
RealView® Compilation Tools
Version 3.0

Developer Guide
Copyright © 2002-2006 ARM Limited. All rights reserved.
ARM DUI 0203G

RealView Compilation Tools
Developer Guide

Copyright © 2002-2006 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Change History

Date Issue Confidentiality Change

August 2002 A Non-Confidential Release 1.2

January 2003 B Non-Confidential Release 2.0

September 2003 C Non-Confidential Release 2.0.1 for RVDS v2.0

January 2004 D Non-Confidential Release 2.1 for RVDS v2.1

December 2004 E Non-Confidential Release 2.2 for RVDS v2.2

May 2005 F Non-Confidential Release 2.2 for RVDS v2.2 SP1

March 2006 G Non-Confidential Release 3.0 for RVDS 3.0
ii Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Web Address

http://www.arm.com
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. iii

iv Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Contents
RealView Compilation Tools Developer Guide

Preface
About this book .. viii
Feedback ... xi

Chapter 1 Introduction
1.1 About RVCT .. 1-2
1.2 General programming issues .. 1-3
1.3 Developing for the ARM processors ... 1-8
1.4 ARM architecture v6 support ... 1-12

Chapter 2 Embedded Software Development
2.1 About embedded software development .. 2-2
2.2 Default compilation tool behavior in the absence of a target system 2-4
2.3 Tailoring the C library to your target hardware .. 2-11
2.4 Tailoring the image memory map to your target hardware 2-14
2.5 Reset and initialization .. 2-24
2.6 Further memory map considerations .. 2-34

Chapter 3 Writing Position Independent Code and Data
3.1 Position independence .. 3-2
3.2 Read-only position independence ... 3-3
3.3 Read-write position independence .. 3-6
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. v

Contents
Chapter 4 Interworking ARM and Thumb
4.1 About interworking .. 4-2
4.2 Assembly language interworking .. 4-7
4.3 C and C++ interworking and veneers ... 4-13
4.4 Assembly language interworking using veneers 4-18

Chapter 5 Mixing C, C++, and Assembly Language
5.1 Using the inline and embedded assemblers ... 5-2
5.2 Accessing C global variables from assembly code 5-4
5.3 Using C header files from C++ ... 5-5
5.4 Calling between C, C++, and ARM assembly language 5-7

Chapter 6 Handling Processor Exceptions
6.1 About processor exceptions ... 6-2
6.2 Determining the processor state ... 6-6
6.3 Entering and leaving an exception ... 6-8
6.4 Handling an exception .. 6-13
6.5 Installing an exception handler ... 6-14
6.6 SVC handlers ... 6-19
6.7 Interrupt handlers ... 6-29
6.8 Reset handlers ... 6-39
6.9 Undefined Instruction handlers ... 6-40
6.10 Prefetch Abort handler .. 6-41
6.11 Data Abort handler ... 6-42
6.12 Chaining exception handlers .. 6-43
6.13 System mode .. 6-45

Chapter 7 Debug Communications Channel
7.1 About the Debug Communications Channel .. 7-2
7.2 Target transfer of data .. 7-3
7.3 Polled debug communications .. 7-4
7.4 Interrupt-driven debug communications ... 7-8
7.5 Access from Thumb state ... 7-9
vi Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Preface

This preface introduces the RealView Compilation Tools Developer Guide. It contains
the following sections:

• About this book on page viii

• Feedback on page xi.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. vii

Preface
About this book

This book contains information that helps you with specific issues when developing
code for the ARM® family of Reduced Instruction Set Computing (RISC) processors.
The chapters in this book, and the examples used, assume that you are using the latest
release of RealView® Compilation Tools (RVCT) to develop your code.

Intended audience

This book is written for all developers writing code for ARM architecture-based
processors. It assumes that you are an experienced software developer, and that you are
familiar with the ARM development tools described in RealView Compilation Tools
v3.0 Essentials Guide.

Using this book

This book is organized into the following chapters and appendixes:

 Chapter 1 Introduction

Read this chapter for an introduction to RVCT.

Chapter 2 Embedded Software Development

Read this chapter for details of how to develop embedded applications
with RVCT. It describes the default RVCT behavior in the absence of a
target system, and how to tailor the C library and image memory map to
your target system.

Chapter 3 Writing Position Independent Code and Data

Read this chapter for details of how to write position independent code
and data that makes use of the Procedure Call Standard for the ARM
Architecture (AAPCS).

Chapter 4 Interworking ARM and Thumb

Read this chapter for details of how to change between ARM state and
Thumb state when writing code for processors that implement the Thumb
instruction set.

Chapter 5 Mixing C, C++, and Assembly Language

Read this chapter for details of how to write mixed C, C++, and ARM
assembly language code. It also describes how to use the ARM inline and
embedded assembler from C and C++.
viii Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Preface
Chapter 6 Handling Processor Exceptions

Read this chapter for details of how to handle the various types of
exception supported by ARM processors.

Chapter 7 Debug Communications Channel

Read this chapter for a description of how to use the Debug
Communications Channel (DCC).

This book assumes that you have installed your ARM software in the default location
for example, on Windows this might be volume:\Program Files\ARM. This is assumed to
be the location of install_directory when referring to path names, for example
install_directory\Documentation\.... You might have to change this if you have
installed your ARM software in a different location.

Typographical conventions

The following typographical conventions are used in this book:

monospace Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

monospace italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

monospace bold

Denotes language keywords when used outside example code.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM processor
signal names.

Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for the ARM family of processors.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. ix

Preface
ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda, and the ARM Frequently
Asked Questions.

ARM publications

This book contains general information on developing applications for the ARM family
of processors. See the following books in the RVCT document suite for information on
other components:

• RealView Compilation Tools v3.0 Essentials Guide (ARM DUI 0202)

• RealView Compilation Tools v3.0 Compiler and Libraries Guide (ARM DUI
0205)

• RealView Compilation Tools v3.0 Linker and Utilities Guide (ARM DUI 0206)

• RealView Compilation Tools v3.0 Assembler Guide (ARM DUI 0204)

• RealView Development Suite Glossary (ARM DUI 0324).

For full information about the base standard, software interfaces, and standards
supported by ARM, see install_directory\Documentation\Specifications\....

In addition, see the following documentation for specific information relating to ARM
products:

• ARM Architecture Reference Manual (ARM DDI 0100)

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.

Other publications

For a comprehensive introduction to ARM architecture, see Steve Furber, ARM
system-on-chip architecture (2nd edition, 2000). Addison Wesley, ISBN
0-201-67519-6.
x Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Preface
Feedback

ARM Limited welcomes feedback on both RealView Compilation Tools, and its
documentation.

Feedback on RealView Compilation Tools

If you have any problems with RVCT, contact your supplier. To help them provide a
rapid and useful response, give:

• your name and company

• the serial number of the product

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you notice any errors or omissions in this book, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. xi

Preface
xii Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Chapter 1
Introduction

This chapter introduces this book and begins to describe how the RealView®
Compilation Tools (RVCT) can be used to develop code. It contains the following
sections:

• About RVCT on page 1-2

• General programming issues on page 1-3

• Developing for the ARM processors on page 1-8

• ARM architecture v6 support on page 1-12.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About RVCT

RVCT consists of a suite of applications, together with supporting documentation and
examples, that enable you to write applications for the ARM® family of RISC
processors. You can use RVCT to build C, C++, and ARM assembly language
programs.

This book contains information that helps you with specific issues when developing
code for ARM-based systems. The chapters in this book, and the examples used,
assume that you are using the latest release of RVCT to develop your code.

If you are upgrading to RVCT from a previous release, ensure that you read RealView
Compilation Tools v3.0 Essentials Guide for details about new features and
enhancements in this release.

If you are new to RVCT, read RealView Compilation Tools v3.0 Essentials Guide for an
overview of the ARM tools and an introduction to using them as part of your
development project.

For information about previous releases of RVCT, see Appendix A in RealView
Compilation Tools v3.0 Essentials Guide.

See ARM publications on page x for a list of the other books in the RVCT
documentation suite that give information on the ARM assembler, compiler, and
supporting software.

1.1.1 Using the examples

This book references examples provided with RealView Development Suite in the main
examples directory install_directory\RVDS\Examples. See RealView Development Suite
Getting Started Guide for a summary of the examples provided.
1-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Introduction
1.2 General programming issues

ARM processors are Reduced Instruction Set Computing (RISC) processors and many
of the programming strategies that give efficient code are generic to this type of device.

As with many RISC processors, ARM processors are designed to access aligned data,
that is, words that lie on addresses that are multiples of four, and halfwords that lie on
addresses that are multiples of two. This data is located on its natural size boundary.

