the stack and heap to be placed in separate regions of 
memory.

For example, you might have a small block of fast RAM that you want to reserve for 
stack use only. To inform the linker that you want to use a two-region model, you must 
import the symbol __use_two_region_memory using the assembler IMPORT directive. The 
heap is then checked against a dedicated heap limit, that is set up by 
__user_initial_stackheap().

Figure 2-11 on page 2-22 and Example 2-6 on page 2-22 show an example of 
implementing a two-region model.

In this example, the heap grows upwards from 0x28000000 to 0x28080000, and the stack 
grow downwards from 0x40000.
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Figure 2-11 Two-region model

Example 2-6 Two-region model routine

    IMPORT __use_two_region_memory
    EXPORT __user_initial_stackheap

__user_initial_stackheap
    LDR r0, =0x28000000 ;HB
    LDR r1, =0x40000 ;SB
    LDR r2, =0x28080000 ;HL

; r3 not used
    MOV pc, lr

2.4.8 Example code for Build 3

Build 3 of the example implements scatter-loading and contains a re-implemented 
__user_initial_stackheap(). See the example build files in the main examples 
directory, in ...\emb_sw_dev\build3.

The following modifications have been made to Build 2 of the example project:

Scatter-loading 

A simple scatter-loading description file is passed to the linker.

Retargeted __user_initial_stackheap() 

You have the option of selecting either a one-region or a two-region 
implementation. The default build uses one region. You can select the 
two-region implementation by defining TWO_REGION_MODEL when 
assembling. 

9:%; ����������

����������

�7%�8 ��������<

9<

9-
2-22 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G



Embedded Software Development 
Avoiding C library Semihosting 

The symbol __use_no_semihosting is imported into Build 3, because there 
are no longer any C library semihosting functions present in the image.

Note
 To avoid using semihosting for clock(), this is retargeted to read the Real 

Time Clock (RTC) on the Integrator AP. This has a resolution of one 
second, so the results from Dhrystone are not precise. This mechanism is 
improved in Build 4 (see Example code for Build 4 on page 2-32).

To run this build on an Integrator AP, you must perform ROM/RAM remapping. To do 
this, set switches 1 and 4 to ON to run the Boot Monitor.

See Running the Dhrystone builds on an Integrator on page 2-3.

Note
 You must disable all Vector Catch and semihosting if you are using an ARM7 
core-based target. Otherwise the debugger interprets the execution of instructions 
between address 0x0 and 0x1C as exceptions, and reports this in a dialog box. See your 
debugger documentation for details of how to disable Vector Catch and semihosting.
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2.5 Reset and initialization

This chapter has so far assumed that execution begins at __main, the entry point to the C 
library initialization routine. In fact, any embedded application on your target hardware 
performs some system-level initialization at startup. This section describes this in more 
detail, and includes:

• Initialization sequence on page 2-25

• The vector table on page 2-26

• ROM/RAM remapping on page 2-27

• Local memory setup considerations on page 2-29

• Scatter-loading and memory setup on page 2-29

• Stack pointer initialization on page 2-30

• Hardware initialization on page 2-31

• Execution mode considerations on page 2-32

• Example code for Build 4 on page 2-32.
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2.5.1 Initialization sequence

Figure 2-12 shows a possible initialization sequence for an embedded system based on 
an ARM architecture.

Figure 2-12 Initialization sequence

The reset handler executes immediately on system startup. The block of code labeled 
$Sub$$main() executes immediately before entering the main application.

The reset handler is a short module coded in assembler that is executed on system reset. 
As a minimum, your reset handler initializes stack pointers for the modes that your 
application is running in. For cores with local memory systems, such as caches, Tightly 
Coupled Memories (TCMs), Memory Management Units (MMUs), and Memory 
Protection Units (MPUs), some configuration must be done at this stage in the 
initialization process. After executing, the reset handler typically branches to __main to 
begin the C library initialization sequence.

There are some components of system initialization, for example, the enabling of 
interrupts, that are generally performed after the C library initialization code has 
finished executing. The block of code labeled $Sub$$main() performs these tasks 
immediately before the main application begins executing.
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See The vector table for a more detailed description of the various components of the 
initialization sequence.

2.5.2 The vector table

All ARM systems have a vector table. The vector table does not form part of the 
initialization sequence, but it must be present for any exception to be serviced.

The code in Example 2-7 imports the various exception handlers that might be coded in 
other modules. The vector table is a list of branch instructions to the exception handlers.

The FIQ handler is placed at address 0x1C directly. This avoids having to execute a 
branch to the FIQ handler, so optimizing FIQ response time.

Example 2-7 The vector table code

        PRESERVE8

    AREA Vectors, CODE, READONLY
    IMPORT Reset_Handler
; import other exception handlers
    ; ...
    ENTRY
    B   Reset_Handler
    B   Undefined_Handler
    B   SVC_Handler
    B   Prefetch_Handler
    B   Abort_Handler
    NOP                 ; Reserved vector
    B   IRQ_Handler
    B   FIQ_Handler
        END

Note
 The vector table is marked with the label ENTRY. This label informs the linker that this 
code is a possible entry point, and so cannot be removed from the image at link time. 
You must select one of the possible image entry points as the true entry point to your 
application using the --entry linker option. See RealView Compilation Tools v3.0 
Linker and Utilities Guide for more information.
2-26 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G



Embedded Software Development 
2.5.3 ROM/RAM remapping

You must consider what sort of memory your system has at address 0x0000, the address 
of the first instruction executed.

Note
 This section assumes that the ARM core begins fetching instructions at 0x0000. This is 
the norm for systems based on ARM cores. However, some ARM cores can be 
configured to begin fetching instructions from 0xFFFF0000.

There has to be a valid instruction at 0x0000 at startup, so you must have non-volatile 
memory located at 0x0000 at the moment of reset.

One way to achieve this is to have ROM located at 0x0000. However, there are some 
drawbacks to this configuration. Access speeds to ROM are generally slower than to 
RAM, and your system might suffer if there is too great a performance penalty when 
branching to exception handlers. Also, locating the vector table in ROM does not enable 
you to modify it at runtime.

Another solution is shown in Figure 2-13. ROM is located at address 0x10000, but this 
memory is aliased to zero by the memory controller at reset. Following reset, code in 
the reset handler branches to the real address of ROM. The memory controller then 
removes the aliased ROM, so that RAM is shown at address 0x0000. In __main, the vector 
table is copied into RAM at 0x0000, so that exceptions can be serviced.

Figure 2-13 ROM/RAM remapping
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Example 2-8 shows how you might implement ROM/RAM remapping in an ARM 
assembler module. The constants shown here are specific to the Integrator platform, but 
the same method is applicable to any platform that implements ROM/RAM remapping 
in a similar way.

Example 2-8 ROM/RAM remapping

; --- Integrator CM control reg
CM_ctl_reg     EQU  0x1000000C     ; Address of CM Control Register
Remap_bit      EQU  0x04           ; Bit 2 is remap bit of CM_ctl

    ENTRY

; Code execution starts here on reset
; On reset, an alias of ROM is at 0x0, so jump to 'real' ROM.
        LDR     pc, =Instruct_2

Instruct_2 
; Remap by setting Remap bit of the CM_ctl register
        LDR     r1, =CM_ctl_reg
        LDR     r0, [r1]
        ORR     r0, r0, #Remap_bit
        STR     r0, [r1]

; RAM is now at 0x0.
; The exception vectors must be copied from ROM to RAM (in __main)

; Reset_Handler follows on from here

The first instruction is a jump from aliased ROM to real ROM. This can be done because 
the label Instruct_2 is located at the real ROM address.

After this step, the alias of ROM is removed by inverting the remap bit of the Integrator 
Core Module control register.

This code is normally executed immediately after system reset. Remapping must be 
completed before C library initialization code can be executed.

Note
 In systems with MMUs, remapping can be implemented through MMU configuration 
at system startup.
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2.5.4 Local memory setup considerations

Many ARM cores have on-chip memory systems, such as MMUs or MPUs. These 
devices are normally set up and enabled during system startup. Therefore, the 
initialization sequence of cores with local memory systems requires special 
consideration.

As described in this chapter, C library initialization code in __main is responsible for 
setting up the execution time memory map of the image. Therefore, the runtime 
memory view of the processor core must be set up before branching to __main. This 
means that any MMU or MPU must be set up and enabled in the reset handler.

TCMs must also be enabled before branching to __main (normally before MMU/MPU 
setup), because you generally want to scatter-load code and data into TCMs. You must 
be careful that you do not have to access memory that is masked by the TCMs when 
they are enabled.

You also risk problems with cache coherency if caches are enabled before branching to 
__main. Code in __main copies code regions from their load address to their execution 
address, essentially treating instructions as data. As a result, some instructions can be 
cached in the data cache, in which case they are not visible to the instruction path. 

To avoid these coherency problems, enable caches after the C library initialization 
sequence finishes executing.

2.5.5 Scatter-loading and memory setup

In a system where the reset-time memory view of the core is altered, either through 
ROM/RAM remapping or MMU configuration, the scatter-loading description file must 
describe the image memory map after remapping has taken place.

The description file in Example 2-9 relates to the example in ROM/RAM remapping on 
page 2-27 after remapping.

Example 2-9

ROM_LOAD 0x10000 0x8000
{ 
     ROM_EXEC 0x10000 0x8000 
     {
          reset_handler.o (+RO, +FIRST)   ; executed on hard reset
          ...
     }

     RAM 0x0000 0x4000
     {
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          vectors.o (+RO, +FIRST)          ; vector table copied
                                           ; from ROM to RAM at zero
          ...
     }
}

The load region ROM_LOAD is placed at 0x10000, because this indicates the load address of 
code and data after remapping has occurred.

2.5.6 Stack pointer initialization

As a minimum, your reset handler must assign initial values to the stack pointers of any 
execution modes that are used by your application.

In Example 2-10, the stacks are located at stack_base. This symbol can be a hard-coded 
address, or it can be defined in a separate assembler source file and located by a 
scatter-loading description file. Details of how this is done are given in Placing the stack 
and heap in the scatter-loading description file on page 2-35.

Example 2-10 Initializing stack pointers

; --- Amount of memory (in bytes) allocated for stacks
Len_FIQ_Stack    EQU     256
Len_IRQ_Stack    EQU     256
...
Offset_FIQ_Stack         EQU     0
Offset_IRQ_Stack         EQU     Offset_FIQ_Stack + Len_FIQ_Stack
...
Reset_Handler

; stack_base could be defined above, or located in a description file
        LDR     r0, stack_base ; 

; Enter each mode in turn and set up the stack pointer
        MSR     CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit 
        SUB     sp, r0, #Offset_FIQ_Stack

        MSR     CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit 
        SUB     sp, r0, #Offset_IRQ_Stack
        ...

Example 2-10 allocates 256 bytes of stack for FIQ and IRQ mode, but you can do the 
same for any other execution mode. To set up the stack pointers, enter each mode 
(interrupts disabled) and assign the appropriate value to the stack pointer.
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The stack pointer value set up in the reset handler is automatically passed as a parameter 
to __user_initial_stackheap() by C library initialization code. Therefore, this value 
must not be modified by __user_initial_stackheap(). 

Example 2-11 shows an implementation of __user_initial_stackheap() that you can 
use with the stack pointer setup shown in Example 2-10 on page 2-30.

Example 2-11

    IMPORT heap_base
    EXPORT __user_initial_stackheap

__user_initial_stackheap

; heap base could be hard-coded, or placed by description file
    LDR   r0,=heap_base  
    ; r1 contains SB value
    BX   lr

2.5.7 Hardware initialization

In general, it is beneficial to separate all system initialization code from the main 
application. However, some components of system initialization, for example, enabling 
of caches and interrupts, must occur after executing C library initialization code.

You can make use of the $Sub and $Super function wrapper symbols to (effectively) 
insert a routine that is executed immediately before entering the main application. This 
mechanism enables you to extend functions without altering the source code.

Example 2-12 on page 2-32 shows how $Sub and $Super can be used in this way. The 
linker replaces the function call to main() with a call to $Sub$$main(). From there you 
can call a routine that enables caches and another to enable interrupts.

The code branches to the real main() by calling $Super$$main(). 

Note
 For more information on $Sub and $Super, see RealView Compilation Tools v3.0 Linker 
and Utilities Guide.
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Example 2-12 Use of $Sub and $Super

extern void $Super$$main(void);

void $Sub$$main(void)
{
    cache_enable();    // enables caches
    int_enable();      // enables interrupts 
    $Super$$main();    // calls original main()
}

2.5.8 Execution mode considerations

You must consider in what mode the main application is to run. Your choice affects how 
you implement system initialization. 

Much of the functionality that you are likely to implement at startup, both in the reset 
handler and $Sub$$main, can only be done while executing in privileged modes, for 
example, on-chip memory manipulation, and enabling interrupts. 

If you want to run your application in a privileged mode (for example, Supervisor), this 
is not an issue. Ensure that you change to the appropriate mode before exiting your reset 
handler. 

If you want to run your application in User mode, however, you can only change to User 
mode after completing the necessary tasks in a privileged mode. The most likely place 
to do this is in $Sub$$main().

Note
 __user_initial_stackheap() must set up the application mode stack. Because of this, 
you must exit your reset handler in system mode, which uses the User mode registers. 
__user_initial_stackheap() then executes in system mode, and so the application stack 
and heap are still set up when User mode is entered. 

2.5.9 Example code for Build 4

Build 4 of the example can be run standalone on the Integrator platform. See the 
example build files in the main examples directory, in ...\emb_sw_dev\build4.
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The following modifications have been made to Build 3 of the example project:

Vector table 

A vector table has been added to the project, and placed by the 
scatter-loading description file.

Reset handler 

The reset handler is added in init.s. Two separate modules, responsible 
for TCM and MMU setup respectively, are included in the 
ARM926EJ-S™ build. These are excluded from the ARM7TDMI® build, 
which runs on Integrator systems with any core. ROM/RAM remapping 
occurs immediately after reset.

$Sub$$main() 

For the ARM926EJ-S build, Caches are enabled in $Sub$$main() before 
entering the main application. 

Embedded description file 

An embedded description file is used, that reflects the memory view after 
remapping.

The build files for both of these builds produce a binary file suitable for downloading 
into the Integrator AP application Flash at address 0x24000000.

A precise timer is implemented using a timer on the Integrator AP motherboard. This 
generates an IRQ, and a handler is installed that increments a counter every 
one-hundredth of a second (0.01 sec).
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2.6 Further memory map considerations

The previous sections in this chapter describe the placement of code and data in a 
scatter-loading description file. However, the location of target hardware peripherals 
and the stack and heap limits are assumed to be hard-coded in source or header files. It 
would be beneficial to locate all information pertaining to the memory map of a target 
in your description file, so removing all references to absolute addresses from your 
source code.

This section includes:

• Locating target peripherals in the scatter-loading description file

• Placing the stack and heap in the scatter-loading description file on page 2-35

• Example code for Build 5 on page 2-40.

2.6.1 Locating target peripherals in the scatter-loading description file

Conventionally, addresses of peripheral registers are hard-coded in project source or 
header files. You can also declare structures that map on to peripheral registers, and 
place these structures in the description file.

For example, a target might have a timer peripheral with two memory mapped 32-bit 
registers. Example 2-13 shows a C structure that maps to these registers.

Example 2-13 Mapping to a peripheral register

__attribute__ ((zero_init)) struct {
    volatile unsigned ctrl;           /* timer control */
    volatile unsigned tmr;            /* timer value   */
} timer_regs;

To place this structure at a specific address in the memory map, create a new execution 
region to hold the structure.

The description file shown in Example 2-14 on page 2-35 locates the timer_regs 
structure at 0x40000000.

It is important that the contents of these registers are not initialized to zero during 
application startup, because this is likely to change the state of your system. Marking 
an execution region with the UNINIT attribute prevents ZI data in that region from being 
zero initialized.
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Example 2-14 Placing the mapped structure

ROM_LOAD 0x24000000 0x04000000
{
    ; ...
    TIMER 0x40000000 UNINIT
    {
        timer_regs.o (+ZI)
    }
    ; ...
}

2.6.2 Placing the stack and heap in the scatter-loading description file

In many cases, it is preferable to specify the location of the stack and heap in the 
description file. This has two main advantages:

• all information about the memory map is kept in one file

• changes to the stack and heap only require relinking, not recompiling.

This section describes methods for implementing this:

• Placing symbols explicitly (the simplest method)

• Utilizing linker generated symbols on page 2-37

• Using the scatter file EMPTY attribute on page 2-38.

Placing symbols explicitly

Stack pointer initialization on page 2-30 refers to the symbols stack_base and heap_base 
as reference symbols that can be placed in a description file. To do this, create symbols 
labeled stack_base and heap_base in an assembler module called stackheap.s. The same 
can be done for the stack and heap limits in a two-region memory model.

You can locate each of the symbols within their own execution region in the description 
file, as shown in Example 2-15.

Example 2-15 Placing symbols explicitly in stackheap.s

        AREA   stacks, DATA, NOINIT
        EXPORT stack_base

stack_base        SPACE   1

        AREA   heap, DATA, NOINIT
        EXPORT heap_base
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heap_base         SPACE   1

    END

Figure 2-14 and Example 2-16 show how you can place the heap base at 0x20000 and 
the stack base at 0x40000. The stack and heap base locations can be altered by editing 
the addresses of the respective execution regions.

The disadvantage of this approach is that one word of SPACE (stack_base) is occupied 
above the stack region.

Figure 2-14 Placing symbols explicitly

Example 2-16 Placing symbols explicitly in a scatter file

LOAD_FLASH 0x24000000 0x04000000
{
    ; ...
    HEAP 0x20000 UNINIT
    {
        stackheap.o (heap)
    }

    STACKS 0x40000 UNINIT
    {
        stackheap.o (stacks)
    }
    ; ...
}
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Utilizing linker generated symbols

This method requires that the stack and heap sizes are specified in an object file.

First, define areas of an appropriate size for the stack and heap in an assembler source 
file, for example, stackheap.s, as shown in Example 2-17.