ARM compilers normally align global variables to these natural size boundaries so that
these items can be accessed efficiently using the LDR and STR instructions.

This contrasts with most Complex Instruction Set Computing (CISC) architectures
where instructions are available to directly access unaligned data. Therefore, you must
take care when porting legacy code from CISC architectures to the ARM processors. In
particular, accesses to unaligned data can be expensive in code size or performance.

Note
 ARM11 processors support unaligned accesses in hardware. This section mainly
applies to ARM processors earlier than the ARM11 processor family.

The following sections discuss these programming issues in more detail:

• Unaligned pointers

• Unaligned fields in structures on page 1-4

• Porting code and detecting unaligned accesses on page 1-6.

1.2.1 Unaligned pointers

The C and C++ standards specify that a pointer to a type cannot be less aligned than the
natural alignment of the type. This improves code size and performance. Therefore, by
default, the ARM compiler expects normal C and C++ pointers to point to an aligned
word in memory. A type qualifier __packed is provided to enable unaligned pointer
access (see the section describing variable declaration keywords in the compiler
reference in RealView Compilation Tools v3.0 Compiler and Libraries Guide).

For example, if the pointer int * is used to read a word, the ARM compiler uses an LDR
instruction in the generated code. This works as expected when the address is a multiple
of four (that is, on a word boundary). However, if the address is not a multiple of four,
then an LDR instruction returns a rotated result rather than performing a true unaligned
word load. The rotated result depends on the offset and endianness of the system.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-3

Introduction
If your code loads data from a pointer that points to the address 0x8006, for example, you
might expect to load the contents of bytes from 0x8006, 0x8007, 0x8008, and 0x8009.
However, on an ARM processor, this access loads the rotated contents of bytes from
0x8004, 0x8005, 0x8006, and 0x8007.

Therefore, if you want to define a pointer to a word that can be at any address (that is,
that can be at a non-natural alignment), you must specify this using the __packed
qualifier when defining the pointer:

__packed int *pi; // pointer to unaligned int

The ARM compiler does not then use an LDR, but generates code that correctly accesses
the value regardless of the alignment of the pointer. This generated code is a sequence
of byte accesses or, depending on the compile options, variable alignment-dependent
shifting and masking. This approach, however, incurs a performance and code size
penalty.

Note
 Beware of accessing memory-mapped peripheral registers using __packed because the
ARM compiler can use multiple memory accesses to retrieve the data. Therefore,
nearby locations can be accessed that might correspond to other peripheral registers.
When bitfields are used, the ARM compiler currently accesses the entire container, not
just the field specified.

1.2.2 Unaligned fields in structures

In the same way that global variables are located on their natural size boundary, so are
the fields in a structure. This means that the compiler often has to insert padding
between fields to ensure that fields are aligned. The compiler generates the following
remark when it inserts padding between fields in a structure:

#1301-D: padding inserted in struct mystruct

The compiler also inserts padding at the end of a structure to ensure that the structure
as a whole is aligned, and generates the following remark:

#2530-D: padding added to end of struct mystruct

Use the --remarks compiler option to display remarks.

Sometimes, you might not want the compiler to insert padding. You can use the
__packed qualifier to create structures without padding between fields. These structures
require unaligned accesses.
1-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Introduction
If the ARM compiler knows the alignment of a particular structure, it can work out
whether or not the fields it is accessing are aligned within a packed structure. In these
cases, the compiler carries out the more efficient aligned word or halfword accesses,
where possible. Otherwise, the compiler uses multiple aligned memory accesses (LDR,
STR, LDM, and STM) combined with fixed shifting and masking to access the correct bytes
in memory.

Whether these accesses to unaligned elements are done inline or by calling a function
is controlled by using the compiler options -Ospace (default, calls a function) and -Otime
(do unaligned access inline).

For example:

1. Create a file foo.c that contains:

__packed struct mystruct {
 int aligned_i;
 short aligned_s;
 int unaligned_i;
};
struct mystruct S1;

int foo (int a, short b)
{
 S1.aligned_i=a;
 S1.aligned_s=b;
 return S1.unaligned_i;
}

2. Compile this using armcc -c -Otime foo.c. The code produced is:

MOV r2,r0
LDR r0,|L1.84|
MOV r12,r2,LSR #8
STRB r2,[r0,#0]
STRB r12,[r0,#1]
MOV r12,r2,LSR #16
STRB r12,[r0,#2]
MOV r12,r2,LSR #24
STRB r12,[r0,#3]
MOV r12,r1,LSR #8
STRB r1,[r0,#4]
STRB r12,[r0,#5]
ADD r0,r0,#6
BIC r3,r0,#3
AND r0,r0,#3
LDMIA r3,{r3,r12}
MOV r0,r0,LSL #3
MOV r3,r3,LSR r0
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-5

Introduction
RSB r0,r0,#0x20
ORR r0,r3,r12,LSL r0
BX lr

However, you can give the compiler more information to enable it to know which
fields are aligned and which are not. To do this you must declare non-aligned
fields as __packed, and remove the __packed attribute from the struct itself.

This is the recommended approach, and the only way of guaranteeing fast access
to naturally aligned members within the struct.

It is also clearer which fields are non-aligned, but care is needed when adding or
deleting fields from the struct.

3. Now modify the definition of the structure in foo.c to:

struct mystruct {
 int aligned_i;
 short aligned_s;
 __packed int unaligned_i;
};
struct mystruct S1;

4. Compile foo.c and the following, more efficient code, is generated:

MOV r2,r0
LDR r0,|L1.32|
STR r2,[r0,#0]
STRH r1,[r0,#4]
LDMIB r0,{r3,r12}
MOV r0,r3,LSR #16
ORR r0,r0,r12,LSL #16
BX lr

The same principle applies to unions. Use the __packed attribute on the components of
the union that will be unaligned in memory.

Note
 Any __packed object accessed through a pointer has unknown alignment, even packed
structures.

1.2.3 Porting code and detecting unaligned accesses

Legacy C code for other architectures (for example, x86 CISC) might perform accesses
to unaligned data using pointers that do not work on ARM processors. This is
non-portable code, and such accesses must be identified and corrected to work on RISC
architectures, which expect aligned data.
1-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Introduction
Identifying the unaligned accesses can be difficult, because the use of load or store
operations with unaligned addresses gives incorrect behavior. It is difficult to trace
which part of the C source is causing the problem.

ARM processors with full Memory Management Units (MMUs), for example, the
ARM926™, support optional alignment checking, where the processor checks every
access to ensure it is correctly aligned. The MMU raises a Data Abort if an incorrectly
aligned access occurs.

For simple cores such as the ARM7TDMI®, it is recommended that alignment-checking
be implemented within the Application Specific Integrated Circuit (ASIC) or
Application Specific Standard Product (ASSP). You can do this with an additional
hardware block that is external to the ARM core, and that monitors the access size and
the least significant bits of the address bus for every data access. You can configure the
ASIC/ASSP to raise the ABORT signal in the case of an unaligned access. ARM
Limited recommends that such logic is included on ASIC/ASSP devices where code is
ported from other architectures.

If the system is configured to abort on unaligned accesses, a Data Abort exception
handler must be installed. When an unaligned access occurs, the Data Abort handler is
entered, and this can identify the erroneous data access instruction, which is located at
(r14-8).

When identified, you must fix the data access by changing the C source. These changes
can be made conditional using the following:

#ifdef __arm
 #define PACKED __packed
#else
 #define PACKED
#endif
...
 PACKED int *pi;
...

It is best to minimize accesses to unaligned data because of code size and performance
overheads.

See the description of the --pointer_alignment and --min_array_alignment options in
the section on controlling code generation of RealView Compilation Tools v3.0
Compiler and Libraries Guide.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-7

Introduction
1.3 Developing for the ARM processors

This book gives information and example code for some of the most common ARM
programming tasks, and includes information for developers working on ARM
architectures:

• Embedded software development

• Interworking ARM and Thumb code on page 1-9

• Mixing C, C++, and assembly language on page 1-9

• Handling processor exceptions on page 1-10

• Using the AAPCS on page 1-11

• Compatibility with legacy objects and libraries on page 1-11.

1.3.1 Embedded software development

Many applications written for ARM architecture-based systems are embedded
applications that are contained in ROM and execute on reset. There are a number of
factors that you must consider when writing embedded operating systems, or embedded
applications that execute from reset without an operating system, including:

• address remapping, for example initializing with ROM at address 0x0000, then
remapping RAM to address 0x0000

• initializing the environment and application

• linking an embedded executable image to place code and data in specific locations
in memory.

The ARM core usually begins executing instructions from address 0x0000 at reset. For
an embedded system, this means that there must be ROM at address 0x0000 when the
system is reset. Typically, however, ROM is slow compared to RAM, and often only 8
or 16 bits wide. This affects the speed of exception handling. Having ROM at address
0x0000 means that the exception vectors cannot be modified. A common strategy is to
remap ROM to RAM and copy the exception vectors from ROM to RAM after startup.
See ROM/RAM remapping on page 2-27 for more information.

After reset, an embedded application or operating system must initialize the system,
including:

• initializing the execution environment, such as exception vector, stacks, and I/O
peripherals

• initializing the application, for example copying initial values of nonzero writable
data to the writable data region and zeroing the ZI data region.

See Initialization sequence on page 2-25 for more information.
1-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Introduction
Embedded systems often implement complex memory configurations. For example, an
embedded system might use fast, 32-bit RAM for performance-critical code, such as
interrupt handlers and the stack, slower 16-bit RAM for application RW data, and ROM
for normal application code. You can use the linker scatter-loading mechanism to
construct executable images suitable for complex systems. For example, a scatter-load
description file can specify the load address and execution address of individual code
and data regions. See Chapter 2 Embedded Software Development for a series of worked
examples, and for information on other issues that affect embedded applications, such
as semihosting.

1.3.2 Interworking ARM and Thumb code

If you are writing code for ARM processors that support the Thumb 16-bit instruction
set, you can mix ARM and Thumb code as required. If you are writing C or C++ code
you must compile with the --apcs /interwork option. The linker detects when an ARM
function is called from Thumb state, or a Thumb function is called from ARM state and
alters call and return sequences, or inserts interworking veneers to change processor
state as necessary.

Note
 If you want to use absolute addresses to Thumb functions, see Pointers to functions in
Thumb state on page 4-16.

If you are writing assembly language code you must ensure that you comply with the
interworking variant of the Procedure Call Standard for the ARM Architecture
(AAPCS). There are several ways to change processor state, depending on the target
architecture version. See Chapter 4 Interworking ARM and Thumb for more
information.

1.3.3 Mixing C, C++, and assembly language

You can mix separately compiled and assembled C, C++, and ARM assembly language
modules in your program. You can write small assembly language routines within your
C or C++ code. These routines are compiled using the inline or embedded assembler of
the ARM compiler. However, there are a number of restrictions to the assembly
language code you can write if you are using the inline or embedded assembler. These
restrictions are described in the chapter on inline and embedded assemblers in RealView
Compilation Tools v3.0 Compiler and Libraries Guide.

In addition, Chapter 5 Mixing C, C++, and Assembly Language gives general
guidelines and examples of how to call between C, C++, and assembly language
modules.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-9

Introduction
1.3.4 Handling processor exceptions

The ARM processor recognizes the following exception types:

Reset Occurs when the processor reset pin is asserted. This exception is only
expected to occur for signaling power-up, or for resetting as if the
processor has powered up. A soft reset can be done by branching to the
reset vector, 0x0000.

Undefined Instruction

Occurs if neither the processor, nor any attached coprocessor, recognizes
the currently executing instruction.

Supervisor Call (SVC - formerly SWI)

This is a user-defined interrupt instruction. It enables a program running
in User mode, for example, to request privileged operations that run in
Supervisor mode, such as an RTOS function.

Prefetch Abort

Occurs when the processor attempts to execute an instruction that has
been prefetched from an illegal address. An illegal address is one at
which memory does not exist, or one that the memory management
subsystem has determined is inaccessible to the processor in its current
mode.

Data Abort Occurs when a data transfer instruction attempts to load or store data at
an illegal address.

Interrupt (IRQ)

Occurs when the processor external interrupt request pin is asserted
(LOW) and IRQ interrupts are enabled (the I bit in the CPSR is clear).

Fast Interrupt (FIQ)

Occurs when the processor external fast interrupt request pin is asserted
(LOW) and FIQ interrupts are enabled (the F bit in the CPSR is clear). This
exception is typically used where interrupt latency must be kept to a
minimum.

In general, if you are writing an application such as an embedded application that does
not rely on an operating system to service exceptions, you must write handlers for each
exception type.

In cases where an exception type can have more than one source, for example SVC or
IRQ interrupts, you can chain exception handlers for each source. See Chaining
exception handlers on page 6-43 for more information.
1-10 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Introduction
On processors that support Thumb instructions, the processor switches to ARM state
when an exception is taken. You can either write your exception handler in ARM code,
or use a veneer to switch to Thumb state. See The return address and return instruction
on page 6-10 for more information.

1.3.5 Using the AAPCS

The Procedure Call Standard for the ARM Architecture (AAPCS) defines register usage
and stack conventions that must be followed to enable separately compiled and
assembled modules to work together. There are a number of variants on the base
standard. The ARM compiler always generates code that conforms to the selected
AAPCS variant. The linker selects an appropriate standard C or C++ library to link
with, if required.

When developing code for ARM processors, you must select an appropriate AAPCS
variant, for example:

• if you are writing code that interworks between ARM and Thumb state you must
select the --apcs /interwork option in the compiler and assembler

• if you are writing code in C or C++, you must ensure that you have selected
compatible AAPCS options for each compiled module

• if you are writing your own assembly language routines, you must ensure that you
conform to the appropriate AAPCS variant.

For more information, see the Procedure Call Standard for the ARM Architecture
specification, aapcs.pdf, in install_directory\Documentation\Specifications\...

Note
 If you are mixing C and assembly language, ensure that you understand the AAPCS
implications.

1.3.6 Compatibility with legacy objects and libraries

If you are upgrading to RVCT from a previous release, ensure that you read Appendix
A in RealView Compilation Tools v3.0 Essentials Guide for details about compatibility
between the new release and previous releases of RVCT.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-11

Introduction
1.4 ARM architecture v6 support

All components of RVCT support ARMv6. armasm accepts all ARMv6 instructions,
armlink can link-in ARMv6 library objects where required, and fromelf disassembles
the ARMv6 instructions correctly. The embedded assembler of the compiler supports
all ARMv6 instructions. The inline assembler supports the majority of ARMv6
instructions.

To compile code for ARMv6 use:

• --cpu 6 for generic ARMv6 support

To compile code for a specific ARMv6 processor, use the processor name. For example:

• --cpu ARM1136J-S to generate code targeted at the ARM1136J-S with software
vector floating-point support

• --cpu ARM1136JF-S to generate code targeted at the ARM1136JF-S, that includes
Vector Floating Point (VFP) hardware.

This section includes:

• Instruction generation

• Alignment support on page 1-13

• Endian support on page 1-13

• Example 1 - Sign/Zero extension on page 1-15

• Example 2 - Packed structures on page 1-15.

1.4.1 Instruction generation

When compiling code for ARMv6, the compiler generates sign-extend and zero-extend
instructions (for example, SEXT8), where appropriate (see Example 1 - Sign/Zero
extension on page 1-15). Code scheduling for the specified processor is performed.

In addition, the C libraries contain some functions that are optimized specifically for
ARMv6, such as memcpy(), memove(), and strcmp().

The compiler does not make use of SIMD instructions, because these do not map well
onto C expressions. The endian reversal instructions (REV, REV16 and REVSH) are
generated by the compiler if it can deduce that a C expression performs an endian
reversal.
1-12 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Introduction
1.4.2 Alignment support

By default the compiler utilizes ARMv6 unaligned access support to speed up access to
packed structures, by enabling an LDR (or STR) to load from (or store to) a non-word
aligned address (see Example 2 - Packed structures on page 1-15). Structures remain
non-packed unless explicitly qualified with __packed.

Note
 Code compiled for ARMv6 only runs correctly if you enable unaligned support on the
ARM core. You must do this by setting the U bit (bit 22) of CP15 register 1 in your
initialization code, or by tying the UBITINIT input to the core HIGH.

Code that uses the pre-ARMv6 unaligned accesses behavior can be generated by using
the compiler option:

--no_unaligned_access

1.4.3 Endian support

The ARM compiler has options for producing either little-endian or big-endian objects.
ARMv6 supports two different big-endian modes:

BE8 Specifies ARMv6 Byte Invariant Addressing mode. This produces
little-endian code and big-endian data. This is the default Byte
Addressing mode for ARMv6 big-endian images.

Byte Invariant Addressing mode is only available on ARM processors
that support ARMv6.

BE32 This is legacy big-endian mode. It produces big-endian code and data. It
is identical to the big-endian mode supported prior to ARMv6. This is the
default Byte Addressing mode for all pre-ARMv6 big-endian images.