Use the SPACE directive to reserve a zeroed block of memory. Set the NOINIT area 
attribute to prevent this zeroing.

During development, you might choose to zero-initialize the stack so that the maximum 
stack usage can be seen. Labels are not required in this source file.

Example 2-17 Placing sections for stack and heap

        AREA stack, DATA, NOINIT
    SPACE   0x3000 ; Reserve stack space

        AREA heap, DATA, NOINIT
    SPACE   0x3000 ; Reserve heap space

        END

You can then place these sections in their own execution region in the scatter-loading 
description file, as shown in Example 2-18.

Example 2-18 Placing sections for stack and heap

LOAD_FLASH 0x24000000 0x04000000
{
    :
    STACKS 0x1000 UNINIT     ; length = 0x3000
    {
        stackheap.o (stack)  ; stack = 0x4000 to 0x1000
    }

    HEAP 0x15000 UNINIT      ; length = 0x3000
    {
        stackheap.o (heap)   ; heap = 0x15000 to 0x18000
    }
}
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The linker generates symbols that point to the base and limit of each execution region, 
that can be imported into the retargeting code to be used by 
__user_initial_stackheap():

Image$$STACKS$$ZI$$Limit = 0x4000
Image$$STACKS$$ZI$$Base  = 0x1000
Image$$HEAP$$ZI$$Base   = 0x15000
Image$$HEAP$$ZI$$Limit  = 0x18000

You can make this code more readable by using the DCD directive to give these values 
more meaningful names, as shown in Example 2-19. 

Example 2-19 Using the DCD directive

        IMPORT          ||Image$$STACKS$$ZI$$Base||
        IMPORT          ||Image$$STACKS$$ZI$$Limit||
        IMPORT          ||Image$$HEAP$$ZI$$Base||
        IMPORT          ||Image$$HEAP$$ZI$$Limit||

    stack_base  DCD     ||Image$$STACKS$$ZI$$Limit||      ; = 0x4000
    stack_limit DCD     ||Image$$STACKS$$ZI$$Base||       ; = 0x1000

    heap_base   DCD     ||Image$$HEAP$$ZI$$Base||         ; = 0x15000
    heap_limit  DCD     ||Image$$HEAP$$ZI$$Limit||        ; = 0x18000

You can use these examples to place the heap base at 0x15000 and the stack base at 
0x1000. You can then change the stack and heap base locations easily by editing the 
addresses of the respective execution regions.

Using the scatter file EMPTY attribute

This method uses the scatter file EMPTY attribute of the linker. This enables regions to be 
defined that contain no object code or data. This is a convenient method of defining a 
stack or heap. The length of the region is specified after the EMPTY attribute. In the case 
of a heap, that grows upwards in memory, the region length is positive. In the case of a 
stack, the region length is marked as negative, to indicate that it grows downwards in 
memory. Example 2-20 on page 2-39 shows how to use the EMPTY attribute.

The benefit of this approach is that the size and position of the stack and heap is defined 
in one place, that is, in the scatter-loading description file. You do not have to create a 
stackheap.s file.
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Example 2-20 Placing stack and heap regions using EMPTY

ROM_LOAD 0x24000000 0x04000000
{
    ...
    HEAP 0x30000 EMPTY 0x3000
    {
    }

    STACKS 0x40000 EMPTY -0x3000
    {
    }
    ...
}

At link time, the linker generates symbols to represent these EMPTY regions:

Image$$HEAP$$ZI$$Base      = 0x30000
Image$$HEAP$$ZI$$Limit     = 0x33000
Image$$STACKS$$ZI$$Base    = 0x3D000
Image$$STACKS$$ZI$$Limit   = 0x40000

Your application code can then process these symbols as shown in Example 2-21.

Example 2-21 Linker generated symbols representing EMPTY regions

                IMPORT      ||Image$$HEAP$$ZI$$Base||
                IMPORT      ||Image$$HEAP$$ZI$$Limit||

heap_base       DCD         ||Image$$HEAP$$ZI$$Base||
heap_limit      DCD         ||Image$$HEAP$$ZI$$Limit||

                IMPORT      ||Image$$STACKS$$ZI$$Base||
                IMPORT      ||Image$$STACKS$$ZI$$Limit||

stack_base      DCD         ||Image$$STACKS$$ZI$$Limit||
stack_limit     DCD         ||Image$$STACKS$$ZI$$Base||
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2.6.3 Example code for Build 5

Build 5 of the example is equivalent to Build 4, but with all target memory map 
information located in the scatter-loading description file as described in Placing 
symbols explicitly on page 2-35:

Scatter-loading description file symbols 

Symbols to locate the stack, heap, and peripherals are declared in 
assembler modules.

Updated Scatter-loading description file 

The embedded description file from Build 4 is updated to locate the stack, 
heap, data TCM, and peripherals.

See the example build files in the main examples directory, in ...\emb_sw_dev\build5.

The stack and heap are located using linker symbols, see Utilizing linker generated 
symbols on page 2-37.
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Chapter 3 
Writing Position Independent Code and Data

This chapter describes how to write position independent code and data that makes use 
of the Procedure Call Standard for the ARM Architecture (AAPCS). It contains the 
following sections: 

• Position independence on page 3-2

• Read-only position independence on page 3-3

• Read-write position independence on page 3-6.
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3.1 Position independence

Both the ARM® and Thumb® instruction sets support position-independent, or 
relocatable, code through the use of PC-relative instructions (for example BL).

Note
 This is not the same as Relocatable ELF (an image type created by the linker).

You can write assembler code that is relocatable but it must not contain any address 
constants. Any literal addresses used to refer to code must be PC-relative offsets. The 
PC is added, using an ADD instruction, before the address is accessed.

Both code and data can be position-independent:

• To enable code to execute at different addresses, it must be position-independent 
or relocatable. However, it can only access a single set of static data at a fixed 
address.

• Position-independent data requires all data accesses to occur relative to the static 
base register sb. This is used to implement a shared library mechanism.

RVCT supports position-independent code and data for C and assembler (but not C++), 
and enables you to write code that is relocatable or reentrant. The rest of this chapter 
contains information about how to do this.

For more information, see the following in RealView Compilation Tools v3.0 Compiler 
and Libraries Guide:

• the section about position independence qualifiers in the chapter describing how 
to use the compiler

• the section about writing reentrant and thread-safe code in the chapter describing 
the C and C++ libraries.

3.1.1 Using the AAPCS

The Procedure Call Standard for the ARM Architecture (AAPCS) forms part of the 
Application Binary Interface (ABI) for the ARM Architecture (base standard) [BSABI] 
specification. By writing code that adheres to the AAPCS, you can ensure that 
separately compiled and assembled modules can work together.

For more information, see the AAPCS specification in 
install_directory\Documentation\....
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3.2 Read-only position independence

A program is Read-Only Position-Independent (ROPI) if all its read-only segments are 
position independent.

An ROPI segment is often Position-Independent Code (PIC), but could be read-only 
data, or a combination of PIC and read-only data.

Note
 ROPI does not form part of the AAPCS, because it is not supported for C++. However, 
you can compile your C code or assembler code for ROPI by using the compiler or 
assembler option --apcs /ropi.

Select the ROPI option to avoid committing yourself to loading your code in a particular 
location in memory. This is particularly useful for routines that are:

• loaded in response to runtime events

• loaded into memory with different combinations of other routines in different 
circumstances

• mapped at different addresses during their execution.

This section includes:

• Register usage with ROPI

• Writing C and assembler code for ROPI on page 3-4

• Linking your code on page 3-4

• FPIC addressing on page 3-4

• Code example on page 3-4.

3.2.1 Register usage with ROPI

As defined by the AAPCS, register use is the same with or without ROPI.

For more information, see the Procedure Call Standard for the ARM Architecture 
specification, aapcs.pdf, in install_directory\Documentation\Specifications\...
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3.2.2 Writing C and assembler code for ROPI

When you are writing C and assembler code for ROPI:

• Every reference from code in an ROPI segment to a symbol in the same ROPI 
segment must be PC-relative. AAPCS does not define any other base register for 
a read-only segment. An address of an item in an ROPI segment cannot be 
assigned to an item in a different ROPI segment.

• Every reference from code in an ROPI segment to a symbol in a different ROPI 
segment must be PC-relative. The two segments must be fixed relative to each 
other.

• Every other reference from an ROPI segment must be to either:

— an absolute address

— an sb-relative reference to writable data (see Read-write position 
independence on page 3-6).

• A read-write word that addresses a symbol in an ROPI segment must be adjusted 
whenever the ROPI segment is moved.

3.2.3 Linking your code

Use the linker command-line option --ropi to make the load and execution region 
containing the read-only output section position-independent. Usually each read-only 
input section must be read-only position-independent. See RealView Compilation Tools 
v3.0 Linker and Utilities Guide for details.

3.2.4 FPIC addressing

Use the /fpic qualifier to generate read-only position-independent code where relative 
address references are independent of the location where your program is loaded. 
Relative addressing is only implemented when your code makes use of System V shared 
libraries. If your code uses shared objects, you do not have to compile with /fpic.

For information on System V shared library support in RVCT, see RealView 
Compilation Tools v3.0 Linker and Utilities Guide.

3.2.5 Code example

For details of writing position-independent code, see the PIC-PID example provided 
with RealView Development Suite in the main examples directory, that is in 
install_directory\RVDS\Examples\picpid.
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This example consists of a kernel at a fixed address in ROM, together with a collection 
of application modules that extend kernel functionality. Application modules are loaded 
into memory following the kernel. However, the address where a module might be 
loaded is unknown when the module is linked. Therefore, modules must be 
position-independent (ROPI, PIC).

The example includes source code, a make file, batch files, and a detailed description of 
how to compile and link the different modules (see readme.txt).
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3.3 Read-write position independence

A program is Read-Write Position-Independent (RWPI) if all its read-write segments 
are position independent.

An RWPI segment is usually Position-Independent Data (PID).

RWPI is an AAPCS variant. Use the compiler or assembler option --apcs /rwpi to avoid 
committing yourself to a particular location of data in memory. This is particularly 
useful for data that must be multiply instantiated for reentrant routines.

For more information, see the Procedure Call Standard for the ARM Architecture 
specification, aapcs.pdf, in install_directory\Documentation\Specifications\...

This section includes:

• Reentrant routines

• Register usage with RWPI

• Position-independent data addressing on page 3-7

• Writing assembly language for RWPI on page 3-7

• Linking your code on page 3-7

• Code example on page 3-7.

3.3.1 Reentrant routines

A reentrant routine can be threaded by several processes at the same time. Each process 
has its own copy of the read-write segments of the routine. Each copy is addressed by a 
different value of the static base register (sb).

3.3.2 Register usage with RWPI

Register r9 is the static base register, sb. It must point to the base address of the 
appropriate static data segments whenever you call any externally visible routine.

You can use r9 for other purposes in a routine that does not use sb. If you do this you 
must save the contents of sb on entry to your routine and restore these before exit. You 
must also restore the contents before any call to an external routine.

In all other respects the usage of registers is the same with or without RWPI.
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3.3.3 Position-independent data addressing

An RWPI segment can be repositioned until it is first used. The address of a symbol in 
an RWPI segment is calculated as follows:

1. The linker calculates a read-only offset from a fixed location in the segment. By 
convention, the fixed location is the first byte of the lowest addressed RWPI 
segment of the program.

2. At runtime, this is used as an offset added to the contents of the static base register, 
sb.

3.3.4 Writing assembly language for RWPI

Construct references from a read-only segment to the RWPI segment by adding a fixed 
(read-only) offset to the value of sb (see DCDO in the Directives Reference chapter in 
RealView Compilation Tools v3.0 Assembler Guide).

3.3.5 Linking your code

Use the linker command-line option --rwpi to make the load and execution region 
containing the RW and ZI output sections position-independent. This option requires a 
value for --rw-base. If --rw-base is not specified, --rw-base 0 is assumed. Usually each 
writable input section must be RWPI. See RealView Compilation Tools v3.0 Linker and 
Utilities Guide for details of these options.

3.3.6 Code example

For details of writing position-independent code, see the PIC-PID example provided 
with RealView Development Suite in the main examples directory, that is in 
install_directory\RVDS\Examples\picpid.

This example consists of a kernel at a fixed address in ROM, together with a collection 
of application modules that extend kernel functionality. A module implements a set of 
named services that can be multiply instantiated, and that can call one another through 
the kernel. When a service is called, the kernel creates an instance of its static data and 
then passes control to the service. However, the service might then call back to the 
kernel. Therefore, modules must have position-independent data (RWPI, PID).

The example includes source code, a make file, batch files, and a detailed description of 
how to compile and link the different modules (see readme.txt).
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Chapter 4 
Interworking ARM and Thumb

This chapter explains how to change between ARM® state and Thumb® state when 
writing code for processors that implement the Thumb instruction set. It contains the 
following sections:

• About interworking on page 4-2

• Assembly language interworking on page 4-7

• C and C++ interworking and veneers on page 4-13

• Assembly language interworking using veneers on page 4-18.
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4.1 About interworking

Interworking enables you to mix ARM and Thumb code so that:

• ARM routines return to a Thumb state caller

• Thumb routines return to an ARM state caller.

This means that, if you compile or assemble code for interworking, your code can call 
a routine in a different module without considering which instruction set it uses.

The ARM linker detects when an ARM function is being called from Thumb state, or a 
Thumb function is being called from ARM state. The ARM linker changes call and 
return instructions, or inserts small code segments called veneers, to change processor 
state as necessary.

The ARMv5T and later architectures provide methods to change processor state without 
using any extra instructions. There is normally no cost associated with interworking on 
ARMv5T processors.

Note
 Compiling for ARMv5TE and later automatically assumes interworking, and always 
produces code that interworks. However, assembly code built for ARMv5TE does not 
imply interworking, so you must build assembly code with the --apcs /interwork 
assembler option.

4.1.1 Using the AAPCS

You can mix ARM and Thumb code as you require, provided that the code conforms to 
the requirements of the AAPCS. For more information, see the Procedure Call 
Standard for the ARM Architecture specification, aapcs.pdf, in 
install_directory\Documentation\Specifications\...

If you are writing ARM assembly language modules you must ensure that your code 
conforms to the AAPCS. If you are linking several source files together, all your files 
must use compatible AAPCS options. If incompatible options are detected, the linker 
produces an error message.

This section describes:

• When to use interworking on page 4-3

• Using the /interwork option on page 4-4

• Detecting interworking calls on page 4-4

• Linker generated veneers on page 4-5.
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4.1.2 When to use interworking

When you write code for an ARM processor that supports Thumb instructions, you 
probably write most of your application to run in Thumb state. This gives the best code 
density. With 8-bit or 16-bit wide memory, it also gives the best performance. However, 
you might want parts of your application to run in ARM state for reasons such as: 

Speed Some parts of an application might be speed critical. These sections 
might be more efficient running in ARM state than in Thumb state. In 
some circumstances, a single ARM instruction can do more than the 
equivalent Thumb instruction. 

Some systems include a small amount of fast 32-bit memory. ARM code 
can be run from this without the overhead of fetching each instruction 
from 8-bit or 16-bit memory.

Functionality 

Thumb instructions are less flexible than their equivalent ARM 
instructions. Some operations are not possible in Thumb state. A state 
change to ARM is required to carry out the following operations:

• accesses to CPSR to enable or disable interrupts, and to change mode

• accesses to coprocessors

• DSP math instructions that are not supported by C.

Exception handling 

The processor automatically enters ARM state when a processor 
exception occurs. This means that the first part of an exception handler 
must be coded with ARM instructions, even if it re-enters Thumb state to 
carry out the main processing of the exception. At the end of such 
processing, the processor must be returned to ARM state to return from 
the handler to the main application.

Standalone Thumb programs 

An ARM processor that supports Thumb instructions always starts in 
ARM state. To run simple Thumb assembly language programs under the 
debugger, add an ARM header that carries out a state change to Thumb 
state and then calls the main Thumb routine. See Example ARM header 
on page 4-9 for an example.
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4.1.3 Using the /interwork option

The option --apcs /interwork is available for the ARM compiler and assembler. If you 
set this option:

• The compiler or assembler records an interworking attribute in the object file.

• The linker provides interworking veneers for subroutine entry.

• In assembly language, you must write function exit code that returns to the 
instruction set state of the caller, for example BX lr.

• In C or C++, the compiler creates function exit code that returns to the instruction 
set state of the caller.

• In C or C++, the compiler uses BX instructions for indirect or virtual calls.

Use the --apcs /interwork option if your object file contains:

• Thumb subroutines that might have to return to ARM code

• ARM subroutines that might have to return to Thumb code

• Thumb subroutines that might make indirect or virtual calls to ARM code

• ARM subroutines that might make indirect or virtual calls to Thumb code.

Note
 If a module contains functions marked with #pragma arm or #pragma thumb, the module 
must be compiled with --apcs /interwork. This ensures that the functions can be called 
successfully from the other (ARM or Thumb) state.

Otherwise, you do not have to use the /interwork option. For example, your object file 
might contain any of the following without requiring /interwork:

• Thumb code that can be interrupted by an exception. The exception forces the 
processor into ARM state so no veneer is required.

• Exception handling code that can handle exceptions from Thumb code. No veneer 
is required for the return.

4.1.4 Detecting interworking calls

The linker generates an error if it detects a direct ARM/Thumb interworking call where 
the called routine is not built for interworking. You must rebuild the called routine for 
interworking.
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For example, Example 4-1 shows the error that is produced if the ARM routine in 
Example 4-3 on page 4-14 is compiled and linked without the --apcs /interwork 
option.

Example 4-1

Error: L6239E: Cannot call ARM symbol 'arm_function' in non-interworking object
armsub.o from THUMB code in thumbmain.o(.text)

These types of error indicate that an ARM-to-Thumb or Thumb-to-ARM interworking 
call has been detected from the object module object to the routine symbol, but the 
called routine has not been compiled for interworking. You must recompile the module 
that contains the symbol and specify --apcs /interwork.

4.1.5 Linker generated veneers

Veneers are small code segments that are automatically inserted by the linker if a branch 
involves:

• a change of state

• a destination beyond the range of the branching instruction.

The veneer becomes the target of the original branch, that then branches to the target 
address.

The linker can reuse a veneer generated for a previous call for subsequent calls to the 
same function, provided they can be reached from both sections.

For more details on interworking with veneers, see:

• C and C++ interworking and veneers on page 4-13

• Assembly language interworking using veneers on page 4-18.

Types of veneer

Veneers can be:

long Can have an optional state change.

short Performs only a state change.

inline Performs only a state change, but is added to the start of the function that 
is being veneered.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-5



Interworking ARM and Thumb 
Veneer$$Code sections

The linker creates one input section called Veneer$$Code for each veneer. You can place 
veneer code in a scatter-loading description file using *(Veneer$$Code). However, the 
linker only places veneer code there if it safe to do so.

It might not be possible for a veneer input section to be assigned to the region because 
of problems with address range or limitations on the size of execution regions. If the 
veneer cannot be added to the specified region, it is added to the execution region 
containing the relocated input section that generated the veneer.

See RealView Compilation Tools v3.0 Linker and Utilities Guide for more details.

Minimizing the use of veneers

You can minimize the use of veneers by:

• structuring the memory map to keep called functions within range of the caller

• encouraging sharing of veneers by keeping calling functions within range

• minimizing state changes.
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4.2 Assembly language interworking

In an assembly language source file, you can have several areas (these correspond to 
ELF sections). Each area can contain ARM instructions, Thumb instructions, or both.

You can use the linker to fix up calls to, and returns from, routines that use a different 
instruction set from the caller. To do this, use BL to call the routine (see Assembly 
language interworking using veneers on page 4-18).

If you prefer, you can write your code to make the instruction set changes explicitly. In 
some circumstances you can write smaller or faster code by doing this.

The following instructions perform the processor state changes:

• BX, see The branch and exchange instruction

• BLX, LDR, LDM, and POP (ARMv5 and above only), see Interworking with ARM 
architecture v5T and later on page 4-11.

The following directives instruct the assembler to assemble instructions from the 
appropriate instruction set (see Changing the assembler mode on page 4-8):

• ARM

• THUMB

This section includes:

• The branch and exchange instruction

• Changing the assembler mode on page 4-8

• Example ARM header on page 4-9

• Interworking with ARM architecture v5T and later on page 4-11

• Labels in Thumb code on page 4-12.

4.2.1 The branch and exchange instruction

The BX instruction is available only on cores that support Thumb. The instruction 
branches to the address contained in a specified register, and has a 4GB address range. 
The value of bit 0 of the branch address determines whether execution continues in 
ARM state or Thumb state. See Interworking with ARM architecture v5T and later on 
page 4-11 for additional instructions available with ARMv5.

Bit 0 of an address can be used in this way because:

• all ARM instructions are word-aligned, so bits 0 and 1 of the address of any ARM 
instruction are unused

• all Thumb instructions are halfword-aligned, so bit 0 of the address of any Thumb 
instruction is unused.
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Syntax

The syntax of BX is one of: 

Thumb BX Rn

ARM BX{cond} Rn

where:

Rn Is a register in the range r0 to r15 that contains the address to branch to. 
The value of bit 0 in this register determines the processor state: 

• if bit 0 is set, the instructions at the branch address are executed in 
Thumb state

• if bit 0 is clear, the instructions at the branch address are executed 
in ARM state.

cond Is an optional condition code. Only the ARM version of BX can be 
executed conditionally.

4.2.2 Changing the assembler mode

The ARM assembler can assemble both Thumb code and ARM code. By default, it 
assembles ARM code unless it is invoked with the --thumb option.

Because all ARM processors that support Thumb start in ARM state, you must use the 
BX instruction to branch and exchange to Thumb state, and then use the following 
assembler directives to instruct the assembler to switch assembly mode:

THUMB Instructs the assembler to assemble the following instructions as Thumb 
instructions. This also causes an alignment to a two-byte boundary, even 
if no instructions follow it.

ARM Instructs the assembler to return to assembling ARM instructions. This 
also causes an alignment to a four-byte boundary, even if no instructions 
follow it.

See RealView Compilation Tools v3.0 Assembler Guide for more information on these 
directives.
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4.2.3 Example ARM header

Example 4-2 contains four sections of code. Each of the code sections is described after 
the example.

Example 4-2

     PRESERVE8

     AREA     AddReg,CODE,READONLY  ; Name this block of code.
     ENTRY                          ; Mark first instruction to call.

; SECTION 1
start
     ADR r0, ThumbProg + 1          ; Generate branch target address
                                    ; and set bit 0, hence arrive
                                    ; at target in Thumb state.
     BX  r0                         ; Branch exchange to ThumbProg.

; SECTION 2
     THUMB                          ; Subsequent instructions are Thumb code.
ThumbProg
     MOVS r2, #2                    ; Load r2 with value 2.
     MOVS r3, #3                    ; Load r3 with value 3.
     ADDS r2, r2, r3                ; r2 = r2 + r3
     ADR r0, ARMProg
     BX  r0                         ; Branch exchange to ARMProg.

; SECTION 3
     ARM                            ; Subsequent instructions are ARM code.
ARMProg
     MOV r4, #4
     MOV r5, #5
     ADD r4, r4, r5

; SECTION 4
stop MOV r0, #0x18                  ; angel_SWIreason_ReportException
     LDR r1, =0x20026               ; ADP_Stopped_ApplicationExit
     SVC 0x123456                   ; ARM semihosting (formerly SWI)
     END                            ; Mark end of this file.

SECTION 1 implements a short header section of ARM code that changes the processor 
to Thumb state. The header code uses:

• An ADR pseudo-instruction to load the branch address and set the least significant 
bit. The ADR pseudo-instruction generates the address by loading r0 with the value 
pc+offset+1. That is, the address of ThumbProg plus one.
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Note
 An ADR instruction is used for symbols within the same section. For larger ranges, 

use the LDR instruction. See RealView Compilation Tools v3.0 Assembler Guide 
for more information on the ADR and LDR pseudo-instructions.

• A BX instruction to branch to the Thumb code and change processor state.

SECTION 2 of the code, labeled ThumbProg, is prefixed by a THUMB directive. This instructs 
the assembler to treat the following code as Thumb code. The Thumb code adds the 
contents of two registers together.

The code again uses an ADR instruction to get the address of the label ARMProg, but this 
time the least significant bit is left clear. The BX instruction changes the state back to 
ARM state.

SECTION 3 of the code, labeled ARMProg, adds together the contents of two registers.

SECTION 4 of the code, labeled stop, uses semihosting to report normal application exit. 
See RealView Compilation Tools v3.0 Compiler and Libraries Guide for more 
information on semihosting.

Note
 Thumb semihosting uses a different SVC number from the ARM semihosting (0xAB 
rather than 0x123456).

Exporting symbols

If you export a symbol that references Thumb instructions, the linker automatically adds 
one to the address of any label in Thumb code.

If you do not export a symbol, you must manually add one to the symbol that references 
the Thumb instructions. In Example 4-2 on page 4-9 it is ThumbProg+1. This is because 
all references are resolved by the assembler, and the linker never detects the symbol.

Building the example

To build and execute the example: 

1. Enter the code using any text editor and save the file as addreg.s.

2. Type armasm -g addreg.s at the command prompt to assemble the source file.

3. Type armlink addreg.o -o addreg to link the file. 
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4. Run the image using a compatible debugger, for example RealView® Debugger or 
AXD, with an appropriate debug target. If you step through the program one 
instruction at a time, you see the processor enter the Thumb state. See the user 
documentation for the debugger you are using to find out how this change is 
indicated.

4.2.4 Interworking with ARM architecture v5T and later

In ARMv5T and above:

• The following additional interworking instructions are available:

BLX address 
The processor performs a PC-relative branch to address with link and 
changes state. address must be within 32MB of the PC in ARM code, 
or within 4MB of the PC in Thumb code.

BLX register 
The processor performs a branch with link to an address contained in 
the specified register. The value of bit[0] determines the new processor 
state.

In either case, bit[0] of lr is set to the current value of the Thumb bit in the CPSR. 
The means that the return instruction can automatically return to the correct 
processor state.

• If LDR, LDM, or POP load to the PC, they set the Thumb bit in the CPSR to bit[0] of the 
value loaded to the PC. You can use this to change instruction sets. This is 
particularly useful for returning from subroutines. The same return instruction 
can return to either an ARM or Thumb caller.

For more information, see RealView Compilation Tools v3.0 Assembler Guide and ARM 
Architecture Reference Manual.
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4.2.5 Labels in Thumb code

The linker distinguishes between labels referring to:

• ARM instructions

• Thumb instructions

• data.

When the linker relocates a value of a label referring to a Thumb instruction, it sets the 
least significant bit of the relocated value. This means that a branch to a label can 
automatically select the appropriate instruction set. This works if any of the following 
instructions are used for the branch:

• BX in ARMv4T

• BX, BLX, or LDR in ARMv5T and above.

In releases of ARM Developer Suite™ (ADS) earlier than 1.2, it was necessary to mark 
data in Thumb code with the DATA directive. This is no longer necessary.
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4.3 C and C++ interworking and veneers

You can freely mix C and C++ code compiled for ARM and Thumb, but in ARMv4T 
veneers are required between the ARM and Thumb code to carry out state changes. The 
ARM linker generates these interworking veneers when it detects interworking calls. 
See Linker generated veneers on page 4-5 for more details on veneers.

This section includes:

• Compiling code for interworking

• Basic rules for C and C++ interworking on page 4-16

• Pointers to functions in Thumb state on page 4-16

• Using two versions of the same function on page 4-17.

4.3.1 Compiling code for interworking

The --apcs /interwork compiler option enables the ARM compiler to compile C and 
C++ modules containing routines that can be called by routines compiled for the other 
processor state:

armcc --c90 --thumb --apcs /interwork
armcc --c90 --arm --apcs /interwork
armcc --cpp --thumb --apcs /interwork
armcc --cpp --arm --apcs /interwork

Note
 --arm is the default option. --c90 is the default for files with the extension .c, and --cpp 
is the default for files with the extension .cpp.

Modules that are compiled for interworking on ARMv4T generate slightly larger code. 
There is no difference for ARMv5.

In a leaf function, that is a function whose body contains no function calls, the only 
change in the code generated by the compiler is to replace MOV pc,lr with BX lr. The 
MOV instruction does not cause the necessary state change.

In nonleaf functions built for ARMv4T in Thumb mode, the compiler must replace, for 
example, the single instruction:

     POP  {r4,r5,pc}

with the sequence:

     POP  {r4,r5}
     POP  {r3}
     BX   r3
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This has a small impact on performance. Compile all source modules for interworking, 
unless you are sure they are never going to be used with interworking.

The --apcs /interwork option also sets the interwork attribute for the code area the 
modules are compiled into. The linker detects this attribute and inserts the appropriate 
veneer.

Note
 ARM code compiled for interworking can only be used on ARMv4T and later, because 
earlier processors do not implement the BX instruction.

Use the linker option --info veneers to find the amount of space taken by the veneers.

C interworking example

Example 4-3 shows a Thumb routine that carries out an interworking call to an ARM 
subroutine. The ARM subroutine call makes an interworking call to printf() in the 
Thumb library. These two modules are provided in the main examples directory, in 
...\interwork as thumbmain.c and armsub.c.

Example 4-3

     /*********************
     *       thumbmain.c  *
     **********************/
     #include <stdio.h>
     extern void arm_function(void);
     int main(void)
     {
          printf("Hello from Thumb\n");
          arm_function();
          printf("And goodbye from Thumb\n");
          return (0);
     }

     /*********************
     *        armsub.c    *
     **********************/
     #include <stdio.h>
     void arm_function(void)
     {
          printf("Hello and Goodbye from ARM\n");
     }
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To compile and link these modules:

1. To compile the Thumb code for interworking, type:

armcc --thumb -c -g -O1 --apcs /interwork -o thumbmain.o thumbmain.c

2. To compile the ARM code for interworking, type:

armcc -c -g -O1 --apcs /interwork -o armsub.o armsub.c

3. To link the object files, type:

armlink thumbmain.o armsub.o -o thumbtoarm.axf

Alternatively, to view the size of the interworking veneers (as shown in 
Example 4-4) type:

armlink armsub.o thumbmain.o -o thumbtoarm.axf --info veneers

Example 4-4

Adding TA veneer (4 bytes, Inline) for call to 'arm_function' from thumbmain.o(.text).
Adding AT veneer (8 bytes, Inline) for call to '__0printf' from armsub.o(.text).
Adding AT veneer (8 bytes, Inline) for call to '__rt_lib_init' from kernel.o(.text).
Adding AT veneer (12 bytes, Long) for call to '__rt_lib_shutdown' from kernel.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '__aeabi_memclr4' from stdio.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '_mutex_initialize' from stdio.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '__rt_raise' from stdio.o(.text).
Adding AT veneer (8 bytes, Inline) for call to '__raise' from rt_raise.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '__heap_extend' from malloc.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '__user_perproc_libspace' from malloc.o(.text).
Adding TA veneer (8 bytes, Short) for call to '__rt_exit' from exit.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '_fp_init' from lib_init.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '__ARM_argv_veneer' from lib_init.o(.text). 
Adding TA veneer (4 bytes, Inline) for call to '_sys_exit' from abort.o(.text).

14 Veneer(s) (total 80bytes) added to the image.
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4.3.2 Basic rules for C and C++ interworking

The following rules apply to interworking within an application:

• You must use the --apcs /interwork command-line option to compile any C or 
C++ modules that contain functions that might return to the other instruction set.

• You must use the --apcs /interwork command-line option to compile any C or 
C++ modules that contain indirect or virtual function calls that might be to 
functions in the other instruction set.

• Never make indirect calls, such as calls using function pointers, to 
non-interworking code from code in the other state.

• If any input object contains Thumb code, the linker selects the Thumb runtime 
libraries. These are built for interworking. 

If you specify one of your own libraries explicitly on the linker command line you 
must ensure that it is an appropriate interworking library.

Note
 If a C or C++ module contains functions marked with #pragma arm or #pragma thumb, you 
must compile the module with --apcs /interwork. This ensures that the functions can 
be called successfully from the other (ARM or Thumb) state.

4.3.3 Pointers to functions in Thumb state

If you have a Thumb function, that is a function consisting of Thumb code, and that runs 
in Thumb state, then any pointer to that function must have the least significant bit set. 
This ensures that interworking works correctly.

When the linker relocates a value of a label referring to a Thumb instruction, it 
automatically sets the least significant bit of the relocated value. The linker cannot do 
this if you use absolute addresses to Thumb functions.

Therefore, if you have to use an absolute address to a Thumb function in your code, you 
must add one to the address. For example, you might have a table of pointers to Thumb 
functions, such as that shown in Example 4-5 on page 4-17.

See Assembly language interworking on page 4-7 for more details.
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Example 4-5 Absolute addresses to Thumb functions

typedef int (*FN)();

myfunc() {
    FN fnptrs[] = {
        (FN)(0x8084 + 1),  // Valid Thumb address
        (FN)(0x8074)       // Invalid Thumb address
    };
    FN* myfunctions = fnptrs;

    myfunctions[0]();    // Call OK
    myfunctions[1]();    // Call Fails
}

4.3.4 Using two versions of the same function

You can have two functions with the same name, one compiled for ARM and the other 
for Thumb.

ARM/Thumb synonyms

The linker enables multiple definitions of a symbol to coexist in an image, only if each 
definition is associated with a different processor state. The linker applies the following 
rules when a reference is made to a symbol with ARM/Thumb synonyms:

• B, BL, or BLX instructions to a symbol from ARM state resolve to the ARM 
definition

• B, BL, or BLX instructions to a symbol from Thumb state resolve to the Thumb 
definition.

Any other reference to the symbol resolves to the first definition encountered by the 
linker. The linker produces a warning that specifies the chosen symbol.
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4.4 Assembly language interworking using veneers

The assembly language ARM/Thumb interworking method described in Assembly 
language interworking on page 4-7 carried out all the necessary intermediate 
processing. There was no requirement for the linker to insert interworking veneers.

This section describes how you can make use of interworking veneers to: 

• interwork between assembly language modules, see Assembly-only interworking 
using veneers

• interwork between assembly language and C or C++ modules, see C, C++, and 
assembly language interworking using veneers on page 4-20.

See Linker generated veneers on page 4-5 for more details on veneers.

4.4.1 Assembly-only interworking using veneers

You can write assembly language ARM/Thumb interworking code to make use of 
interworking veneers generated by the linker. To do this, you write: 

• A caller routine like any non-interworking routine, using a BL instruction to make 
the call. A caller routine can be assembled with either --apcs /interwork or --apcs 
/nointerwork.

Note
 The range of a BL instruction is 32MB in ARM state, and 4MB in Thumb state. 

During development, your application might have calls to targets that are beyond 
reach, or calls to functions in another state. The linker automatically inserts a 
veneer in these cases. The veneer becomes the intermediate target of the original 
BL, and the veneer code then sets the PC to the desired destination address.

• A callee routine using a BX instruction to return. A callee routine must be 
assembled with --apcs /interwork. Also, you might have to export the function 
label of the routine, for example, EXPORT ThumbSub (see Example 4-6 on 
page 4-19). Where appropriate, the assembler code must conform to the AAPCS.

This is generally only necessary in ARMv4T, or if the caller and callee are widely 
separated or in different areas. In ARMv5T and later, if the caller and callee are 
sufficiently close together, no veneers are necessary.
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Example of assembly language interworking using veneers

Example 4-6 shows the code to set registers r0 to r2 to the values 1, 2, and 3 
respectively. Registers r0 and r2 are set by the ARM code. r1 is set by the Thumb code. 
Observe that: 

• the code must be assembled with the option --apcs /interwork 

• a BX lr instruction is used to return from the subroutine, instead of the usual MOV 
pc,lr.