When compiling for ARMv6 big endian, the ARM compiler generates big-endian
objects as BE8 rather than BE32. A flag, set in the object code, labels the code as BE8.
Therefore, you must enable BE8 support in the ARM core by setting the E-bit in the
CPSR.

You can link legacy objects (for example, ARMv4T) with ARMv6 objects (for running
on ARMv6), but in this case the linker switches the byte order of the legacy object code
into BE8 mode. The resulting image is BE8.

If you want to use the legacy BE32 mode, then you must set the B bit (bit 7) of CP15
register 1 in your initialization code, or tie the BIGENDINIT input into the core HIGH.

You can then generate BE32-compatible code by using:
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-13

Introduction
--no_unaligned_access

BE32-compatible code must also be linked using the linker option --BE32. Otherwise,
the ARMv6 attribute of the objects cause a BE8 image to be produced.
1-14 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Introduction
1.4.4 Example 1 - Sign/Zero extension

This example shows the different instructions generated when compiling for ARMv6
and earlier architectures.

signed char unpack(int i)
{
 return (signed char)i;
}

Pre-ARMv6 architecture compilations

Compiling with --cpu 5 gives:

unpack PROC
 LSL r0,r0,#24
 ASR r0,r0,#24
 BX lr
 ENDP

ARMv6 architecture compilations

Compiling with --cpu 6 gives:

unpack PROC
 SXTB r0,r0
 BX lr
 ENDP

1.4.5 Example 2 - Packed structures

This example shows the different instructions generated for a packed structure when
compiling for ARMv6 and earlier architectures.

__packed struct{
 char ch;
 short sh;
 int i;
} foo;

signed char unpack()
{
 return (signed char)foo.i;
}

ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 1-15

Introduction
Pre-ARMv6 architecture compilations

Compiling with --cpu 5 gives:

unpack PROC
 LDR r0,|L1.24|
 PUSH {r4,lr}
 BL __aeabi_uread4
 LSL r0,r0,#24
 ASR r0,r0,#24
 POP {r4,pc}
|L1.24|
 DCD ||.data$0|| + 3
 ENDP

ARMv6 architecture compilations

Compiling with --cpu 6 gives:

unpack PROC
 LDR r0,|L1.16|
 LDR r0,[r0,#3]
 SXTB r0,r0
 BX lr
|L1.16|
 DCD ||.data$0||
 ENDP
1-16 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Chapter 2
Embedded Software Development

This chapter describes how to develop embedded applications with RealView®
Compilation Tools (RVCT), with or without a target system present. It contains the
following sections:

• About embedded software development on page 2-2

• Default compilation tool behavior in the absence of a target system on page 2-4

• Tailoring the C library to your target hardware on page 2-11

• Tailoring the image memory map to your target hardware on page 2-14

• Reset and initialization on page 2-24

• Further memory map considerations on page 2-34.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-1

Embedded Software Development
2.1 About embedded software development

Most embedded applications are initially developed in a prototype environment with
resources that differ from those available in the final product. Therefore, it is important
to consider the processes involved in moving an embedded application from one that
relies on the facilities of the development or debugging environment to a system that
runs standalone on target hardware.

When developing embedded software using RVCT, you must consider the following:

• How the C library uses hardware.

• Some C library functionality executes by using debug environment resources. If
used, you must re-implement this functionality to make use of target hardware.

• RVCT has no inherent knowledge of the memory map of any given target. You
must tailor the image memory map to the memory layout of the target hardware.

• An embedded application must perform some initialization before the main
application can be run. A complete initialization sequence requires code that you
implement as well as RVCT C library initialization routines.

2.1.1 Example code

To illustrate the topics covered in this chapter, associated example projects are provided.
The code for the Dhrystone builds described in this chapter is in the main examples
directory, in ...\emb_sw_dev. Each build is in a separate directory, and provides an
example of the techniques discussed in successive sections of this chapter. Specific
information regarding each build can be found in:

• Example code for Build 1 on page 2-10

• Example code for Build 2 on page 2-13

• Example code for Build 3 on page 2-22

• Example code for Build 4 on page 2-32

• Example code for Build 5 on page 2-40.

The Dhrystone benchmarking program provides the code base for the example projects.
Dhrystone was chosen because it enables many of the concepts described in this chapter
to be illustrated.

The example projects are tailored to run on the ARM® Integrator™ development
platform. However, the principles illustrated by the examples apply to any target
hardware.
2-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
Note
 The focus of this chapter is not specifically the Dhrystone program, but the steps that
must be taken to enable it to run on a fully standalone system. For further discussion of
Dhrystone as a benchmarking tool, see Application Note 93 - Benchmarking with
ARMulator®. You can find the ARM Application Notes in the Documentation area of
the ARM website at http://www.arm.com.

Running the Dhrystone builds on an Integrator

To run the Dhrystone builds described in this chapter on an Integrator, you must:

• Perform ROM/RAM remapping. To achieve this, run the Boot Monitor by setting
switches 1 and 4 to ON, and then reset the board.

• Set top_of_memory to 0x40000, or fit a DIMM memory module. If this is not done,
the stack, with a default setting of 0x80000, might not be in valid memory.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-3

Embedded Software Development
2.2 Default compilation tool behavior in the absence of a target system

When you start work on software for an embedded application, you might not be aware
of the full technical specifications of the target hardware. For example, you might not
know the details of target peripheral devices, the memory map, or even the processor
itself.

To enable you to proceed with software development before such details are known, the
compilation tools have a default behavior that enables you to start building and
debugging application code immediately. It is useful to be aware of this default
behavior, so that you appreciate the steps necessary to move from a default build to a
fully standalone application.

This section includes:

• Semihosting on page 2-5

• C library structure on page 2-6

• Default memory map on page 2-7

• Linker placement rules on page 2-8

• Application startup on page 2-9

• Example code for Build 1 on page 2-10.
2-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
2.2.1 Semihosting

In the ARM C Library, support for some ISO C functionality is provided by the host
debugging environment. The mechanism that provides this functionality is known as
semihosting.

Semihosting is implemented by a set of defined Supervisor Call (SVC) operations.
When semihosting is executed, the debug agent identifies it and briefly suspends
program execution. The semihosting operation is then serviced by the debug agent
before code execution is resumed. Therefore, the task performed by the host itself is
transparent to the program.

Figure 2-1 shows an example of semihosting operation that prints a string to the
debugger console.

Figure 2-1 Example semihosting operation

Note
 For more information, see the chapter describing semihosting in RealView Compilation
Tools v3.0 Compiler and Libraries Guide.

���
�������	�	
�
�����
�������
���
�����������������
��������������
���
����������
������ !"#�$
�����������	����
�
�����������

%		���
���������

����������������
�&
����
�&�����&���������
����

��'���
��&��
���&�
����
�	��
����

�����������������
���
��&��
�&��
������&

�(���
&���	�������
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-5

Embedded Software Development
2.2.2 C library structure

Conceptually, the C library can be divided into functions that are part of the ISO C
Language specification and functions that provide support to the ISO C language
specification. This is shown in Figure 2-2.

Figure 2-2 C library structure

Support for some ISO C functionality is provided by the host debugging environment
at the device driver level.

For example, the RVCT C library implements the ISO C printf() family of functions
by writing to the debugger console window. This functionality is provided by calling
__sys_write(). This is a support function that executes a semihosting call, resulting in a
string being written to the console.

)����

��	��*
���	��

�����
&
������

�
�+�
��
&�
	

���	

��&��

����&�
�������		���
,����
%����

��-���
�.

/�������
��
������.
.����
		���
�����
(�����
�	����(���01

,�'�������'�����'���
2
��
���&�
�����
(�����
�	����33
.
3�����01

)�	����������.
�&�����������
��'��������
2-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
2.2.3 Default memory map

In an image where you have not described the memory map, the linker places code and
data according to a default memory map, as shown in Figure 2-3.

Figure 2-3 Default memory map

The default memory map can be described as follows:

• The image is linked to load and run at address 0x8000. All RO (Read Only)
sections are placed first, followed by RW (Read-Write) sections, then ZI (Zero
Initialized) sections.

• The heap follows directly on from the top of the ZI section, so the exact location
is decided at link time.

• The stack base location is provided by a semihosting operation during application
startup. The value returned by this semihosting operation depends on the debug
environment:

— RealView ARMulator ISS (RVISS) returns the value set in the
configuration file peripherals.ami. The default is 0x08000000.

— Multi-ICE® and RealView ICE return the value of the debugger internal
variable top_of_memory. The default is 0x00080000.