Example 4-6

     ; *****
     ; arm.s
     ; *****

     PRESERVE8

     AREA     Arm,CODE,READONLY   ; Name this block of code.
     IMPORT     ThumbProg
     ENTRY                        ; Mark 1st instruction to call.
ARMProg
     MOV  r0,#1                   ; Set r0 to show in ARM code.
     BL   ThumbProg               ; Call Thumb subroutine.
     MOV  r2,#3                   ; Set r2 to show returned to ARM.
                                  ; Terminate execution.
     MOV  r0, #0x18               ; angel_SWIreason_ReportException
     LDR  r1, =0x20026            ; ADP_Stopped_ApplicationExit
     SVC 0x123456                 ; ARM semihosting (formerly SWI)
     END

     ; *******
     ; thumb.s
     ; *******
     AREA  Thumb,CODE,READONLY    ; Name this block of code.
     THUMB                        ; Subsequent instructions are Thumb.
     EXPORT ThumbProg
ThumbProg
     MOVS  r1, #2                 ; Set r1 to show reached Thumb code.
     BX   lr                      ; Return to ARM subroutine.
     END                          ; Mark end of this file.

Follow these steps to build and link the modules, and examine the interworking veneers: 

1. Type armasm -g arm.s to assemble the ARM code.
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2. Type armasm --thumb -g --apcs /interwork thumb.s to assemble the Thumb code.

3. Type armlink arm.o thumb.o -o count to link the two object files.

4. Run the image using a compatible debugger (for example, RealView Debugger or 
AXD) with an appropriate debug target.

You can see the interworking veneer that is inserted by the linker in the disassembled 
code shown in Example 4-7. The veneer is inserted on the next word boundary, and 
starts at address 0x0000801C.

Example 4-7

   ARMProg:
   00008000 E3A00001  MOV      r0,#1
   00008004 EB000004  BL       0x801c
   00008008 E3A02003  MOV      r2,#3
   0000800C E3A00018  MOV      r0,#0x18
   00008010 E59F1000  LDR      r1,0x8018
   00008014 EF123456  SVC      0x123456
   00008018 00020026  <Data> '&' 0x00 0x02 0x00
   0000801C E28FC001  ADR      r12,{pc}+9 ; #0x8025
   00008020 E12FFF1C  BX       r12
   ThumbProg:
   00008024     2102  MOV      r1,#2
   00008026     4770  BX       r14

4.4.2 C, C++, and assembly language interworking using veneers

C and C++ code compiled to run in one state can call assembly language code designed 
to run in the other state, and vice versa. To do this, write the caller routine as any 
non-interworking routine and, if calling from assembly language, use a BL instruction to 
make the call (see Example 4-8 on page 4-21). Then:

• if the callee routine is in C, compile it using --apcs /interwork

• if the callee routine is in assembly language, assemble with the --apcs /interwork 
option and return using BX lr.

Note
 Any assembly language code or user library code used in this manner must conform to 
the AAPCS where appropriate.
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Example 4-8

     /**********************
     *       thumb.c      *
     **********************/
     #include <stdio.h>
     extern int arm_function(int);
     int main(void)
     {
          int i = 1;
          printf("i = %d\n", i);
          printf("And now i = %d\n", arm_function(i));
          return (0);
     }

     ; *****
     ; arm.s
     ; *****
     PRESERVE8
     AREA  Arm,CODE,READONLY ; Name this block of code.
     EXPORT arm_function
arm_function
     ADD   r0,r0,#4           ; Add 4 to first parameter.
     BX    lr                 ; Return
     END

Follow these steps to build and link the modules:

1. Type armcc --thumb -g -c --apcs /interwork thumb.c to compile the Thumb code.

2. Type armasm -g --apcs /interwork arm.s to assemble the ARM code.

3. Type armlink arm.o thumb.o -o add --info veneers to link the two object files 
and view the size of the interworking veneers.

4. Run the image using a compatible debugger (for example, RealView Debugger or 
AXD) with an appropriate debug target.
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Chapter 5 
Mixing C, C++, and Assembly Language

This chapter describes how to write mixed C, C++, and ARM® assembly language code. 
It also describes how to use the ARM inline and embedded assemblers from C and C++. 
It contains the following sections:

• Using the inline and embedded assemblers on page 5-2

• Accessing C global variables from assembly code on page 5-4

• Using C header files from C++ on page 5-5

• Calling between C, C++, and ARM assembly language on page 5-7.
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5.1 Using the inline and embedded assemblers

The inline and embedded assemblers that are built into the ARM compiler enable you 
to use features of the target processor that cannot be accessed directly from C or C++. 
For example:

• saturating arithmetic (see RealView Compilation Tools v3.0 Assembler Guide)

• custom coprocessors

• the Program Status Register (PSR).

This section includes:

• Features of the inline assembler

• Features of the embedded assembler

• Differences between inline and embedded assembly code on page 5-3.

For more details, see the chapter on inline and embedded assemblers in RealView 
Compilation Tools v3.0 Compiler and Libraries Guide.

5.1.1 Features of the inline assembler

The inline assembler supports very flexible interworking with C and C++. Any register 
operand can be an arbitrary C or C++ expression. The inline assembler also expands 
complex instructions and optimizes the assembly language code.

Note
 Inline assembly language is subject to optimization by the compiler if you use one of 
the multi-optimization compiler options -O1, -O2, or -O3.

The inline assembler for ARM code implements most of the ARM instruction set 
including generic coprocessor instructions, halfword instructions and long multiply.

5.1.2 Features of the embedded assembler

The embedded assembler provides unrestricted, low-level access to the target processor, 
and enables you to use the C and C++ preprocessor directives, and gives easy access to 
structure member offsets.

The embedded assembler enables you to use the full ARM assembler instruction set, 
including assembler directives. Embedded assembly code is assembled separately from 
the C and C++ code. A compiled object is produced that is then combined with the 
object from the compilation of the C and C++ source.

The embedded assembler is supported in both ARM and Thumb® code. See RealView 
Compilation Tools v3.0 Assembler Guide for details of the ARM/Thumb instruction set.
5-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G



Mixing C, C++, and Assembly Language 
5.1.3 Differences between inline and embedded assembly code

Table 5-1 summarizes the main differences between inline assembler and embedded 
assembler.

Note
 A list of differences between embedded assembler and C/ C++ is provided in the chapter 
on inline and embedded assemblers in RealView Compilation Tools v3.0 Compiler and 
Libraries Guide.

Table 5-1 Differences between inline and embedded assembler

Feature Embedded assembler Inline assembler

Instruction set ARM and Thumb. ARM only.

ARM assembler directives All supported. None supported.

C/C++ expressions Constant expressions only. Full C/C++ expressions.

Optimization of assembly code No optimization. Full optimization.

Inlining No. Possible.

Register access Specified physical registers are 
used. You can also use PC, LR and 
SP.

Uses virtual registers.

Using sp (r13), lr (r14), and pc (r15) gives an 
error.

Return instructions You must add them in your code. Generated automatically. (The BX, BXJ, and 
BLX instructions are not supported.)

BKPT instruction Supported directly. Not supported.
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5.2 Accessing C global variables from assembly code

Global variables can only be accessed indirectly, through their address. To access a 
global variable, use the IMPORT directive to do the import and then load the address into 
a register. You can access the global variable with load and store instructions, depending 
on its type. 

For unsigned variables, for example, use:

• LDRB/STRB for char

• LDRH/STRH for short

• LDR/STR for int.

For signed variables, use the equivalent signed instruction, such as LDRSB and LDRSH.

Small structures of less than eight words can be accessed as a whole using the LDM and 
STM instructions. Individual members of structures can be accessed by a load or store 
instruction of the appropriate type. You must know the offset of a member from the start 
of the structure in order to access it.

Example 5-1 loads the address of the integer global variable globvar into r1, loads the 
value contained in that address into r0, adds 2 to it, then stores the new value back into 
globvar.

Example 5-1 Accessing global variables

    PRESERVE8

    AREA     globals,CODE,READONLY

    EXPORT    asmsubroutine
    IMPORT    globvar

asmsubroutine
    LDR  r1, =globvar   ; read address of globvar into
                        ; r1 from literal pool
    LDR  r0, [r1]
    ADD  r0, r0, #2
    STR  r0, [r1]
    BX   lr
    END

For full details on the instructions available in ARM or Thumb code, see RealView 
Compilation Tools v3.0 Assembler Guide.
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5.3 Using C header files from C++

C header files must be wrapped in extern "C" directives before they are called from 
C++.

This section describes:

• Including system C header files

• Including your own C header files on page 5-6.

5.3.1 Including system C header files

You do not have to take any special steps to include standard system C header files, such 
as stdio.h. The standard C header files already contain the appropriate extern "C" 
directives. For example:

#include <stdio.h>
int main()
{
    ...       // C++ code
    return 0;
}

If you include headers using this syntax, all library names are placed in the global 
namespace.

The C++ standard specifies that the functionality of the C header files is available 
through C++ specific header files. These files are installed in 
install_directory\RVCT\Data\3.0\build_num\include\platform, together with the 
standard C header files, and can be referenced in the usual way. For example:

#include <cstdio>

In ARM C++, these headers #include the C headers. If you include headers using this 
syntax, all C++ standard library names are defined in the namespace std, including the 
C library names. This means that you must qualify all the library names by using one of 
the following methods:

• specify the standard namespace, for example:

std::printf("example\n");

• use the C++ keyword using to import a name to the global namespace:

using namespace std;
printf("example\n");

• use the compiler option --using_std.
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5.3.2 Including your own C header files

To include your own C header files, you must wrap the #include directive in an extern 
"C" statement. You can do this in the following ways:

• When the file is #included (shown in Example 5-2).

• By adding the extern "C" statement to the header file (shown in Example 5-3).

Example 5-2 Directive before include file

// C++ code

extern "C" {
#include "my-header1.h"
#include "my-header2.h"
}

int main()
{
    // ...
    return 0;
}

Example 5-3 Directive in file header

/* C header file */

#ifdef __cplusplus    /* Insert start of extern C construct */
extern "C" {
#endif

/* Body of header file */

#ifdef __cplusplus  /* Insert end of extern C construct */
}                   /* The C header file can now be */
#endif              /* included in either C or C++ code. */
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5.4 Calling between C, C++, and ARM assembly language

This section provides examples that can help you to call C and assembly language code 
from C++, and to call C++ code from C and assembly language. It also describes calling 
conventions and data types, and includes:

• General rules for calling between languages

• Information specific to C++ on page 5-8

• Examples of calling between languages on page 5-9.

You can mix calls between C and C++ and assembly language routines provided you 
comply with the AAPCS. For more information, see the Procedure Call Standard for 
the ARM Architecture specification, aapcs.pdf, in 
install_directory\Documentation\Specifications\...

Note
 The information in this section is implementation dependent and might change in future 
releases.

5.4.1 General rules for calling between languages

The following general rules apply to calling between C, C++, and assembly language. 
For more details, see RealView Compilation Tools v3.0 Compiler and Libraries Guide.

The embedded assembler and compliance with the Application Binary Interface (ABI) 
for the ARM Architecture (base standard) [BSABI] make mixed language programming 
easier to implement. These assist you with:

• name mangling, using the __cpp keyword

• the way the implicit this parameter is passed

• the way virtual functions are called

• the representation of references

• the layout of C++ class types that have base classes or virtual member functions

• the passing of class objects that are not plain old data structures.

The following general rules apply to mixed language programming:

• Use C calling conventions.

• In C++, nonmember functions can be declared as extern "C" to specify that they 
have C linkage. In this release of RealView® Compilation Tools (RVCT), having 
C linkage means that the symbol defining the function is not mangled. C linkage 
can be used to implement a function in one language and call it from another. 
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Note
 Functions that are declared extern "C" cannot be overloaded.

• Assembly language modules must conform to the appropriate AAPCS standard 
for the memory model used by the application.

The following rules apply to calling C++ functions from C and assembly language:

• To call a global (nonmember) C++ function, declare it extern "C" to give it C 
linkage.

• Member functions (both static and non-static) always have mangled names. Using 
the __cpp keyword of the embedded assembler means that you do not have to find 
the mangled names manually.

• C++ inline functions cannot be called from C unless you ensure that the C++ 
compiler generates an out-of-line copy of the function. For example, taking the 
address of the function results in an out-of-line copy.

• Nonstatic member functions receive the implicit this parameter as a first 
argument in r0, or as a second argument in r1 if the function returns a non int-like 
structure. Static member functions do not receive an implicit this parameter.

5.4.2 Information specific to C++

The following information applies specifically to C++.

C++ calling conventions

ARM C++ uses the same calling conventions as ARM C with one exception: 

• Nonstatic member functions are called with the implicit this parameter as the first 
argument, or as the second argument if the called function returns a non int-like 
struct. This might change in future implementations.

C++ data types

ARM C++ uses the same data types as ARM C with the following exceptions and 
additions: 

• C++ objects of type struct or class have the same layout that is expected from 
ARM C if they have no base classes or virtual functions. If such a struct has 
neither a user-defined copy assignment operator nor a user-defined destructor, it 
is a plain old data structure.
5-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G



Mixing C, C++, and Assembly Language 
• References are represented as pointers.

• No distinction is made between pointers to C functions and pointers to C++ 
(nonmember) functions.

Symbol name mangling

The linker unmangles symbol names in messages.

C names must be declared as extern "C" in C++ programs. This is done already for the 
ARM ISO C headers. See Using C header files from C++ on page 5-5 for more 
information.

5.4.3 Examples of calling between languages

The following sections contain code examples that demonstrate how to mix language 
calls: 

• Calling assembly language from C on page 5-10

• Calling C from assembly language on page 5-11

• Calling C from C++ on page 5-12

• Calling assembly language from C++ on page 5-13

• Calling C++ from C on page 5-14

• Calling C++ from assembly language on page 5-15

• Calling C++ from C or assembly language on page 5-17

• Passing a reference between C and C++ on page 5-16.
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Calling assembly language from C

Example 5-4 and Example 5-5 show a C program that uses a call to an assembly 
language subroutine to copy one string over the top of another string.

Example 5-4 Calling assembly language from C

#include <stdio.h>
extern void strcopy(char *d, const char *s);
int main()
{   const char *srcstr = "First string - source ";
    char dststr[] = "Second string - destination ";
/* dststr is an array since we’re going to change it */
    printf("Before copying:\n");
    printf("  %s\n  %s\n",srcstr,dststr);
    strcopy(dststr,srcstr);
    printf("After copying:\n");
    printf("  %s\n  %s\n",srcstr,dststr);
    return (0);
}

Example 5-5 Assembly language string copy subroutine

    PRESERVE8

    AREA    SCopy, CODE, READONLY
    EXPORT strcopy
strcopy               ; r0 points to destination string.
                      ; r1 points to source string.
    LDRB r2, [r1],#1  ; Load byte and update address.
    STRB r2, [r0],#1  ; Store byte and update address.
    CMP  r2, #0       ; Check for zero terminator.
    BNE  strcopy      ; Keep going if not.
    BX   lr           ; Return.
    END

Example 5-4 is located in the main examples directory, in ...\asm as strtest.c and 
scopy.s.

Follow these steps to build the example from the command line:

1. Type armasm --debug scopy.s to build the assembly language source.

2. Type armcc -c --debug strtest.c to build the C source.
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3. Type armlink strtest.o scopy.o -o strtest to link the object files.

4. Run the image using a compatible debugger (for example, AXD or RealView 
Debugger) with an appropriate debug target.

Calling C from assembly language

Example 5-6 and Example 5-7 show how to call C from assembly language.

Example 5-6 Defining the function in C

int g(int a, int b, int c, int d, int e) 
{
    return a + b + c + d + e;
}

Example 5-7 Assembly language call

    ; int f(int i) { return g(i, 2*i, 3*i, 4*i, 5*i); }

    PRESERVE8

    EXPORT f
    AREA f, CODE, READONLY
    IMPORT g           ; i is in r0
    STR lr, [sp, #-4]! ; preserve lr
    ADD r1, r0, r0     ; compute 2*i (2nd param)
    ADD r2, r1, r0     ; compute 3*i (3rd param)
    ADD r3, r1, r2     ; compute 5*i
    STR r3, [sp, #-4]! ; 5th param on stack
    ADD r3, r1, r1     ; compute 4*i (4th param)
    BL g               ; branch to C function
    ADD sp, sp, #4     ; remove 5th param
    LDR pc, [sp], #4   ; return
    END
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Calling C from C++

Example 5-8 and Example 5-9 show how to call C from C++.

Example 5-8 Calling a C function from C++

struct S {            // has no base classes 
                      // or virtual functions
    S(int s) : i(s) { }
    int i;
};
extern "C" void cfunc(S *); 
// declare the C function to be called from C++
int f(){
    S s(2);           // initialize 's'
    cfunc(&s);        // call 'cfunc' so it can change 's'
    return s.i * 3;
}

Example 5-9 Defining the function in C

struct S {
    int i;
};
void cfunc(struct S *p) {
/* the definition of the C function to be called from C++ */
    p->i += 5;
}
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Calling assembly language from C++

Example 5-10 and Example 5-11 show how to call assembly language from C++.

Example 5-10 Calling assembly language from C++

struct S {        // has no base classes
                  // or virtual functions
    S(int s) : i(s) { }
    int i;
};

extern "C" void asmfunc(S *);   // declare the Asm function
                                // to be called
int f() {
    S s(2);                     // initialize 's'
    asmfunc(&s);                // call 'asmfunc' so it
                                // can change 's'
    return s.i * 3;
}

Example 5-11 Defining the assembly language function

    PRESERVE8

    AREA Asm, CODE
    EXPORT asmfunc
asmfunc                ; the definition of the Asm
    LDR r1, [r0]       ; function to be called from C++
    ADD r1, r1, #5
    STR r1, [r0]
    BX  lr
    END
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Calling C++ from C

Example 5-12 and Example 5-13 show how to call C++ from C.

Example 5-12 Defining the function to be called in C++

struct S {        // has no base classes or virtual functions
    S(int s) : i(s) { }
    int i;
};

extern "C" void cppfunc(S *p) {    
// Definition of the C++ function to be called from C.
// The function is written in C++, only the linkage is C
    p->i += 5;                //
} 

Example 5-13 Declaring and calling the function in C

struct S {
    int i;
};

extern void cppfunc(struct S *p); 
/* Declaration of the C++ function to be called from C */

int f(void) {
    struct S s;
    s.i = 2;                /* initialize 's' */
    cppfunc(&s);            /* call 'cppfunc' so it */
                            /* can change 's' */
    return s.i * 3;
}
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Calling C++ from assembly language

Example 5-14 and Example 5-15 show how to call C++ from assembly language.

Example 5-14 Defining the function to be called in C++

struct S {           // has no base classes or virtual functions
    S(int s) : i(s) { }
    int i;
};
extern "C" void cppfunc(S * p) {
// Definition of the C++ function to be called from ASM.
// The body is C++, only the linkage is C
    p->i += 5;
}

In ARM assembly language, import the name of the C++ function and use a Branch 
with Link (BL) instruction to call it:

Example 5-15 Defining assembly language function

    AREA Asm, CODE
    IMPORT cppfunc         ; import the name of the C++ 
                           ; function to be called from Asm

    EXPORT   f
f
    STMFD  sp!,{lr}
    MOV    r0,#2
    STR    r0,[sp,#-4]!    ; initialize struct
    MOV    r0,sp           ; argument is pointer to struct
    BL     cppfunc         ; call 'cppfunc' so it can change
                           ; the struct
    LDR    r0, [sp], #4
    ADD    r0, r0, r0,LSL #1
    LDMFD  sp!,{pc}
    END
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Passing a reference between C and C++

Example 5-16 and Example 5-17 show how to pass a reference between C and C++.

Example 5-16 Defining the C++ function

extern "C" int cfunc(const int&); 
// Declaration of the C function to be called from C++

extern "C" int cppfunc(const int& r) {
// Definition of the C++ to be called from C.
    return 7 * r;
}

int f() {
    int i = 3;
    return cfunc(i);    // passes a pointer to 'i'
}

Example 5-17 Defining the C function

extern int cppfunc(const int*);    
/* declaration of the C++ to be called from C */

int cfunc(const int *p) {       
/* definition of the C function to be called from C++ */
    int k = *p + 4;
    return cppfunc(&k);
}
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Calling C++ from C or assembly language

The code in Example 5-18, Example 5-19 and Example 5-20 on page 5-18 
demonstrates how to call a non-static, non-virtual C++ member function from C or 
assembly language. Use the assembler output from the compiler to locate the mangled 
name of the function.

Example 5-18 Calling a C++ member function

struct T {
    T(int i) : t(i) { }
    int t;
    int f(int i);
};

int T::f(int i) { return i + t; }   
// Definition of the C++ function to be called from C.

extern "C" int cfunc(T*);    
// declaration of the C function to be called from C++

int f() {
    T t(5);                    // create an object of type T
    return cfunc(&t);
}

Example 5-19 Defining the C function

struct T;

extern int _ZN1T1fEi(struct T*, int);
    /* the mangled name of the C++ */
    /* function to be called */

int cfunc(struct T* t) {   
/* Definition of the C function to be called from C++. */
    return 3 * _ZN1T1fEi(t, 2);    /* like '3 * t->f(2)' */
}
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Example 5-20 Implementing the function in assembly language

    EXPORT cfunc
    AREA foo, CODE
    IMPORT  _ZN1T1fEi

cfunc
    STMFD   sp!,{lr}         ; r0 already contains the object pointer
    MOV r1, #2
    BL _ZN1T1fEi
    ADD r0, r0, r0, LSL #1   ; multiply by 3
    LDMFD sp!,{pc}
    END

Alternatively, you can implement Example 5-18 on page 5-17 and Example 5-20 using 
embedded assembly, as shown in Example 5-21. In this example, the __cpp keyword is 
used to reference the function. Therefore, you do not have to know the mangled name 
of the function.

Example 5-21 Implementing the function in embedded assembly

struct T {
    T(int i) : t(i) { }
    int t;
    int f(int i);
};
int T::f(int i) { return i + t; }

// Definition of asm function called from C++
__asm int asm_func(T*) {
    STMFD sp!, {lr}
    MOV r1, #2;
    BL __cpp(T::f);
    ADD r0, r0, r0, LSL #1 ; multiply by 3
    LDMFD sp!, {pc}
}

int f() {
    T t(5); // create an object of type T
    return asm_func(&t);
}
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Chapter 6 
Handling Processor Exceptions

This chapter describes how to handle the different types of exception supported by 
ARM® processors. It contains the following sections:

• About processor exceptions on page 6-2

• Determining the processor state on page 6-6

• Entering and leaving an exception on page 6-8

• Handling an exception on page 6-13

• Installing an exception handler on page 6-14

• SVC handlers on page 6-19

• Interrupt handlers on page 6-29

• Reset handlers on page 6-39

• Undefined Instruction handlers on page 6-40

• Prefetch Abort handler on page 6-41

• Data Abort handler on page 6-42

• Chaining exception handlers on page 6-43

• System mode on page 6-45.
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6.1 About processor exceptions

During the normal flow of execution through a program, the program counter (PC) 
increases sequentially through the address space, with branches to nearby labels or 
branch and links to subroutines.

Processor exceptions occur when this normal flow of execution is diverted, to enable the 
processor to handle events generated by internal or external sources. Examples of such 
events are:

• externally generated interrupts

• an attempt by the processor to execute an undefined instruction

• accessing privileged operating system functions.

It is necessary to preserve the previous processor status when handling such exceptions, 
so that execution of the program that was running when the exception occurred can 
resume when the appropriate exception routine has completed.

This section includes:

• Types of exception

• The vector table on page 6-3

• Use of modes and registers by exceptions on page 6-3

• Exception priorities on page 6-4.

6.1.1 Types of exception

Table 6-1 shows the different types of exception recognized by ARM processors.

Table 6-1 Exception types

Exception Description

Reset Occurs when the processor reset pin is asserted. This exception is only expected to occur for 
signaling power-up, or for resetting as if the processor has powered up. A soft reset can be 
done by branching to the reset vector (0x0000).

Undefined Instruction Occurs if neither the processor, nor any attached coprocessor, recognizes the currently 
executing instruction.

Supervisor Call (SVC) This is a user-defined synchronous interrupt instruction. It enables a program running in User 
mode, for example, to request privileged operations that run in Supervisor mode, such as an 
RTOS function.

Prefetch Abort Occurs when the processor attempts to execute an instruction that was not fetched, because the 
address was illegal (see Illegal addresses on page 6-3).
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Illegal addresses

An illegal virtual address is one that does not currently correspond to an address in 
physical memory, or one that the memory management subsystem has determined is 
inaccessible to the processor in its current mode.

6.1.2 The vector table

The vector table controls processor exception handling. The vector table is a reserved 
area of 32 bytes, usually at the bottom of the memory map. It has one word of space 
allocated to each exception type, and one word that is currently reserved. 

This is not enough space to contain the full code for a handler, so the vector entry for 
each exception type typically contains a branch instruction or load PC instruction to 
continue execution with the appropriate handler.

6.1.3 Use of modes and registers by exceptions

Typically, an application runs in User mode, but servicing exceptions requires a 
privileged mode. An exception changes the processor mode, and this in turn means that 
each exception handler has access to a certain subset of the banked registers: 

• its own r13 or Stack Pointer (sp_mode)

• its own r14 or Link Register (lr_mode)

• its own Saved Program Status Register (spsr_ mode).

In the case of an FIQ, each exception handler has access to five more general purpose 
registers (r8_FIQ to r12_FIQ).

Data Abort Occurs when a data transfer instruction attempts to load or store data at an illegal address (see 
Illegal addresses).

IRQ Occurs when the processor external interrupt request pin is asserted (LOW) and the I bit in the 
CPSR is clear.

FIQ Occurs when the processor external fast interrupt request pin is asserted (LOW) and the F bit 
in the CPSR is clear.

Table 6-1 Exception types  (continued)

Exception Description
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Each exception handler must ensure that other registers are restored to their original 
contents on exit. You can do this by saving the contents of any registers that the handler 
has to use onto its stack and restoring them before returning. If you are using Angel or 
RealView ARMulator® ISS, the required stacks are set up for you. Otherwise, you must 
set them up yourself.

Note
 As supplied, the assembler does not predeclare symbolic register names of the form 
register_mode. To use this form, you must declare the appropriate symbolic names with 
the RN assembler directive, for example, lr_FIQ RN r14 declares the symbolic register 
name lr_FIQ for r14. See the directives chapter in RealView Compilation Tools v3.0 
Assembler Guide for more information on the RN directive.

6.1.4 Exception priorities

When several exceptions occur simultaneously, they are serviced in a fixed order of 
priority. Each exception is handled in turn before execution of the user program 
continues. It is not possible for all exceptions to occur concurrently. For example, the 
Undefined Instruction and SVC exceptions are mutually exclusive because they are 
both triggered by executing an instruction.

Table 6-2 shows the exceptions, their corresponding processor modes and their 
handling priorities.

Table 6-2 Exception priorities

Vector address Exception type Exception mode Priority (1=high, 6=low)

0x0 Reset Supervisor (SVC) 1

0x4 Undefined Instruction Undef 6

0x8 Supervisor Call (SVC) Supervisor (SVC) 6

0xC Prefetch Abort Abort 5

0x10 Data Abort Abort 2

0x14 Reserved Not applicable Not applicable

0x18 Interrupt (IRQ) Interrupt (IRQ) 4

0x1C Fast Interrupt (FIQ) Fast Interrupt (FIQ) 3
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Because the Data Abort exception has a higher priority than the FIQ exception, the Data 
Abort is actually registered before the FIQ is handled. The Data Abort handler is 
entered, but control is then passed immediately to the FIQ handler. When the FIQ has 
been handled, control returns to the Data Abort handler. This means that the data 
transfer error does not escape detection as it would if the FIQ were handled first.
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6.2 Determining the processor state

An exception handler might have to determine whether the processor was in ARM or 
Thumb® state when the exception occurred.

SVC handlers, especially, might have to read the processor state. This is done by 
examining the SPSR T-bit. This bit is set for Thumb state and clear for ARM state.

Both ARM and Thumb instruction sets have the SVC instruction. When calling SVCs 
from Thumb state, you must consider the following:

• The instruction address is at (lr–2), rather than (lr–4).

• The instruction itself is 16-bit, and so requires a halfword load (see Figure 6-1).

• The SVC number is held in 8 bits instead of the 24 bits in ARM state.

Figure 6-1 Thumb SVC instruction

Example 6-1 on page 6-7 shows ARM code that handles a SVC from both sources.

Consider the following:

• Each of the do_svc_x routines could carry out a switch to Thumb state and back 
again to improve code density if required. 

• You can replace the jump table by a call to a C function containing a switch() 
statement to implement the SVCs.

• It is possible for an SVC number to be handled differently depending on the state 
it is called from.

• The range of SVC numbers accessible from Thumb state can be increased by 
calling SVCs dynamically (as described in SVC handlers on page 6-19).
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Example 6-1 SVC handler

T_bit   EQU    0x20                     ; Thumb bit of CPSR/SPSR, that is,
                                        ; bit 5.
        :
        :
SVCHandler
        STMFD   sp!, {r0-r3,r12,lr}     ; Store registers.
        MRS     r0, spsr                ; Move SPSR into
                                        ; general purpose register.
        TST     r0, #T_bit              ; Occurred in Thumb state?
        LDRNEH  r0,[lr,#-2]             ; Yes: load halfword and...
        BICNE   r0,r0,#0xFF00           ; ...extract comment field.
        LDREQ   r0,[lr,#-4]             ; No: load word and...
        BICEQ   r0,r0,#0xFF000000       ; ...extract comment field.

            ; r0 now contains SVC number

        CMP     r0, #MaxSVC             ; Rangecheck
        LDRLS   pc, [pc, r0, LSL#2]     ; Jump to the appropriate routine.
        B       SVCOutOfRange
svctable
        DCD     do_svc_1
        DCD     do_svc_2
        :
        :
do_svc_1
        ; Handle the SVC.
        LDMFD   sp!, {r0-r3,r12,pc}^   ; Restore the registers and return.
do_svc_2
        :
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6.3 Entering and leaving an exception

This section describes the processor response to an exception, and how to return to the 
place where an exception occurred after the exception has been handled. The method 
for returning is different depending on the exception type (see Types of exception on 
page 6-2).

Processors that support Thumb state use the same basic exception handling mechanism 
as processors that do not support Thumb state. An exception causes the next instruction 
to be fetched from the appropriate vector table entry.

The same vector table is used for exceptions in both Thumb state and ARM state. An 
initial step (to switch to ARM state) is added to the exception handling procedure 
described in The processor response to an exception.

In the following descriptions, it is clearly marked if there are further considerations that 
you must take into account when writing exception handlers suitable for use on 
processors that support Thumb state.

This section includes:

• The processor response to an exception

• Returning from an exception handler on page 6-9

• The return address and return instruction on page 6-10.

6.3.1 The processor response to an exception

When an exception is generated, the processor performs the following actions: 

1. Copies the Current Program Status Register (CPSR) into the Saved Program 
Status Register (SPSR) for the mode in which the exception is to be handled. This 
saves the current mode, interrupt mask, and condition flags.

2. Switches to ARM state, if it is currently in Thumb state.

3. Changes the appropriate CPSR mode bits in order to:

• change to the appropriate mode, and map in the appropriate banked 
registers for that mode

• disable interrupts. IRQs are disabled when any exception occurs. FIQs are 
disabled when a FIQ occurs and on reset.

4. Sets lr_mode to the return address, as defined in The return address and return 
instruction on page 6-10.

5. Sets the PC to the vector address for the exception.
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For ARM processors that do not support Thumb, this forces a branch to the 
appropriate exception handler.

For processors that support Thumb, the switch from Thumb state to ARM state in 
step 2 ensures that the ARM instruction installed at this vector address (either a 
branch or a PC-relative load) is correctly fetched, decoded, and executed. This 
forces a branch to a top-level veneer that you must write in ARM code.

6.3.2 Returning from an exception handler

The method used to return from an exception depends on whether the exception handler 
uses stack operations or not. In both cases, to return execution to the place where the 
exception occurred an exception handler must: 

• restore the CPSR from spsr_mode

• restore the PC using the return address stored in lr_mode.

For a simple return that does not require the destination mode registers to be restored 
from the stack, the exception handler carries out these operations by performing a data 
processing instruction with:

• the S flag set

• the PC as the destination register.

The return instruction required depends on the type of exception. See The return 
address and return instruction on page 6-10 for instructions on how to return from each 
exception type.

Note
 You do not have to return from the reset handler because the reset handler executes your 
main code directly.

If the exception handler entry code uses the stack to store registers that must be 
preserved while it handles the exception, it can return using a load multiple instruction 
with the ^ qualifier. For example, an exception handler can return in one instruction 
using:

    LDMFD sp!,{r0-r12,pc}^

To do this, the exception handler must save the following onto the stack:

• all the work registers in use when the handler is invoked

• the link register, modified to produce the same effect as the data processing 
instructions described in The return address and return instruction on page 6-10.
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The ̂  qualifier specifies that the CPSR is restored from the SPSR. It must be used only from 
a privileged mode. See the description of how to implement stacks with LDM and STM in 
the RealView Compilation Tools v3.0 Assembler Guide for more general information on 
stack operations.

6.3.3 The return address and return instruction

The actual location pointed to by the PC when an exception is taken depends on the 
exception type. The return address might not necessarily be the next instruction pointed 
to by the PC. 

If an exception occurs in ARM state, the processor stores (PC– 4) in lr_ mode. However, 
for exceptions that occur in Thumb state, the processor automatically stores a different 
value for each of the exception types. This adjustment is required because Thumb 
instructions take up only a halfword, rather than the full word that ARM instructions 
occupy.

If this correction were not made by the processor, the handler would have to determine 
the original state of the processor, and use a different instruction to return to Thumb 
code rather than ARM code. By making this adjustment, however, the processor enables 
the handler to have a single return instruction that returns correctly, regardless of the 
processor state (ARM or Thumb) at the time the exception occurred.

The following sections detail the instructions to return correctly from handling code for 
each type of exception.

Returning from SVC and Undefined Instruction handlers

The SVC and Undefined Instruction exceptions are generated by the instruction itself, 
so the PC is not updated when the exception is taken. The processor stores (PC–4) in lr_ 
mode. This makes lr_mode point to the next instruction to be executed. Restoring the 
PC from the link register with:

    MOVS        pc, lr

returns control from the handler.

The handler entry and exit code to stack the return address and pop it on return is:

    STMFD        sp!,{reglist,lr}
    ;...
    LDMFD        sp!,{reglist,pc}^

For exceptions that occur in Thumb state, the handler return instruction (MOVS pc,lr) 
changes the PC to the address of the next instruction to execute. This is at (PC–2), so 
the value stored by the processor in lr_mode is (PC–2).
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Returning from FIQ and IRQ handlers

After executing each instruction, the processor checks to see whether the interrupt pins 
are LOW and whether the interrupt disable bits in the CPSR are clear. As a result, IRQ or 
FIQ exceptions are generated only after the PC has been updated. The processor stores 
(PC–4) in lr_mode. This makes lr_mode point one instruction beyond the end of the 
instruction in which the exception occurred. When the handler has finished, execution 
must continue from the instruction prior to the one pointed to by lr_mode. The address 
to continue from is one word (four bytes) less than that in lr_mode, so the return 
instruction is:

    SUBS        pc, lr, #4

The handler entry and exit code to stack the return address and pop it on return is:

    SUB        lr,lr,#4
    STMFD      sp!,{reglist,lr}
    ;...
    LDMFD        sp!,{reglist,pc}^

For exceptions that occur in Thumb state, the handler return instruction (SUBS pc,lr,#4) 
changes the PC to the address of the next instruction to execute. Because the PC is 
updated before the exception is taken, the next instruction is at (PC–4). The value stored 
by the processor in lr_mode is therefore PC. 