4)

56

5�

�7%�8

9:%;

/���
����&�
����

,�������
�
���+�����

�
��

������
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-7

Embedded Software Development
2.2.4 Linker placement rules

The linker observes a set of rules, shown in Figure 2-4, to decide where in memory code
and data is located.

Figure 2-4 Linker placement rules

The image is organized first of all by attribute, with RO at the lowest memory address,
then RW, then ZI. Within each attribute code precedes the data.

From there, the linker places input sections alphabetically by name. Input section names
correspond with assembler AREA directives.

In input sections, code and data from individual objects are placed according to the
order of object files given on the linker command line.

ARM does not recommend relying on these rules for precise placement of code and
data. Instead, you must use the scatter-loading mechanism for full control of placement
of code and data. See Tailoring the image memory map to your target hardware on
page 2-14.

Note
 See RealView Compilation Tools v3.0 Linker and Utilities Guide for more information
on placement rules and scatter-loading.

4)

56

5�

,%7%

��,:

<

%

�������%
(����(���!��

�������%
(����(��� ��
2-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
2.2.5 Application startup

In most embedded systems, an initialization sequence executes to set up the system
before the main task is executed.

Figure 2-5 shows the default initialization sequence.

Figure 2-5 Default initialization sequence

At a high level, the initialization sequence can be divided into three functional blocks.
__main branches directly to __scatterload. __scatterload is responsible for setting the
runtime image memory map, whereas __rt_entry (runtime entry) is responsible for
initializing the C library.

__scatterload carries out code and data copying, decompression of RW data if
necessary, and zeroing of ZI data.

__scatterload branches to __rt_entry. This sets up the application stack and heap,
initializes library functions and their static data, and calls any constructors of globally
declared objects (C++ only).

��-���
�.

33
�
������
�
������������	.*�����	��

�56��
�

����������=�����������
��=����
�

2�:5���,:

�
��01
�����������
�
�
��&�����+�����
�������������+��������
�.
���������������
��=
���������

33��3����.
����������
����	�
		���
�����
�
�+
����������
���&�
	
���������������
��=������
�.�(�������

�����������
�����	>��'��
�������������
�������
�0�??1

����������:����(����
		���
����

33�
��

)�
��
����.�	����

�
�

�
��
�

�������������	.����>����������
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-9

Embedded Software Development
__rt_entry then branches to main(), the entry to your application. When the main
application has finished executing, __rt_entry shuts down the library, then hands
control back to the debugger.

The function label main() has a special significance. The presence of a main() function
forces the linker to link in the initialization code in __main and __rt_entry. Without a
function labeled main() the initialization sequence is not linked in, and as a result, some
standard C library functionality is not supported.

2.2.6 Example code for Build 1

Build 1 is a default build of the Dhrystone benchmark. Therefore, it adheres to the
default RVCT behavior described in this section. See Running the Dhrystone builds on
an Integrator on page 2-3, and the example build files in the main examples directory,
in ...\emb_sw_dev\build1.
2-10 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
2.3 Tailoring the C library to your target hardware

By default the C library makes use of semihosting to provide device driver level
functionality, enabling a host computer to act as an input and an output device. This is
useful because development hardware often does not have all the input and output
facilities of the final system.

This section includes:

• Retargeting the C library

• Avoiding C library semihosting on page 2-12

• Example code for Build 2 on page 2-13.

2.3.1 Retargeting the C library

You can provide your own implementation of C Library functions that make use of
target hardware, and that are automatically linked in to your image in favor of the C
library implementations. This process, known as retargeting the C library, is shown in
Figure 2-6.

Figure 2-6 Retargeting the C library

)����

)�	��*
���	��

����&�
����
��		���

)����

)�	��*
���	��

5��
����

,����
%����

��-���
�. 2
��
����

7
����
9
���
��
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-11

Embedded Software Development
For example, you might have a peripheral I/O device such as a UART, and you might
want to override the library implementation of fputc(), that writes to the debugger
console, with one that outputs to the UART. Because this implementation of fputc() is
linked in to the final image, the entire printf() family of functions prints out to the
UART.

Example 2-1 shows an example implementation of fputc(). The example redirects the
input character parameter of fputc() to a serial output function sendchar() that is
assumed to be implemented in a separate source file. In this way, fputc() acts as an
abstraction layer between target dependent output and the C library standard output
functions.

Example 2-1 Implementation of fputc()

extern void sendchar(char *ch);

int fputc(int ch, FILE *f)
{ /* e.g. write a character to an UART */
 char tempch = ch;
 sendchar(&tempch);
 return ch;
}

2.3.2 Avoiding C library semihosting

In a standalone application, you are unlikely to support semihosting operations.
Therefore, you must be certain that no C library semihosting functions are being linked
into your application.

To ensure that no functions that use semihosting are linked in from the C library, you
must import the symbol __use_no_semihosting. This can be done in any C or assembler
source file in your project as follows:

• In a C module, use the #pragma directive:

#pragma import(__use_no_semihosting)

• In an assembler module, use the IMPORT directive:

IMPORT __use_no_semihosting

If functions that use semihosting are still being linked in, the linker reports an error.

To identify these functions, link using the --verbose option. In the resulting output, C
library functions are tagged with __I_use_semihosting, for example:
2-12 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
Loading member sys_exit.o from c_a__un.l.
 definition: _sys_exit
 reference : __I_use_semihosting

You must provide your own implementations of these functions (_sys_exit in this
example).

Note
 The linker does not report any semihosting functions in your application code. An error
only occurs if this type of function is linked in from the C library.

For a full list of C library functions that use semihosting, see the chapter describing
semihosting in RealView Compilation Tools v3.0 Compiler and Libraries Guide.

2.3.3 Example code for Build 2

Build 2 of the Dhrystone benchmark uses the hardware of the Integrator platform for
clocking and string I/O. See the example build files in the main examples directory, in
...\emb_sw_dev\build2.

The following changes have been made to Build 1 of the example project:

C Library Retargeting

A retargeted layer of ISO C functions has been added. These include
standard I/O functions and clock functionality, as well as some additional
error signaling and program exit.

Target Dependent Device Driver

A device driver layer has been added that interacts directly with target
hardware peripherals.

See Running the Dhrystone builds on an Integrator on page 2-3.

The symbol __use_no_semihosting is not imported into this project. This is because a
semihosting call is executed during C library initialization to set up the application stack
and heap location. Retargeting stack and heap setup is described in detail in Placing the
stack and heap on page 2-19.

Note
 To see the output, a terminal or terminal emulator must be connected to serial port A.
The serial port settings must be set to 38400 baud, no parity, 1 stop bit and no flow
control. The terminal must be configured to append line feeds to incoming line ends,
and echo typed characters locally.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-13

Embedded Software Development
2.4 Tailoring the image memory map to your target hardware

In your final embedded system, without semihosting functionality, you are unlikely to
use the default memory map. Your target hardware usually has several memory devices
located at different address ranges. To make the best use of these devices, you must have
separate views of memory at load and runtime.

This section includes:

• Scatter-loading

• Scatter-loading description file syntax on page 2-15

• Scatter-loading description file example on page 2-16

• Placing objects in a scatter-loading description file on page 2-17

• Root regions on page 2-18

• Placing the stack and heap on page 2-19

• Runtime memory models on page 2-20

• Example code for Build 3 on page 2-22.

2.4.1 Scatter-loading

Scatter-loading enables you to describe the load-time and runtime location of code and
data in memory in a textual description file known as a scatter-loading description file.
The file is passed to the linker on the command line using the --scatter option. For
example:

armlink --scatter scat.txt file1.o file2.o

The scatter-loading description file describes to the linker the desired location of code
and data at both load-time and runtime, in terms of addressed memory regions.

Scatter-loading regions

Scatter-loading regions fall into two categories:

• Load Regions that contain application code and data at reset and load-time.

• Execution Regions that contain code and data while the application is executing.
One or more execution regions are created from each load region during
application startup.

All code and data in the image falls into exactly one load region and one execution
region.

During startup, C library initialization code in __main carries out the copying and
zeroing of code and data necessary to move from the image load view to the execute
view.
2-14 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
2.4.2 Scatter-loading description file syntax

The scatter-loading description file syntax reflects the functionality provided by
scatter-loading itself. Figure 2-7 shows the file syntax.

Figure 2-7 Scatter-loading description file syntax

A region is defined by a header tag that contains, as a minimum, a name for the region
and a start address. Optionally, a maximum length and various attributes can be added.

The contents of the region depend on the type of region:

• Load regions must contain at least one execution region. In practice, there are
usually several execution regions for each load region.

• Execution regions must contain at least one code or data section, unless a region
is declared with the EMPTY attribute (see Using the scatter file EMPTY attribute on
page 2-38). Non-EMPTY regions usually contain source or library object files. The
wildcard (*) syntax can be used to group all sections of a given attribute not
specified elsewhere in the scatter-loading description file.

Note
 For a more detailed description of scatter-loading description file syntax, see RealView
Compilation Tools v3.0 Linker and Utilities Guide.

�@35:A)�B��������������������
C
�����������
��(�������
D

�
����(�������
�
���
����

�	����
�������&
	
�
�����
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-15

Embedded Software Development
2.4.3 Scatter-loading description file example

Figure 2-8 shows a simple example of scatter-loading.

Figure 2-8 Simple scatter-loading example

This example has one load region containing all code and data, starting at address
0x0000. From this load region two execution regions are created. One contains all RO
code and data that executes at the same address where it is loaded. The other is at
address 0x10000, and contains all RW and ZI data.

Example 2-2 shows the description file that describes the memory map given in
Figure 2-8.

Example 2-2 Simple scatter-loading description file

ROM_LOAD 0x0000 0x4000
{
 ROM_EXEC 0x0000 0x4000; Root region
 {
 * (+RO); All code and constant data
 }

56

5� 5�

4)

56

/���
���&
=���

��	.*
�����	��

-�
������ :�����������
�������

5%�

�������

�������

5%�

�������

������

5��

������

������

5��

������
2-16 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
 RAM 0x10000 0x8000
 {
 * (+RW, +ZI); All non-constant data
 }
}

2.4.4 Placing objects in a scatter-loading description file

For most images, you control the placement of specific code and data sections, rather
than grouping all attributes together as in Example 2-2 on page 2-16. You can do this by
specifying individual objects directly in the description file, instead of relying only on
the wildcard syntax.

Note
 The ordering of objects in a description file execution region does not affect how they
are ordered in the output image. The linker placement rules described in Linker
placement rules on page 2-8 apply to each execution region.

To override the standard linker placement rules, you can use the +FIRST and +LAST
scatter-loading directives. Example 2-3 shows a scatter-loading description file that
places the vector table at the beginning of an execution region. In this example, the area
Vect in vectors.o is placed at address 0x0000.

Example 2-3 Placing a section

ROM_LOAD 0x0000 0x4000
{
 ROM_EXEC 0x0000 0x4000
 {
 vectors.o (Vect, +FIRST)
 * (+RO)
 }
 ; more exec regions...
}

See RealView Compilation Tools v3.0 Linker and Utilities Guide for further information
on placing objects in scatter-loading description files.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-17

Embedded Software Development
2.4.5 Root regions

A root region is an execution region with a load address that is the same as its execution
address. Each scatter-loading description file must have at least one root region.

One restriction placed on scatter-loading is that the code and data responsible for
creating execution regions, for example, copying and zeroing code and data, cannot
itself be copied to another location. As a result, the following sections must be included
in a root region:

• __main.o and __scatter*.o containing the code that copies code and data

• __dc*.o that performs decompression

• Region$$Table section containing the addresses of the code and data to be copied
or decompressed.

However, these can be described using InRoot$$Sections.

Because these sections are defined as read-only, they are grouped by the * (+RO)
wildcard syntax. As a result, if * (+RO) is specified in a non-root region, these sections
must be explicitly declared in a root region. This is shown in Example 2-4.

Example 2-4 Specifying a root region

ROM_LOAD 0x0000 0x4000
{
 ROM_EXEC 0x0000 0x4000 ; root region
 {
 vectors.o (Vect, +FIRST) ; Vector table
 * (InRoot$$Sections) ; All library sections that must be in a
 ; root region, for example, __main.o,
 ; __scatter*.o, __dc*.o, and * Region$$Table
 }
 RAM 0x10000 0x8000
 {
 * (+RO, +RW, +ZI) ; all other sections
 }
}

Failing to include __main.o, __scatter.o, __dc*.o and Region$$Table in a root region
results in the linker generating an error message such as:

Error: L6202E: Section Region$$Table cannot be assigned to a non-root region.
2-18 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
2.4.6 Placing the stack and heap

Scatter-loading provides a method for specifying the placement of code and statically
allocated data in your image. This section covers how to place the application stack and
heap.

The application stack and heap are set up during C library initialization. You can tailor
stack and heap placement by re-implementing the routine responsible for stack and heap
setup. In the ARM C library, this routine is __user_initial_stackheap().

Figure 2-9 shows the C library initialization process with a re-implemented
__user_initial_stackheap().

Figure 2-9 Retargeting __user_initial_stackheap()

__user_initial_stackheap() can be coded in C or ARM assembler. It must return the
following parameters:

• heap base in r0

• stack base in r1

• heap limit in r2, if required

• r3 (not used).

��-���
�.

33��3����.
���������������
��=������
�.
����������(�������

�����������
�����	>��'��
�������������
�������
�0�??1

����������:����(����
		���
����

2�:5���,:

33�
��3�����
�3
�
�+&�
	01
����������
����	�
		���
����
����������
�
�+�
���&�
	

�
��01
�����������
�
�
��&�����+�����
�������������+��������
�.
���������������
��=
���������

)�
��
����.�	����

�
�
�
�

�

33�
��
������������	.*�����	��

�56��
�

����������=�����������
��=����
�

�
�������������	.����>����������

"
!

#

ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-19

Embedded Software Development
You must re-implement __user_initial_stackheap() if you are scatter-loading your
image. Otherwise, the linker generates the following error:

Error: L6218E: Undefined symbol Image$$ZI$$Limit (referred from sys_stackheap.o)

2.4.7 Runtime memory models

Two runtime memory models are provided:

• One-region model, the default

• Two-region model on page 2-21.

In both runtime memory models, the stack grows unchecked.

Note
 Both these examples are suitable for the Integrator system.

One-region model

In the default, one-region model, the application stack and heap grow towards each
other in the same region of memory. In this case, the heap is checked against the value
of the stack pointer when new heap space is allocated (for example, when malloc() is
called).

Figure 2-10 on page 2-21 and Example 2-5 on page 2-21 show an example of
__user_initial_stackheap() implementing a simple one-region model, where the stack
grows downwards from address 0x40000, and the heap grows upwards from 0x20000.

The routine loads the appropriate values into the registers r0 and r1, and then returns.
Register r2 remains unchanged, because a heap limit is not used in a one-region model.
Register r3 is not used.
2-20 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
Figure 2-10 One-region model

Example 2-5 One-region model routine

 EXPORT __user_initial_stackheap

__user_initial_stackheap
 LDR r0, =0x20000 ;HB
 LDR r1, =0x40000 ;SB
 ; r2 not used (HL)
 ; r3 not used
 MOV pc, lr

Two-region model

Your system design might require the stack and heap to be placed in separate regions of
memory.

For example, you might have a small block of fast RAM that you want to reserve for
stack use only. To inform the linker that you want to use a two-region model, you must
import the symbol __use_two_region_memory using the assembler IMPORT directive. The
heap is then checked against a dedicated heap limit, that is set up by
__user_initial_stackheap().

Figure 2-11 on page 2-22 and Example 2-6 on page 2-22 show an example of
implementing a two-region model.

In this example, the heap grows upwards from 0x28000000 to 0x28080000, and the stack
grow downwards from 0x40000.

�7%�8

9:%; �������

�������
�<

9<
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-21

Embedded Software Development
Figure 2-11 Two-region model

Example 2-6 Two-region model routine

 IMPORT __use_two_region_memory
 EXPORT __user_initial_stackheap

__user_initial_stackheap
 LDR r0, =0x28000000 ;HB
 LDR r1, =0x40000 ;SB
 LDR r2, =0x28080000 ;HL

; r3 not used
 MOV pc, lr

2.4.8 Example code for Build 3

Build 3 of the example implements scatter-loading and contains a re-implemented
__user_initial_stackheap(). See the example build files in the main examples
directory, in ...\emb_sw_dev\build3.

The following modifications have been made to Build 2 of the example project:

Scatter-loading

A simple scatter-loading description file is passed to the linker.

Retargeted __user_initial_stackheap()

You have the option of selecting either a one-region or a two-region
implementation. The default build uses one region. You can select the
two-region implementation by defining TWO_REGION_MODEL when
assembling.

9:%; ����������

����������

�7%�8 ��������<

9<

9-
2-22 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
Avoiding C library Semihosting

The symbol __use_no_semihosting is imported into Build 3, because there
are no longer any C library semihosting functions present in the image.