Returning from Prefetch Abort handlers

If the processor attempts to fetch an instruction from an illegal address, the instruction 
is flagged as invalid. Instructions already in the pipeline continue to execute until the 
invalid instruction is reached, at which point a Prefetch Abort is generated.

The exception handler loads the unmapped instruction into physical memory and uses 
the MMU, if there is one, to map the virtual memory location into the physical one. The 
handler must then return to retry the instruction that caused the exception. The 
instruction now loads and executes.

Because the PC is not updated at the time the prefetch abort is issued, lr_ABT points to 
the instruction following the one that caused the exception. The handler must return to 
lr_ABT–4 with:

    SUBS        pc,lr, #4

The handler entry and exit code to stack the return address and pop it on return is:

    SUB        lr,lr,#4
    STMFD      sp!,{reglist,lr}
    ;...
    LDMFD      sp!,{reglist,pc}^
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For exceptions that occur in Thumb state, the handler return instruction (SUBS pc,lr,#4) 
changes the PC to the address of the aborted instruction. Because the PC is not updated 
before the exception is taken, the aborted instruction is at (PC–4). The value stored by 
the processor in lr_mode is therefore PC.

Returning from Data Abort handlers

When a load or store instruction tries to access memory, the PC has been updated. The 
stored value of (PC–4) in lr_ABT points to the second instruction beyond the address 
where the exception occurred. When the MMU, if present, has mapped the appropriate 
address into physical memory, the handler must return to the original, aborted 
instruction so that a second attempt can be made to execute it. The return address is 
therefore two words (eight bytes) less than that in lr_ABT, making the return instruction:

    SUBS       pc, lr, #8

The handler entry and exit code to stack the return address and pop it on return is:

    SUB        lr,lr,#8
    STMFD      sp!,{reglist,lr}
    ;...
    LDMFD      sp!,{reglist,pc}^

For exceptions that occur in Thumb state, the handler return instruction (SUBS pc,lr,#8) 
changes the PC to the address of the aborted instruction. Because the PC is updated 
before the exception is taken, the aborted instruction is at (PC–6). The value stored by 
the processor in lr_mode is therefore (PC+2).
6-12 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G



Handling Processor Exceptions 
6.4 Handling an exception

Your top-level veneer routine must save the processor status and any required registers 
on the stack. You then have the following options for writing the exception handler:

• Write the whole exception handler in ARM code.

• Perform a BX (Branch and eXchange) to a Thumb code routine that handles the 
exception. The routine must return to an ARM code veneer in order to return from 
the exception, because the Thumb instruction set does not have the instructions 
required to restore CPSR from SPSR.

Figure 6-2 shows how to implement this strategy.

Figure 6-2 Handling an exception in ARM or Thumb state

See Chapter 4 Interworking ARM and Thumb for details of how to combine ARM 
and Thumb code in this way.
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6.5 Installing an exception handler

Any new exception handler must be installed in the vector table. When installation is 
complete, the new handler executes whenever the corresponding exception occurs.

This section includes:

• Methods of installing exception handlers

• Installing the handlers at reset

• Installing the handlers from C on page 6-16.

6.5.1 Methods of installing exception handlers

Exception handlers can be installed in the following ways:

Branch instruction 

This is the simplest way to reach the exception handler. Each entry in the 
vector table contains a branch to the required handler routine. However, 
this method does have a limitation. Because the branch instruction only 
has a range of 32MB relative to the PC, with some memory organizations 
the branch might be unable to reach the handler.

Load PC instruction 

With this method, the PC is forced directly to the handler address by:

1. Storing the absolute address of the handler in a suitable memory 
location (within 4KB of the vector address).

2. Placing an instruction in the vector that loads the PC with the 
contents of the chosen memory location.

6.5.2 Installing the handlers at reset

If your application does not rely on the debugger or debug monitor to start program 
execution, you can load the vector table directly from your assembly language reset (or 
startup) code. 

If your ROM is at location 0x0 in memory, you can have a branch statement for each 
vector at the start of your code. This could also include the FIQ handler if it is running 
directly from 0x1C (see Interrupt handlers on page 6-29).

Example 6-2 on page 6-15 shows code that sets up the vectors if they are located in 
ROM at address zero. You can substitute branch statements for the loads.
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Example 6-2

Vector_Init_Block
                LDR    pc, Reset_Addr
                LDR    pc, Undefined_Addr
                LDR    pc, SVC_Addr
                LDR    pc, Prefetch_Addr
                LDR    pc, Abort_Addr
                NOP                     ;Reserved vector
                LDR    pc, IRQ_Addr
                LDR    pc, FIQ_Addr

Reset_Addr      DCD    Start_Boot
Undefined_Addr  DCD    Undefined_Handler
SVC_Addr        DCD    SVC_Handler
Prefetch_Addr   DCD    Prefetch_Handler
Abort_Addr      DCD    Abort_Handler
                DCD    0                ;Reserved vector
IRQ_Addr        DCD    IRQ_Handler
FIQ_Addr        DCD    FIQ_Handler

You must have ROM at location 0x0 on reset. Your reset code can remap RAM to 
location 0x0. Before doing this, it must copy the vectors (and the FIQ handler if 
required) down from an area in ROM into the RAM.

In this case, you must use an LDR pc instruction to address the reset handler, so that the 
reset vector code can be position independent.

Example 6-3 copies down the vectors given in Example 6-2 to the vector table in RAM.

Example 6-3

    MOV        r8, #0
    ADR        r9, Vector_Init_Block
    LDMIA      r9!,{r0-r7}           ;Copy the vectors (8 words)
    STMIA      r8!,{r0-r7}
    LDMIA      r9!,{r0-r7}           ;Copy the DCD'ed addresses
    STMIA      r8!,{r0-r7}           ;(8 words again)

Alternatively, you can use the scatter-loading mechanism to define the load and 
execution address of the vector table. In that case, the C library copies the vector table 
for you (see Chapter 2 Embedded Software Development).
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6.5.3 Installing the handlers from C

Sometimes during development work it is necessary to install exception handlers into 
the vectors directly from the main application. As a result, the required instruction 
encoding must be written to the appropriate vector address. This can be done for both 
the branch and the load PC method of reaching the handler.

Branch method

The required instruction can be constructed as follows:

1. Take the address of the exception handler.

2. Subtract the address of the corresponding vector.

3. Subtract 0x8 to provide for prefetching.

4. Shift the result to the right by two to give a word offset, rather than a byte offset.

5. Test that the top eight bits of this are clear, to ensure that the result is only 24 bits 
long (because the offset for the branch is limited to this).

6. Logically OR this with 0xEA000000 (the opcode for the Branch instruction) to 
produce the value to be placed in the vector.

Example 6-4 on page 6-17 shows a C function that implements this algorithm.

It takes the following arguments:

• the address of the handler

• the address of the vector in which the handler is to be to installed.

The function can install the handler and return the original contents of the vector. This 
result can be used to create a chain of handlers for a particular exception. See Chaining 
exception handlers on page 6-43 for more details.

The following code calls this to install an IRQ handler:

unsigned *irqvec = (unsigned *)0x18;
Install_Handler ((unsigned)IRQHandler, irqvec);

In this case, the returned, original contents of the IRQ vector are discarded.
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Example 6-4 Implementing the branch method

unsigned Install_Handler (unsigned routine, unsigned *vector)
/* Updates contents of 'vector' to contain branch instruction */
/* to reach ’routine’ from ’vector’. Function return value is */
/* original contents of 'vector'.*/
/* NB: ’Routine’ must be within range of 32MB from ’vector’.*/

{   unsigned vec, oldvec;
    vec = ((routine - (unsigned)vector - 0x8)>>2);
    if ((vec & 0xFF000000))
    {
        /* diagnose the fault */
        printf ("Installation of Handler failed");
        exit (1);
    }
    vec = 0xEA000000 | vec;
    oldvec = *vector;
    *vector = vec;
    return (oldvec);
}

Load PC method

The required instruction can be constructed as follows:

1. Take the address of the word containing the address of the exception handler.

2. Subtract the address of the corresponding vector.

3. Subtract 0x8 to provide for prefetching.

4. Check that the result can be represented in 12 bits.

5. Logically OR this with 0xe59FF000 (the opcode for LDR pc, [pc,#offset]) to 
produce the value to be placed in the vector.

6. Put the address of the handler into the storage location.

Example 6-5 on page 6-18 shows a C routine that implements this method.

Again in this example the returned, original contents of the IRQ vector are discarded, 
but they could be used to create a chain of handlers. See Chaining exception handlers 
on page 6-43 for more information.
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Example 6-5 Implementing the load PC method

unsigned Install_Handler (unsigned location, unsigned *vector)

/* Updates contents of 'vector' to contain LDR pc, [pc, #offset] */
/* instruction to cause long branch to address in 'location'. */
/* Function return value is original contents of 'vector'. */

{   unsigned vec, oldvec;
    vec = ((unsigned)location - (unsigned)vector - 0x8) | 0xe59ff000;
    oldvec = *vector;
    *vector = vec;
    return (oldvec);
}

The following code calls this to install an IRQ handler:

unsigned *irqvec = (unsigned *)0x18;
static unsigned pIRQ_Handler = (unsigned)IRQ_handler
Install_Handler (&pIRQHandler, irqvec);

Note
 If you are using a processor with separate instruction and data caches you must ensure 
that cache coherence problems do not prevent the new contents of the vectors from 
being used. 

The data cache (or at least the entries containing the modified vectors) must be cleaned 
to ensure the new vector contents are written to main memory. You must then flush the 
instruction cache to ensure that the new vector contents are read from main memory.

For details of cache clean and flush operations, see the Technical Reference Manual for 
your target processor.
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6.6 SVC handlers

This section describes SVC handlers, and includes:

• Determining the SVC to be called

• SVC handlers in assembly language on page 6-20

• SVC handlers in C and assembly language on page 6-21

• Using SVCs in Supervisor mode on page 6-22

• Calling SVCs from an application on page 6-24

• Calling SVCs dynamically from an application on page 6-26.

6.6.1 Determining the SVC to be called

When the SVC handler is entered, it must establish which SVC is being called. This 
information can be stored in bits 0-23 of the instruction itself, as shown in Figure 6-3, 
or passed in an integer register, usually one of r0-r3.

Figure 6-3 ARM SVC instruction

The top-level SVC handler can load the SVC instruction relative to the link register. Do 
this in assembly language, C/C++ inline, or embedded assembler.

The handler must first load the SVC instruction that caused the exception into a register. 
At this point, lr_SVC holds the address of the instruction that follows the SVC instruction, 
so the SVC is loaded into the register (in this case r0) using:

    LDR r0, [lr,#-4]

The handler can then examine the comment field bits, to determine the required 
operation. The SVC number is extracted by clearing the top eight bits of the opcode:

    BIC r0, r0, #0xFF000000

Example 6-6 on page 6-20 shows how you can put these instructions together to form a 
top-level SVC handler.

See Determining the processor state on page 6-6 for an example of a handler that deals 
with SVC instructions in both ARM state and Thumb state.
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Example 6-6 Top-level SVC handler

    PRESERVE8

    AREA TopLevelSVC, CODE, READONLY  ; Name this block of code.
    EXPORT     SVC_Handler
SVC_Handler
    STMFD      sp!,{r0-r12,lr}        ; Store registers.
    LDR        r0,[lr,#-4]            ; Calculate address of SVC instruction

; and load it into r0.
    BIC        r0,r0,#0xff000000      ; Mask off top 8 bits of instruction

; to give SVC number.
    ;
    ; Use value in r0 to determine which SVC routine to execute.
    ;
    LDMFD        sp!, {r0-r12,pc}^    ; Restore registers and return.
    END                               ; Mark end of this file.

6.6.2 SVC handlers in assembly language

The easiest way to call the handler for the requested SVC number is to use a jump table. 
If r0 contains the SVC number, the code in Example 6-7 can be inserted into the 
top-level handler given in Example 6-6, following on from the BIC instruction.

Example 6-7 SVC jump table

    CMP    r0,#MaxSVC          ; Range check
    LDRLS  pc, [pc,r0,LSL #2]
    B      SVCOutOfRange
SVCJumpTable
    DCD    SVCnum0
    DCD    SVCnum1
                    ; DCD for each of other SVC routines
SVCnum0             ; SVC number 0 code
    B    EndofSVC
SVCnum1             ; SVC number 1 code
    B    EndofSVC
                    ; Rest of SVC handling code
                    ;
EndofSVC
                    ; Return execution to top level 
                    ; SVC handler so as to restore
                    ; registers and return to program.
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6.6.3 SVC handlers in C and assembly language

Although the top-level handler must always be written in ARM assembly language, the 
routines that handle each SVC can be written in either assembly language or in C. See 
Using SVCs in Supervisor mode on page 6-22 for a description of restrictions.

The top-level handler uses a BL (Branch with Link) instruction to jump to the 
appropriate C function. Because the SVC number is loaded into r0 by the assembly 
routine, this is passed to the C function as the first parameter. The function can use this 
value in, for example, a switch() statement.

You can add the following line to the SVC_Handler routine in Example 6-6 on page 6-20:

    BL    C_SVC_Handler     ; Call C routine to handle the SVC

Example 6-8 shows how to implement the C function.

Example 6-8

void C_SVC_handler (unsigned number)
{
    switch (number)
    {
        case 0 :                 /* SVC number 0 code */
            break;
        case 1 :                 /* SVC number 1 code */
            break;
        ...
        default :                /* Unknown SVC - report error */
    }
}

The supervisor stack space might be limited, so avoid using functions that require a 
large amount of stack space.

    MOV     r1, sp        ; Second parameter to C routine...
                          ; ...is pointer to register values.
    BL    C_SVC_Handler   ; Call C routine to handle the SVC

You can pass values in and out of an SVC handler written in C, provided that the 
top-level handler passes the stack pointer value into the C function as the second 
parameter (in r1):

and the C function is updated to access it:

void C_SVC_handler(unsigned number, unsigned *reg)
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The C function can now access the values contained in the registers at the time the SVC 
instruction was encountered in the main application code (see Figure 6-4). It can read 
from them:

    value_in_reg_0 = reg [0];
    value_in_reg_1 = reg [1];
    value_in_reg_2 = reg [2];
    value_in_reg_3 = reg [3];

and also write back to them: 

    reg [0] = updated_value_0;
    reg [1] = updated_value_1;
    reg [2] = updated_value_2;
    reg [3] = updated_value_3;

This causes the updated value to be written into the appropriate stack position, and then 
restored into the register by the top-level handler.

Figure 6-4 Accessing the supervisor stack

6.6.4 Using SVCs in Supervisor mode

When a SVC instruction is executed:

1. The processor enters Supervisor mode.

2. The CPSR is stored into spsr_SVC.

3. The return address is stored in lr_SVC (see The processor response to an exception 
on page 6-8).

If the processor is already in Supervisor mode, lr_SVC and spsr_SVC are corrupted.
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If you call an SVC while in Supervisor mode you must store lr_SVC and spsr_SVC to 
ensure that the original values of the link register and the SPSR are not lost. For example, 
if the handler routine for a particular SVC number calls another SVC, you must ensure 
that the handler routine stores both lr_SVC and spsr_SVC on the stack. This guarantees 
that each invocation of the handler saves the information required to return to the 
instruction following the SVC that invoked it. Example 6-9 shows how to do this.

Example 6-9 SVC Handler

        AREA SVC_Area, CODE, READONLY

    PRESERVE8

    EXPORT SVC_Handler
    IMPORT C_SVC_Handler

T_bit EQU 0x20

SVC_Handler

    STMFD    sp!,{r0-r3,r12,lr}   ; Store registers.
    MOV      r1, sp               ; Set pointer to parameters.
    MRS      r0, spsr             ; Get spsr.
    STMFD    sp!, {r0, r3}        ; Store spsr onto stack and another register to maintain
                                  ; 8-byte-aligned stack. This is only really needed in case of
                                  ; nested SVCs.

        ; the next two instructions only work for SVC calls from ARM state.
        ; See Example 6-18 on page 6-36 for a version that works for calls from either ARM or Thumb.

    LDR      r0,[lr,#-4]          ; Calculate address of SVC instruction and load it into r0.
    BIC      r0,r0,#0xFF000000    ; Mask off top 8 bits of instruction to give SVC number.

        ; r0 now contains SVC number
        ; r1 now contains pointer to stacked registers

    BL       C_SVC_Handler        ; Call C routine to handle the SVC.
    LDMFD    sp!, {r0, r3}        ; Get spsr from stack.
    MSR      spsr_cf, r0          ; Restore spsr.
    LDMFD    sp!, {r0-r3,r12,pc}^ ; Restore registers and return.

    END
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Nested SVCs in C and C++

You can write nested SVCs in C or C++. Code generated by the ARM compiler stores 
and reloads lr_SVC as necessary.

6.6.5 Calling SVCs from an application

You can call an SVC from assembly language or C/C++.

In assembly language, set up any required register values and issue the relevant SVC. 
For example:

    MOV    r0, #65    ; load r0 with the value 65
    SVC    0x0        ; Call SVC 0x0 with parameter value in r0

The SVC instruction can be conditionally executed, as can almost all ARM instructions.

From C/C++, declare the SVC as an __SVC function, and call it. For example:

    __svc(0) void my_svc(int);
    .
    .
    .
    my_svc(65);

This enables an SVC to be compiled inline, without additional calling overhead, 
provided that:

• any arguments are passed in r0-r3 only

• any results are returned in r0-r3 only.

The parameters are passed to the SVC as if the SVC were a real function call. However, 
if there are between two and four return values, you must tell the compiler that the return 
values are being returned in a structure, and use the __value_in_regs directive. This is 
because a struct-valued function is usually treated as if it were a void function whose 
first argument is the address where the result structure must be placed.