Note
 To avoid using semihosting for clock(), this is retargeted to read the Real

Time Clock (RTC) on the Integrator AP. This has a resolution of one
second, so the results from Dhrystone are not precise. This mechanism is
improved in Build 4 (see Example code for Build 4 on page 2-32).

To run this build on an Integrator AP, you must perform ROM/RAM remapping. To do
this, set switches 1 and 4 to ON to run the Boot Monitor.

See Running the Dhrystone builds on an Integrator on page 2-3.

Note
 You must disable all Vector Catch and semihosting if you are using an ARM7
core-based target. Otherwise the debugger interprets the execution of instructions
between address 0x0 and 0x1C as exceptions, and reports this in a dialog box. See your
debugger documentation for details of how to disable Vector Catch and semihosting.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-23

Embedded Software Development
2.5 Reset and initialization

This chapter has so far assumed that execution begins at __main, the entry point to the C
library initialization routine. In fact, any embedded application on your target hardware
performs some system-level initialization at startup. This section describes this in more
detail, and includes:

• Initialization sequence on page 2-25

• The vector table on page 2-26

• ROM/RAM remapping on page 2-27

• Local memory setup considerations on page 2-29

• Scatter-loading and memory setup on page 2-29

• Stack pointer initialization on page 2-30

• Hardware initialization on page 2-31

• Execution mode considerations on page 2-32

• Example code for Build 4 on page 2-32.
2-24 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
2.5.1 Initialization sequence

Figure 2-12 shows a possible initialization sequence for an embedded system based on
an ARM architecture.

Figure 2-12 Initialization sequence

The reset handler executes immediately on system startup. The block of code labeled
$Sub$$main() executes immediately before entering the main application.

The reset handler is a short module coded in assembler that is executed on system reset.
As a minimum, your reset handler initializes stack pointers for the modes that your
application is running in. For cores with local memory systems, such as caches, Tightly
Coupled Memories (TCMs), Memory Management Units (MMUs), and Memory
Protection Units (MPUs), some configuration must be done at this stage in the
initialization process. After executing, the reset handler typically branches to __main to
begin the C library initialization sequence.

There are some components of system initialization, for example, the enabling of
interrupts, that are generally performed after the C library initialization code has
finished executing. The block of code labeled $Sub$$main() performs these tasks
immediately before the main application begins executing.

��-���
�. 2�:5���,:

33�
��3�����
�3
�
�+&�
	01
����������
����	�
		���
�����
�
�+
����������
���&�
	

�
��01
�����������
�
�
��&�����+���������+
�����������������
�.������
��=
����
��������������

E���EE�
��01
������������
�����
�&�
�
��
�����������������	�

��
���&
�����
���������������
��=��
�
�+�	������

�������������(��������2*�;2
����������
���	��
�&�*��
���
����������7��

!

#

�

$

F

G

33��3����.
���������������
��=������
�.
����������(�������

�����������
�����	>��'��
�������������
�������
�0�??1

����������:����(����
		���
����

33�
��

"

�
�
�

�

�

�

���
33
�
������
�
������������	.*�����	��

�56��
�

������������	.����>����������
����������=�����������
��=����
�
�
�

)�
��
����.�	����
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-25

Embedded Software Development
See The vector table for a more detailed description of the various components of the
initialization sequence.

2.5.2 The vector table

All ARM systems have a vector table. The vector table does not form part of the
initialization sequence, but it must be present for any exception to be serviced.

The code in Example 2-7 imports the various exception handlers that might be coded in
other modules. The vector table is a list of branch instructions to the exception handlers.

The FIQ handler is placed at address 0x1C directly. This avoids having to execute a
branch to the FIQ handler, so optimizing FIQ response time.

Example 2-7 The vector table code

 PRESERVE8

 AREA Vectors, CODE, READONLY
 IMPORT Reset_Handler
; import other exception handlers
 ; ...
 ENTRY
 B Reset_Handler
 B Undefined_Handler
 B SVC_Handler
 B Prefetch_Handler
 B Abort_Handler
 NOP ; Reserved vector
 B IRQ_Handler
 B FIQ_Handler
 END

Note
 The vector table is marked with the label ENTRY. This label informs the linker that this
code is a possible entry point, and so cannot be removed from the image at link time.
You must select one of the possible image entry points as the true entry point to your
application using the --entry linker option. See RealView Compilation Tools v3.0
Linker and Utilities Guide for more information.
2-26 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
2.5.3 ROM/RAM remapping

You must consider what sort of memory your system has at address 0x0000, the address
of the first instruction executed.

Note
 This section assumes that the ARM core begins fetching instructions at 0x0000. This is
the norm for systems based on ARM cores. However, some ARM cores can be
configured to begin fetching instructions from 0xFFFF0000.

There has to be a valid instruction at 0x0000 at startup, so you must have non-volatile
memory located at 0x0000 at the moment of reset.

One way to achieve this is to have ROM located at 0x0000. However, there are some
drawbacks to this configuration. Access speeds to ROM are generally slower than to
RAM, and your system might suffer if there is too great a performance penalty when
branching to exception handlers. Also, locating the vector table in ROM does not enable
you to modify it at runtime.

Another solution is shown in Figure 2-13. ROM is located at address 0x10000, but this
memory is aliased to zero by the memory controller at reset. Following reset, code in
the reset handler branches to the real address of ROM. The memory controller then
removes the aliased ROM, so that RAM is shown at address 0x0000. In __main, the vector
table is copied into RAM at 0x0000, so that exceptions can be serviced.

Figure 2-13 ROM/RAM remapping

5�
���9
����� 5�
���9
����� 5�
���9
�����

5�
���9
����� 5�
���9
����� ������

�������

�������

5��

������

������

%��

��
5��

�������

�������

5��

������

������

5%�

 ! "

<�
��&
�����
�
5��

5���'�
%��

ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-27

Embedded Software Development
Example 2-8 shows how you might implement ROM/RAM remapping in an ARM
assembler module. The constants shown here are specific to the Integrator platform, but
the same method is applicable to any platform that implements ROM/RAM remapping
in a similar way.

Example 2-8 ROM/RAM remapping

; --- Integrator CM control reg
CM_ctl_reg EQU 0x1000000C ; Address of CM Control Register
Remap_bit EQU 0x04 ; Bit 2 is remap bit of CM_ctl

 ENTRY

; Code execution starts here on reset
; On reset, an alias of ROM is at 0x0, so jump to 'real' ROM.
 LDR pc, =Instruct_2

Instruct_2
; Remap by setting Remap bit of the CM_ctl register
 LDR r1, =CM_ctl_reg
 LDR r0, [r1]
 ORR r0, r0, #Remap_bit
 STR r0, [r1]

; RAM is now at 0x0.
; The exception vectors must be copied from ROM to RAM (in __main)

; Reset_Handler follows on from here

The first instruction is a jump from aliased ROM to real ROM. This can be done because
the label Instruct_2 is located at the real ROM address.

After this step, the alias of ROM is removed by inverting the remap bit of the Integrator
Core Module control register.

This code is normally executed immediately after system reset. Remapping must be
completed before C library initialization code can be executed.

Note
 In systems with MMUs, remapping can be implemented through MMU configuration
at system startup.
2-28 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
2.5.4 Local memory setup considerations

Many ARM cores have on-chip memory systems, such as MMUs or MPUs. These
devices are normally set up and enabled during system startup. Therefore, the
initialization sequence of cores with local memory systems requires special
consideration.

As described in this chapter, C library initialization code in __main is responsible for
setting up the execution time memory map of the image. Therefore, the runtime
memory view of the processor core must be set up before branching to __main. This
means that any MMU or MPU must be set up and enabled in the reset handler.

TCMs must also be enabled before branching to __main (normally before MMU/MPU
setup), because you generally want to scatter-load code and data into TCMs. You must
be careful that you do not have to access memory that is masked by the TCMs when
they are enabled.

You also risk problems with cache coherency if caches are enabled before branching to
__main. Code in __main copies code regions from their load address to their execution
address, essentially treating instructions as data. As a result, some instructions can be
cached in the data cache, in which case they are not visible to the instruction path.

To avoid these coherency problems, enable caches after the C library initialization
sequence finishes executing.

2.5.5 Scatter-loading and memory setup

In a system where the reset-time memory view of the core is altered, either through
ROM/RAM remapping or MMU configuration, the scatter-loading description file must
describe the image memory map after remapping has taken place.

The description file in Example 2-9 relates to the example in ROM/RAM remapping on
page 2-27 after remapping.