Example 6-10 on page 6-25 and Example 6-11 on page 6-25 show an SVC handler that 
provides SVC numbers 0x0, 0x1, 0x2 and 0x3. SVCs 0x0 and 0x1 each take two integer 
parameters and return a single result. SVC 0x2 takes four parameters and returns a single 
result. SVC 0x3 takes four parameters and returns four results. This example is in the 
main examples directory, in ...\svc\main.c. and ...\svc\svc.h.
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Example 6-10 main.c

#include <stdio.h>
#include "svc.h"

unsigned *svc_vec = (unsigned *)0x08;
extern void SVC_Handler(void);

int main( void )
{
    int result1, result2;
    struct four_results res_3;
    Install_Handler( (unsigned) SVC_Handler, svc_vec );
    printf("result1 = multiply_two(2,4) = %d\n", result1 = multiply_two(2,4));
    printf("result2 = multiply_two(3,6) = %d\n", result2 = multiply_two(3,6));
    printf("add_two( result1, result2 ) = %d\n", add_two( result1, result2 ));
    printf("add_multiply_two(2,4,3,6) = %d\n", add_multiply_two(2,4,3,6));
    res_3 = many_operations( 12, 4, 3, 1 );
    printf("res_3.a = %d\n", res_3.a );
    printf("res_3.b = %d\n", res_3.b );
    printf("res_3.c = %d\n", res_3.c );
    printf("res_3.d = %d\n", res_3.d );
    return 0;
}

Example 6-11 svc.h

__svc(0) int multiply_two(int, int);
__svc(1) int add_two(int, int);
__svc(2) int add_multiply_two(int, int, int, int);

struct four_results
{
    int a;
    int b;
    int c;
    int d;
};

__svc(3) __value_in_regs struct four_results
    many_operations(int, int, int, int);
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6.6.6 Calling SVCs dynamically from an application

In some circumstances it might be necessary to call an SVC whose number is not known 
until runtime. This situation might occur, for example, when there are a number of 
related operations that can be performed on an object, and each operation has its own 
SVC. In this case, the methods described in the previous sections are not appropriate.

There are several ways of dealing with this, for example:

• Construct the SVC instruction from the SVC number, store it somewhere, then 
execute it.

• Use a generic SVC that takes, as an extra argument, a code for the actual operation 
to be performed on its arguments. The generic SVC decodes the operation and 
performs it.

The second mechanism can be implemented in assembly language by passing the 
required operation number in a register, typically r0 or r12. You can then rewrite the 
SVC handler to act on the value in the appropriate register.

Because some value has to be passed to the SVC in the comment field, it is possible for 
a combination of these two methods to be used.

For example, an operating system might make use of only a single SVC instruction and 
employ a register to pass the number of the required operation. This leaves the rest of 
the SVC space available for application-specific SVCs. You can use this method if the 
overhead of extracting the SVC number from the instruction is too great in a particular 
application. This is how the ARM (0x123456) and Thumb (0xAB) semihosted SVCs are 
implemented.

Example 6-12 shows how __svc can be used to map a C function call onto a semihosting 
SVC. It is derived from retarget.c in the main examples directory, in 
...\emb_sw_dev\source\retarget.c.

Example 6-12 Mapping a C function onto a semihosting SVC

#ifdef __thumb
/* Thumb Semihosting */
#define SemiSVC 0xAB
#else
/* ARM Semihosting */
#define SemiSVC 0x123456
#endif

/* Semihosting SVC to write a character */ 
__svc(SemiSVC) void Semihosting(unsigned op, char *c);
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#define WriteC(c) Semihosting (0x3,c)

void write_a_character(int ch)
{
    char tempch = ch;
    WriteC( &tempch );
}

The compiler includes a mechanism to support the use of r12 to pass the value of the 
required operation. Under the AAPCS, r12 is the ip register and has a dedicated role 
only during function calls. At other times, you can use it as a scratch register. The 
arguments to the generic SVC are passed in registers r0-r3 and values are optionally 
returned in r0-r3 as described earlier (see Calling SVCs from an application on 
page 6-24). The operation number passed in r12 can be the number of the SVC to be 
called by the generic SVC. However, this is not required.

Example 6-13 shows a C fragment that uses a generic, or indirect SVC.

Example 6-13

__svc_indirect(0x80)
    unsigned SVC_ManipulateObject(unsigned operationNumber,
                                  unsigned object,unsigned parameter);

unsigned DoSelectedManipulation(unsigned object,
                                unsigned parameter, unsigned operation)
{ return SVC_ManipulateObject(operation, object, parameter);
}

This produces the following code:

DoSelectedManipulation PROC
        STMFD    sp!,{r3,lr}
        MOV      r12,r2
        SVC      0x80
        LDMFD    sp!,{r3,pc}
        ENDP

It is also possible to pass the SVC number in r0 from C using the __svc mechanism. For 
example, if SVC 0x0 is used as the generic SVC and operation 0 is a character read and 
operation 1 a character write, you can set up the following:

__svc (0) char __ReadCharacter (unsigned op);
__svc (0) void __WriteCharacter (unsigned op, char c);
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-27



Handling Processor Exceptions 
These can be used in a more reader-friendly way by defining the following:

#define ReadCharacter () __ReadCharacter (0);
#define WriteCharacter (c) __WriteCharacter (1, c);

However, if you use r0 in this way, then only three registers are available for passing 
parameters to the SVC. Usually, if you have to pass more parameters to a subroutine in 
addition to r0-r3, you can do this using the stack. However, stacked parameters are not 
easily accessible to an SVC handler, because they typically exist on the User mode stack 
rather than the supervisor stack employed by the SVC handler.

Alternatively, one of the registers (typically r1) can be used to point to a block of 
memory storing the other parameters.
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6.7 Interrupt handlers

This section describes the how to write interrupt handlers to service the external 
interrupts FIQ and IRQ, and includes:

• Levels of external interrupt

• Simple interrupt handlers in C

• Reentrant interrupt handlers on page 6-31

• Example interrupt handlers in assembly language on page 6-33.

6.7.1 Levels of external interrupt

The ARM processor has two levels of external interrupt, FIQ and IRQ, both of which 
are level-sensitive active LOW signals into the core. For an interrupt to be taken, the 
appropriate disable bit in the CPSR must be clear.

FIQs have higher priority than IRQs in the following ways:

• FIQs are serviced first when multiple interrupts occur.

• Servicing an FIQ causes IRQs to be disabled, preventing them from being 
serviced until after the FIQ handler has re-enabled them. This is usually done by 
restoring the CPSR from the SPSR at the end of the handler.

The FIQ vector is the last entry in the vector table (at address 0x1C) so that the FIQ 
handler can be placed directly at the vector location and run sequentially from that 
address. This removes the requirement for a branch and its associated delays, and also 
means that if the system has a cache, the vector table and FIQ handler might all be 
locked down in one block within it. This is important because FIQs are designed to 
service interrupts as quickly as possible. The five extra FIQ mode banked registers 
enable status to be held between calls to the handler, again increasing execution speed.

Note
 An interrupt handler must contain code to clear the source of the interrupt.

6.7.2 Simple interrupt handlers in C

You can write simple C interrupt handlers by using the __irq function declaration 
keyword. You can use the __irq keyword both for simple one-level interrupt handlers, 
and interrupt handlers that call subroutines. However, you cannot use the __irq keyword 
for reentrant interrupt handlers, because it does not cause the SPSR to be saved or 
restored. In this context, reentrant means that the handler re-enables interrupts, and can 
itself be interrupted. See Reentrant interrupt handlers on page 6-31 for more 
information.
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The __irq keyword:

• preserves all AAPCS corruptible registers

• preserves all other registers (excluding the floating-point registers) used by the 
function

• exits the function by setting the PC to (lr–4) and restoring the CPSR to its original 
value.

If the function calls a subroutine, __irq preserves the link register for the interrupt mode 
in addition to preserving the other corruptible registers. See Calling subroutines from 
interrupt handlers for more information.

Note
 C interrupt handlers cannot be produced in this way when compiling Thumb C code. 
When compiling for Thumb (--thumb option or #pragma thumb), any functions specified 
as __irq are compiled for ARM.

However, the subroutine called by an __irq function can be compiled for Thumb, with 
interworking enabled. See Chapter 4 Interworking ARM and Thumb for more 
information on interworking.

Calling subroutines from interrupt handlers

If you call subroutines from your top-level interrupt handler, the __irq keyword also 
restores the value of lr_IRQ from the stack so that it can be used by a SUBS instruction to 
return to the correct address after the interrupt has been handled.

Example 6-14 shows how this works. The top level interrupt handler reads the value of 
a memory-mapped interrupt controller base address at 0x80000000. If the value of the 
address is 1, the top-level handler branches to a handler written in C.

Example 6-14

__irq void IRQHandler (void)
{
    volatile unsigned int *base = (unsigned int *) 0x80000000;

    if (*base == 1)          // which interrupt was it?
    {
        C_int_handler();     // process the interrupt
    }
    *(base+1) = 0;           // clear the interrupt
}
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Compiled with armcc, Example 6-14 on page 6-30 produces the following code:

IRQHandler PROC
        STMFD    sp!,{r0-r4,r12,lr}
        MOV      r4,#0x80000000
        LDR      r0,[r4,#0]
        SUB      sp,sp,#4
        CMP      r0,#1
        BLEQ     C_int_handler
        MOV      r0,#0
        STR      r0,[r4,#4]
        ADD      sp,sp,#4
        LDMFD    sp!,{r0-r4,r12,lr}
        SUBS     pc,lr,#4
        ENDP

Compare this with the result when the __irq keyword is not used:

IRQHandler PROC
        STMFD    sp!,{r4,lr}
        MOV      r4,#0x80000000
        LDR      r0,[r4,#0]
        CMP      r0,#1
        BLEQ     C_int_handler
        MOV      r0,#0
        STR      r0,[r4,#4]
        LDMFD    sp!,{r4,pc}
        ENDP

6.7.3 Reentrant interrupt handlers

If an interrupt handler re-enables interrupts, then calls a subroutine, and another 
interrupt occurs, the return address of the subroutine (stored in lr_IRQ) is corrupted 
when the second IRQ is taken. Using the __irq keyword in C does not cause the SPSR to 
be saved and restored, as required by reentrant interrupt handlers, so you must write 
your top level interrupt handler in assembly language.

A reentrant interrupt handler must save the IRQ state, switch processor modes, and save 
the state for the new processor mode before branching to a nested subroutine or C 
function.

In ARMv4 or later you can switch to System mode. System mode uses the User mode 
registers, and enables privileged access that might be required by your exception 
handler. See System mode on page 6-45 for more information. In ARM architectures 
prior to ARMv4 you must switch to Supervisor mode instead.
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Note
 This method works for both IRQ and FIQ interrupts. However, because FIQ interrupts 
are meant to be serviced as quickly as possible there is normally only one interrupt 
source, so it might not be necessary to provide for reentrancy.

The steps required to safely re-enable interrupts in an IRQ handler are:

1. Construct the return address and save it on the IRQ stack.

2. Save the work registers and spsr_IRQ.

3. Clear the source of the interrupt.

4. Switch to System mode and re-enable interrupts.

5. Save User mode link register and non callee-saved registers.

6. Call the C interrupt handler function.

7. When the C interrupt handler returns, restore User mode registers and disable 
interrupts.

8. Switch to IRQ mode, disabling interrupts.

9. Restore work registers and spsr_IRQ.

10. Return from the IRQ.

Example 6-15 shows how this works for System mode. Registers r12 and r14 are used 
as temporary work registers after lr_IRQ is pushed on the stack.

Example 6-15

    PRESERVE8

    AREA INTERRUPT, CODE, READONLY
    IMPORT C_irq_handler
IRQ
    SUB     lr, lr, #4        ; construct the return address
    STMFD   sp!, {lr}         ; and push the adjusted lr_IRQ
    MRS     r14, SPSR         ; copy spsr_IRQ to r14
    STMFD   sp!, {r12, r14}   ; save work regs and spsr_IRQ

    ; Add instructions to clear the interrupt here
    ; then re-enable interrupts.
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    MSR     CPSR_c, #0x1F     ; switch to SYS mode, FIQ and IRQ
                              ; enabled. USR mode registers
                              ; are now current.
    STMFD  sp!, {r0-r3, lr}   ; save lr_USR and non-callee 
                              ; saved registers
    BL      C_irq_handler     ; branch to C IRQ handler.
    LDMFD   sp!, {r0-r3, lr}  ; restore registers
    MSR     CPSR_c, #0x92     ; switch to IRQ mode and disable
                              ; IRQs. FIQ is still enabled.

    LDMFD   sp!, {r12, r14}   ; restore work regs and spsr_IRQ
    MSR     SPSR_cf, r14
    LDMFD   sp!, {pc}^        ; return from IRQ.
    END

This example assumes that FIQ remains permanently enabled.

6.7.4 Example interrupt handlers in assembly language

Interrupt handlers are often written in assembly language to ensure that they execute 
quickly. The following sections give some examples:

• Single-channel DMA transfer

• Dual-channel DMA transfer on page 6-34

• Interrupt prioritization on page 6-35

• Context switch on page 6-37.

Single-channel DMA transfer

Example 6-16 on page 6-34 shows an interrupt handler that performs interrupt driven 
I/O to memory transfers (soft DMA). The code is an FIQ handler. It uses the banked 
FIQ registers to maintain state between interrupts. This code is best situated at location 
0x1C. 

In the example code:

r8 Points to the base address of the I/O device that data is read from.

IOData Is the offset from the base address to the 32-bit data register that is read. 
Reading this register clears the interrupt.

r9 Points to the memory location to where that data is being transferred.

r10 Points to the last address to transfer to.
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The entire sequence for handling a normal transfer is four instructions. Code situated 
after the conditional return is used to signal that the transfer is complete.

Example 6-16 FIQ handler

    LDR     r11, [r8, #IOData]     ; Load port data from the IO device.
    STR     r11, [r9], #4          ; Store it to memory: update the pointer.
    CMP     r9, r10                ; Reached the end ?
    SUBLSS  pc, lr, #4             ; No, so return.
                                   ; Insert transfer complete
                                   ; code here.

Byte transfers can be made by replacing the load instructions with load byte 
instructions. Transfers from memory to an I/O device are made by swapping the 
addressing modes between the load instruction and the store instruction.

Dual-channel DMA transfer

Example 6-17 on page 6-35 is similar to Example 6-16, except that there are two 
channels being handled. The code is an FIQ handler. It uses the banked FIQ registers to 
maintain state between interrupts. It is best situated at location 0x1c. 

In the example code:

r8 Points to the base address of the I/O device from which data is 
read.

IOStat Is the offset from the base address to a register indicating which of 
two ports caused the interrupt.

IOPort1Active Is a bit mask indicating if the first port caused the interrupt 
(otherwise it is assumed that the second port caused the interrupt).

IOPort1, IOPort2 Are offsets to the two data registers to be read. Reading a data 
register clears the interrupt for the corresponding port.

r9 Points to the memory location to which data from the first port is 
being transferred.

r10 Points to the memory location to which data from the second port 
is being transferred.

r11, r12 Point to the last address to transfer to (r11 for the first port, r12 for 
the second).
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The entire sequence to handle a normal transfer takes nine instructions. Code situated 
after the conditional return is used to signal that the transfer is complete.

Example 6-17 FIQ handler

    LDR     r13, [r8, #IOStat]      ; Load status register to find which port
                                    ; caused the interrupt.
    TST     r13, #IOPort1Active
    LDREQ   r13, [r8, #IOPort1]     ; Load port 1 data.
    LDRNE   r13, [r8, #IOPort2]     ; Load port 2 data.
    STREQ   r13, [r9], #4           ; Store to buffer 1.
    STRNE   r13, [r10], #4          ; Store to buffer 2.
    CMP     r9, r11                 ; Reached the end?
    CMPLE   r10, r12                ; On either channel?
    SUBNES  pc, lr, #4              ; Return
                            ; Insert transfer complete code here.

Byte transfers can be made by replacing the load instructions with load byte 
instructions. Transfers from memory to an I/O device are made by swapping the 
addressing modes between the conditional load instructions and the conditional store 
instructions.

Interrupt prioritization

Example 6-18 on page 6-36 dispatches up to 32 interrupt sources to their appropriate 
handler routines. Because it is designed for use with the normal interrupt vector (IRQ), 
it is branched to from location 0x18.

External hardware is used to prioritize the interrupt and present the high-priority active 
interrupt in an I/O register.

In the example code:

IntBase Holds the base address of the interrupt controller.

IntLevel Holds the offset of the register containing the highest-priority active 
interrupt.

r13 Is assumed to point to a small full descending stack.

Interrupts are enabled after ten instructions, including the branch to this code.

The specific handler for each interrupt is entered after a further two instructions (with 
all registers preserved on the stack).
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In addition, the last three instructions of each handler are executed with interrupts 
turned off again, so that the SPSR can be safely recovered from the stack.

Note
 Application Note 30: Software Prioritization of Interrupts describes multiple-source 
prioritization of interrupts using software, as opposed to using hardware as described 
here.

Example 6-18

    ; first save the critical state
    SUB     lr, lr, #4              ; Adjust the return address
                                    ; before we save it.
    STMFD   sp!, {lr}               ; Stack return address
    MRS     r14, SPSR               ; get the SPSR ...
    STMFD   sp!, {r12, r14}         ; ... and stack that plus a
                                    ; working register too.
                                    ; Now get the priority level of the
                                    ; highest priority active interrupt.
    MOV     r12, #IntBase           ; Get the interrupt controller's
                                    ; base address.
    LDR     r12, [r12, #IntLevel]   ; Get the interrupt level (0 to 31).

    ; Now read-modify-write the CPSR to enable interrupts.

    MRS     r14, CPSR               ; Read the status register.
    BIC     r14, r14, #0x80         ; Clear the I bit
                                    ; (use 0x40 for the F bit).
    MSR     CPSR_c, r14             ; Write it back to re-enable
                                    ; interrupts and
    LDR     pc, [pc, r12, LSL #2]   ; jump to the correct handler.
                                    ; PC base address points to this
                                    ; instruction + 8
    NOP                             ; pad so the PC indexes this table.

                                    ; Table of handler start addresses
    DCD     Priority0Handler
    DCD     Priority1Handler
    DCD     Priority2Handler
; ...
    Priority0Handler
    STMFD   sp!, {r0 - r11}         ; Save other working registers.
                                    ; Insert handler code here.
; ...
    LDMFD   sp!, {r0 - r11}         ; Restore working registers (not r12).
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    ; Now read-modify-write the CPSR to disable interrupts.
    MRS     r12, CPSR               ; Read the status register.
    ORR     r12, r12, #0x80         ; Set the I bit
                                    ; (use 0x40 for the F bit).
    MSR     CPSR_c, r12             ; Write it back to disable interrupts.

    ; Now that interrupt disabled, can safely restore SPSR then return.
    LDMFD   sp!, {r12, r14}         ; Restore r12 and get SPSR.
    MSR     SPSR_csxf, r14          ; Restore status register from r14.
    LDMFD   sp!, {pc}^              ; Return from handler.
Priority1Handler
; ...

Context switch

Example 6-19 on page 6-38 performs a context switch on the User mode process. The 
code is based around a list of pointers to Process Control Blocks (PCBs) of processes 
that are ready to run.

Figure 6-5 shows the layout of the PCBs that the example expects.

Figure 6-5 PCB layout

The pointer to the PCB of the next process to run is pointed to by r12, and the end of the 
list has a zero pointer. Register r13 is a pointer to the PCB, and is preserved between 
time slices, so that on entry it points to the PCB of the currently running process.
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Example 6-19

    STMIA   r13, {r0 - r14}^        ; Dump user registers above r13.
    MRS     r0, SPSR                ; Pick up the user status
    STMDB   r13, {r0, lr}           ; and dump with return address below.
    LDR     r13, [r12], #4          ; Load next process info pointer.
    CMP     r13, #0                 ; If it is zero, it is invalid
    LDMNEDB r13, {r0, lr}           ; Pick up status and return address.
    MSRNE   SPSR_cxsf, r0           ; Restore the status.
    LDMNEIA r13, {r0 - r14}^        ; Get the rest of the registers
    NOP
    SUBNES  pc, lr, #4              ; and return and restore CPSR.
                    ; Insert "no next process code" here.
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6.8 Reset handlers

The operations carried out by the Reset handler depend on the system for which the 
software is being developed. For example, it might: 

• Set up exception vectors. See Installing an exception handler on page 6-14 for 
details.

• Initialize stacks and registers.

• Initialize the memory system, if using an MMU.

• Initialize any critical I/O devices.

• Enable interrupts.

• Change processor mode and/or state.

• Initialize variables required by C and call the main application.

See Chapter 2 Embedded Software Development for more information.
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6.9 Undefined Instruction handlers

Instructions that are not recognized by the processor are offered to any coprocessors 
attached to the system. If the instruction remains unrecognized, an Undefined 
Instruction exception is generated. It might be the case that the instruction is intended 
for a coprocessor, but that the relevant coprocessor, for example a Floating-Point 
Accelerator (FPA), is not attached to the system. However, a software emulator for such 
a coprocessor might be available.

Such an emulator must:

1. Attach itself to the Undefined Instruction vector and store the old contents.

2. Examine the Undefined Instruction to see if it has to be emulated. This is similar 
to the way in which an SVC handler extracts the number of an SVC, but rather 
than extracting the bottom 24 bits, the emulator must extract bits [27:24]. 

These bits determine whether the instruction is a coprocessor operation in the 
following way:

• If bits [27:24] = b1110 or b110x, the instruction is a coprocessor instruction.

• If bits [8:11] show that this coprocessor emulator has to handle the 
instruction, the emulator must process the instruction and return to the user 
program.

3. Otherwise the emulator must pass the exception onto the original handler (or the 
next emulator in the chain) using the vector stored when the emulator was 
installed.

When a chain of emulators is exhausted, no further processing of the instruction can 
take place, so the Undefined Instruction handler must report an error and quit. See 
Chaining exception handlers on page 6-43 for more information.

Note
 The Thumb instruction set does not have coprocessor instructions, so there is no 
requirement for the Undefined Instruction handler to emulate such instructions.
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6.10 Prefetch Abort handler

If the system has no MMU, the Prefetch Abort handler can report the error and quit. 
Otherwise the address that caused the abort must be restored into physical memory. 
lr_ABT points to the instruction at the address following the one that caused the abort, 
so the address to be restored is at lr_ABT-4. The virtual memory fault for that address 
can be dealt with and the instruction fetch retried. The handler therefore returns to the 
same instruction rather than the following one, for example:

    SUBS    pc,lr,#4
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6.11 Data Abort handler

If there is no MMU, the Data Abort handler must report the error and quit. If there is an 
MMU, the handler must deal with the virtual memory fault.

The instruction that caused the abort is at lr_ABT-8 because lr_ABT points two 
instructions beyond the instruction that caused the abort.

The following types of instruction can cause this abort:

Single Register Load or Store (LDR or STR) 

The response depends on the processor type: 

• If the abort takes place on an ARM7 processor, including the 
ARM7TDMI®, the address register has been updated and the 
change must be undone.

• If the abort takes place on an ARM9, ARM10, StrongARM, or later 
processor, the address is restored by the processor to the value it 
had before the instruction started. No further action is required to 
undo the change.

Swap (SWP) There is no address register update involved with this instruction.

Load Multiple or Store Multiple (LDM or STM) 

The response depends on the processor type: 

• If the abort takes place on an ARM7 processor, and writeback is 
enabled, the base register is updated as if the whole transfer had 
taken place. 

In the case of an LDM with the base register in the register list, the 
processor replaces the overwritten value with the modified base 
value so that recovery is possible. The original base address can 
then be recalculated using the number of registers involved.

• If the abort takes place on an ARM9, ARM10, StrongARM, or later 
processor and writeback is enabled, the base register is restored to 
the value it had before the instruction started.

In each of the three cases the MMU can load the required virtual memory into physical 
memory. The MMU Fault Address Register (FAR) contains the address that caused the 
abort. When this is done, the handler can return and try to execute the instruction again.

You can find example Data Abort handler code in the main examples directory, in 
...\databort.
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6.12 Chaining exception handlers

In some situations there can be several different sources of a particular exception. For 
example: 

• Angel uses an Undefined Instruction to implement breakpoints. However, 
Undefined Instruction exceptions also occur when a coprocessor instruction is 
executed, and no coprocessor is present.

• Angel uses an SVC for various purposes, such as entering Supervisor mode from 
User mode and supporting semihosting requests during development. However, a 
Real Time Operating System (RTOS) or an application might also implement 
some SVCs.

In such situations the following approaches can be taken to extend the exception 
handling code:

• A single extended handler.

• Several chained handlers.

6.12.1 A single extended handler

In some circumstances it is possible to extend the code in the exception handler to work 
out what the source of the exception was, and then directly call the appropriate code. In 
this case, you are modifying the source code for the exception handler.

Angel has been written to make this approach simple. Angel decodes SVCs and 
Undefined Instructions, and the Angel exception handlers can be extended to deal with 
non-Angel SVCs and Undefined Instructions.

However, this approach is only useful if all the sources of an exception are known when 
the single exception handler is written.

6.12.2 Several chained handlers

Some circumstances require more than a single handler. Consider the situation in which 
a standard Angel debugger is executing, and a standalone user application (or RTOS) is 
then downloaded that wants to support some additional SVCs. The newly loaded 
application might have its own entirely-independent exception handler that it wants to 
install, but which cannot replace the Angel handler.

In this case the address of the old handler must be noted so that the new handler is able 
to call the old handler if it discovers that the source of the exception is not a source it 
can deal with. For example, an RTOS SVC handler would call the Angel SVC handler 
on discovering that the SVC was not an RTOS SVC, so that the Angel SVC handler gets 
a chance to process it.
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This approach can be extended to any number of levels to build a chain of handlers. 
Although code that takes this approach enables each handler to be entirely independent, 
it is less efficient than code that uses a single handler, or at least it becomes less efficient 
the further down the chain of handlers it has to go.

Both routines given in Installing the handlers from C on page 6-16 return the old 
contents of the vector. This value can be decoded to give:

The offset for a branch instruction 

This can be used to calculate the location of the original handler and 
enable a new branch instruction to be constructed and stored at a suitable 
place in memory. If the replacement handler fails to handle the exception, 
it can branch to the constructed branch instruction, which in turn 
branches to the original handler.

The location used to store the address of the original handler 

If the application handler fails to handle the exception, it has to load the 
PC from that location.

In most cases, such calculations are not necessary because information on the debug 
monitor or RTOS handlers is available to you. If so, the instructions required to chain 
in the next handler can be hard-coded into the application. The last section of the 
handler must check that the cause of the exception has been handled. If it has, the 
handler can return to the application. If not, it must call the next handler in the chain.

Note
 When chaining in a handler before a debug monitor handler, you must remove the chain 
when the monitor is removed from the system, then directly install the application 
handler.
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6.13 System mode

The ARM Architecture defines a User mode that has 15 general purpose registers, a PC, 
and a CPSR. In addition to this mode there are other privileged processor modes, each of 
which has an SPSR and a number of registers that replace some of the 15 User mode 
general purpose registers. 

Note
 This section only applies to processors that implement architectures ARMv4, ARMv4T, 
and later.

When a processor exception occurs, the current PC is copied into the link register for 
the exception mode, and the CPSR is copied into the SPSR for the exception mode. The 
CPSR is then altered in an exception-dependent way, and the PC is set to an 
exception-defined address to start the exception handler.

The ARM subroutine call instruction (BL) copies the return address into r14 before 
changing the PC, so the subroutine return instruction moves r14 to PC (MOV pc,lr).

Together these actions imply that ARM modes that handle exceptions must ensure that 
another exception of the same type cannot occur if they call subroutines, because the 
subroutine return address is overwritten with the exception return address.

In earlier versions of the ARM architecture, this problem has been solved by either 
carefully avoiding subroutine calls in exception code, or changing from the privileged 
mode to User mode. The first solution is often too restrictive, and the second means the 
task might not have the privileged access it requires to run correctly.

ARMv4 and later provide a processor mode called System mode, to overcome this 
problem. System mode is a privileged processor mode that shares the User mode 
registers. Privileged mode tasks can run in this mode, and exceptions no longer 
overwrite the link register.

Note
 System mode cannot be entered by an exception. The exception handlers modify the 
CPSR to enter System mode. See Reentrant interrupt handlers on page 6-31 for an 
example.
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Chapter 7 
Debug Communications Channel

This chapter explains how to use the Debug Communications Channel (DCC). It 
contains the following sections:

• About the Debug Communications Channel on page 7-2

• Target transfer of data on page 7-3

• Polled debug communications on page 7-4

• Interrupt-driven debug communications on page 7-8

• Access from Thumb state on page 7-9.
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7.1 About the Debug Communications Channel

The EmbeddedICE® logic in ARM® cores such as ARM7TDMI® and ARM9TDMI® 
contains a debug communications channel. This enables data to be passed between the 
target and the host debugger using the JTAG port and a protocol converter such as 
Multi-ICE®, without stopping the program flow or entering debug state. This chapter 
describes how the DCC can be accessed by a program running on the target, and by the 
host debugger.

7.1.1 Semihosting

You can use the debug communications channel for semihosting if you are using 
Multi-ICE with $semihosting_enabled=2. See the Multi-ICE User Guide for more 
information.
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7.2 Target transfer of data

The target accesses the DCC as coprocessor 14 on the core using the ARM instructions 
MCR and MRC.

Two registers are provided to transfer data:

Comms data read register 

A 32-bit wide register used to receive data from the debugger. The 
following instruction returns the read register value in Rd:

MRC p14, 0, Rd, c1, c0

Comms data write register 

A 32-bit wide register used to send data to the debugger. The following 
instruction writes the value in Rn to the write register:

MCR p14, 0, Rn, c1, c0

Note
 See the appropriate Technical Reference Manual for information on accessing DCC 
registers for the ARM10 and ARM11 cores. The instructions used, positions of the 
status bits, and interpretation of the status bits are different for processors later than 
ARM9.
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7.3 Polled debug communications

In addition to the comms data read and write registers, a comms data control register is 
provided by the DCC. This section includes:

• Comms data control register

• Target to debugger communication on page 7-5

• Debugger to target communication on page 7-6.

7.3.1 Comms data control register

The following instruction returns the control register value in Rd:

    MRC p14, 0, Rd, c0, c0

Two bits in this control register provide synchronized handshaking between the target 
and the host debugger:

Bit 1 (W bit) Denotes whether the comms data write register is free (from the 
target point of view):

W = 0 New data can be written by the target application.

W = 1 The host debugger can scan new data out of the write 
register.

Bit 0 (R bit) Denotes whether there is new data in the comms data read register 
(from the target point of view):

R = 1 New data is available to be read by the target 
application.

R = 0 The host debugger can scan new data into the read 
register.

Note
 The debugger cannot use coprocessor 14 to access the debug communications channel 
directly, because this has no meaning to the debugger. Instead, the debugger can read 
from and write to the DCC registers using the scan chain. The DCC data and control 
registers are mapped into addresses in the EmbeddedICE logic. To view the 
EmbeddedICE logic registers, see the documentation for your debugger and debug 
target.
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7.3.2 Target to debugger communication

This is the sequence of events for an application running on the ARM core to 
communicate with a debugger running on the host:

1. The target application verifies that the DCC write register is free for use. It does 
this using the MRC instruction to read the debug communications channel control 
register to check that the W bit is clear.

2. If the W bit is clear, the comms data write register is clear and the application 
writes a word to it using an MCR instruction to coprocessor 14. The action of 
writing to the register automatically sets the W bit. If the W bit is set, the debugger 
has not emptied the comms data write register. If the application has to send 
another word, it must poll the W bit until it is clear.

3. The debugger polls the comms data control register through scan chain 2. If the 
debugger sees that the W bit is set, it can read the DCC data register to read the 
message sent by the application. The process of reading the data automatically 
clears the W bit in the comms data control register.

Example 7-1 shows how this works. The example code is available in the main 
examples directory, in ...\dcc\outchan.s.

Example 7-1

     AREA  OutChannel, CODE, READONLY
     ENTRY
     MOV   r1,#3          ; Number of words to send
     ADR   r2, outdata    ; Address of data to send
pollout
     MRC   p14,0,r0,c0,c0 ; Read control register
     TST   r0, #2
     BNE   pollout        ; if W set, register still full
write
     LDR   r3,[r2],#4     ; Read word from outdata
                          ; into r3 and update the pointer
     MCR   p14,0,r3,c1,c0 ; Write word from r3
     SUBS  r1,r1,#1       ; Update counter
     BNE   pollout        ; Loop if more words to be written
     MOV   r0, #0x18      ; Angel_SWIreason_ReportException
     LDR   r1, =0x20026   ; ADP_Stopped_ApplicationExit
     SVC   0x123456       ; ARM semihosting (formerly SWI)
outdata    
     DCB "Hello there!"
     END
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To execute the example:

1. Assemble outchan.s:

armasm --debug outchan.s

2. Link the output object:

armlink outchan.o -o outchan.axf

The link step creates the executable file outchan.axf

3. Load and execute the image. See your debugger documentation for details.

7.3.3 Debugger to target communication

This is the sequence of events for message transfer from a debugger running on the host 
to the application running on the core:

1. The debugger polls the comms data control register R bit. If the R bit is clear, the 
comms data read register is clear and data can be written there for the target 
application to read.

2. The debugger scans the data into the comms data read register through scan chain 
2. The R bit in the comms data control register is automatically set by this.

3. The target application polls the R bit in the comms data control register. If it is set, 
there is data in the comms data read register that can be read by the application, 
using an MRC instruction to read from coprocessor 14. The R bit is cleared as part 
of the read instruction.

The target application code shown in Example 7-2 on page 7-7 shows this in action. The 
example code is available in the main examples directory, in ...\dcc\inchan.s, .

To execute the example:

1. Create an input file on the host containing, for example, And goodbye!.

2. Assemble inchan.s:

armasm --debug inchan.s

3. Link the output object:

armlink inchan.o -o inchan.axf

The link step creates the executable file inchan.axf

4. Load the and execute the image. See your debugger documentation for details.
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Example 7-2

     AREA  InChannel, CODE, READONLY
     ENTRY
     MOV   r1,#3          ; Number of words to read
     LDR   r2, =indata    ; Address to store data read
pollin
     MRC   p14,0,r0,c0,c0 ; Read control register
     TST   r0, #1
     BEQ   pollin         ; If R bit clear then loop
read
     MRC   p14,0,r3,c1,c0 ; read word into r3
     STR   r3,[r2],#4     ; Store to memory and
                          ; update pointer
     SUBS  r1,r1,#1       ; Update counter
     BNE   pollin         ; Loop if more words to read
     MOV   r0, #0x18      ; Angel_SWIreason_ReportException
     LDR   r1, =0x20026   ; ADP_Stopped_ApplicationExit
     SVC   0x123456       ; ARM semihosting (formerly SWI)

     AREA  Storage, DATA, READWRITE
indata
     DCB   "Duffmessage#"
     END
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7.4 Interrupt-driven debug communications

The examples given in Polled debug communications on page 7-4 demonstrate polling 
the DCC. You can convert these to interrupt-driven examples by connecting up COMMRX 
and COMMTX signals from the Embedded ICE logic to your interrupt controller.

The read and write code in Example 7-1 on page 7-5 and Example 7-2 on page 7-7 can 
then be moved into an interrupt handler.

See Interrupt handlers on page 6-29 for information on writing interrupt handlers.
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7.5 Access from Thumb state

Because the Thumb® instruction set does not contain coprocessor instructions, you 
cannot use the debug communications channel while the core is in Thumb state.

There are three possible ways around this:

• You can write each polling routine in an SVC handler, that can then be executed 
while in either ARM or Thumb state. Entering the SVC handler immediately puts 
the core into ARM state where the coprocessor instructions are available. See 
Chapter 6 Handling Processor Exceptions for more information on SVCs.

• Thumb code can make interworking calls to ARM subroutines that implement the 
polling. See Chapter 4 Interworking ARM and Thumb for more information on 
mixing ARM and Thumb code.

• Use interrupt-driven communication rather than polled communication. The 
interrupt handler would be written in ARM instructions, so the coprocessor 
instructions can be accessed directly.
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