Example 2-9

ROM_LOAD 0x10000 0x8000
{
 ROM_EXEC 0x10000 0x8000
 {
 reset_handler.o (+RO, +FIRST) ; executed on hard reset
 ...
 }

 RAM 0x0000 0x4000
 {
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-29

Embedded Software Development
 vectors.o (+RO, +FIRST) ; vector table copied
 ; from ROM to RAM at zero
 ...
 }
}

The load region ROM_LOAD is placed at 0x10000, because this indicates the load address of
code and data after remapping has occurred.

2.5.6 Stack pointer initialization

As a minimum, your reset handler must assign initial values to the stack pointers of any
execution modes that are used by your application.

In Example 2-10, the stacks are located at stack_base. This symbol can be a hard-coded
address, or it can be defined in a separate assembler source file and located by a
scatter-loading description file. Details of how this is done are given in Placing the stack
and heap in the scatter-loading description file on page 2-35.

Example 2-10 Initializing stack pointers

; --- Amount of memory (in bytes) allocated for stacks
Len_FIQ_Stack EQU 256
Len_IRQ_Stack EQU 256
...
Offset_FIQ_Stack EQU 0
Offset_IRQ_Stack EQU Offset_FIQ_Stack + Len_FIQ_Stack
...
Reset_Handler

; stack_base could be defined above, or located in a description file
 LDR r0, stack_base ;

; Enter each mode in turn and set up the stack pointer
 MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit
 SUB sp, r0, #Offset_FIQ_Stack

 MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit
 SUB sp, r0, #Offset_IRQ_Stack
 ...

Example 2-10 allocates 256 bytes of stack for FIQ and IRQ mode, but you can do the
same for any other execution mode. To set up the stack pointers, enter each mode
(interrupts disabled) and assign the appropriate value to the stack pointer.
2-30 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
The stack pointer value set up in the reset handler is automatically passed as a parameter
to __user_initial_stackheap() by C library initialization code. Therefore, this value
must not be modified by __user_initial_stackheap().

Example 2-11 shows an implementation of __user_initial_stackheap() that you can
use with the stack pointer setup shown in Example 2-10 on page 2-30.

Example 2-11

 IMPORT heap_base
 EXPORT __user_initial_stackheap

__user_initial_stackheap

; heap base could be hard-coded, or placed by description file
 LDR r0,=heap_base
 ; r1 contains SB value
 BX lr

2.5.7 Hardware initialization

In general, it is beneficial to separate all system initialization code from the main
application. However, some components of system initialization, for example, enabling
of caches and interrupts, must occur after executing C library initialization code.

You can make use of the $Sub and $Super function wrapper symbols to (effectively)
insert a routine that is executed immediately before entering the main application. This
mechanism enables you to extend functions without altering the source code.

Example 2-12 on page 2-32 shows how $Sub and $Super can be used in this way. The
linker replaces the function call to main() with a call to $Sub$$main(). From there you
can call a routine that enables caches and another to enable interrupts.

The code branches to the real main() by calling $Super$$main().

Note
 For more information on $Sub and $Super, see RealView Compilation Tools v3.0 Linker
and Utilities Guide.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-31

Embedded Software Development
Example 2-12 Use of $Sub and $Super

extern void $Super$$main(void);

void $Sub$$main(void)
{
 cache_enable(); // enables caches
 int_enable(); // enables interrupts
 $Super$$main(); // calls original main()
}

2.5.8 Execution mode considerations

You must consider in what mode the main application is to run. Your choice affects how
you implement system initialization.

Much of the functionality that you are likely to implement at startup, both in the reset
handler and $Sub$$main, can only be done while executing in privileged modes, for
example, on-chip memory manipulation, and enabling interrupts.

If you want to run your application in a privileged mode (for example, Supervisor), this
is not an issue. Ensure that you change to the appropriate mode before exiting your reset
handler.

If you want to run your application in User mode, however, you can only change to User
mode after completing the necessary tasks in a privileged mode. The most likely place
to do this is in $Sub$$main().

Note
 __user_initial_stackheap() must set up the application mode stack. Because of this,
you must exit your reset handler in system mode, which uses the User mode registers.
__user_initial_stackheap() then executes in system mode, and so the application stack
and heap are still set up when User mode is entered.

2.5.9 Example code for Build 4

Build 4 of the example can be run standalone on the Integrator platform. See the
example build files in the main examples directory, in ...\emb_sw_dev\build4.
2-32 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
The following modifications have been made to Build 3 of the example project:

Vector table

A vector table has been added to the project, and placed by the
scatter-loading description file.

Reset handler

The reset handler is added in init.s. Two separate modules, responsible
for TCM and MMU setup respectively, are included in the
ARM926EJ-S™ build. These are excluded from the ARM7TDMI® build,
which runs on Integrator systems with any core. ROM/RAM remapping
occurs immediately after reset.

$Sub$$main()

For the ARM926EJ-S build, Caches are enabled in $Sub$$main() before
entering the main application.

Embedded description file

An embedded description file is used, that reflects the memory view after
remapping.

The build files for both of these builds produce a binary file suitable for downloading
into the Integrator AP application Flash at address 0x24000000.

A precise timer is implemented using a timer on the Integrator AP motherboard. This
generates an IRQ, and a handler is installed that increments a counter every
one-hundredth of a second (0.01 sec).
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-33

Embedded Software Development
2.6 Further memory map considerations

The previous sections in this chapter describe the placement of code and data in a
scatter-loading description file. However, the location of target hardware peripherals
and the stack and heap limits are assumed to be hard-coded in source or header files. It
would be beneficial to locate all information pertaining to the memory map of a target
in your description file, so removing all references to absolute addresses from your
source code.

This section includes:

• Locating target peripherals in the scatter-loading description file

• Placing the stack and heap in the scatter-loading description file on page 2-35

• Example code for Build 5 on page 2-40.

2.6.1 Locating target peripherals in the scatter-loading description file

Conventionally, addresses of peripheral registers are hard-coded in project source or
header files. You can also declare structures that map on to peripheral registers, and
place these structures in the description file.

For example, a target might have a timer peripheral with two memory mapped 32-bit
registers. Example 2-13 shows a C structure that maps to these registers.

Example 2-13 Mapping to a peripheral register

__attribute__ ((zero_init)) struct {
 volatile unsigned ctrl; /* timer control */
 volatile unsigned tmr; /* timer value */
} timer_regs;

To place this structure at a specific address in the memory map, create a new execution
region to hold the structure.

The description file shown in Example 2-14 on page 2-35 locates the timer_regs
structure at 0x40000000.

It is important that the contents of these registers are not initialized to zero during
application startup, because this is likely to change the state of your system. Marking
an execution region with the UNINIT attribute prevents ZI data in that region from being
zero initialized.
2-34 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
Example 2-14 Placing the mapped structure

ROM_LOAD 0x24000000 0x04000000
{
 ; ...
 TIMER 0x40000000 UNINIT
 {
 timer_regs.o (+ZI)
 }
 ; ...
}

2.6.2 Placing the stack and heap in the scatter-loading description file

In many cases, it is preferable to specify the location of the stack and heap in the
description file. This has two main advantages:

• all information about the memory map is kept in one file

• changes to the stack and heap only require relinking, not recompiling.

This section describes methods for implementing this:

• Placing symbols explicitly (the simplest method)

• Utilizing linker generated symbols on page 2-37

• Using the scatter file EMPTY attribute on page 2-38.

Placing symbols explicitly

Stack pointer initialization on page 2-30 refers to the symbols stack_base and heap_base
as reference symbols that can be placed in a description file. To do this, create symbols
labeled stack_base and heap_base in an assembler module called stackheap.s. The same
can be done for the stack and heap limits in a two-region memory model.

You can locate each of the symbols within their own execution region in the description
file, as shown in Example 2-15.

Example 2-15 Placing symbols explicitly in stackheap.s

 AREA stacks, DATA, NOINIT
 EXPORT stack_base

stack_base SPACE 1

 AREA heap, DATA, NOINIT
 EXPORT heap_base
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-35

Embedded Software Development

heap_base SPACE 1

 END

Figure 2-14 and Example 2-16 show how you can place the heap base at 0x20000 and
the stack base at 0x40000. The stack and heap base locations can be altered by editing
the addresses of the respective execution regions.

The disadvantage of this approach is that one word of SPACE (stack_base) is occupied
above the stack region.

Figure 2-14 Placing symbols explicitly

Example 2-16 Placing symbols explicitly in a scatter file

LOAD_FLASH 0x24000000 0x04000000
{
 ; ...
 HEAP 0x20000 UNINIT
 {
 stackheap.o (heap)
 }

 STACKS 0x40000 UNINIT
 {
 stackheap.o (stacks)
 }
 ; ...
}

���������	

	������	

�������

�������

�����

	��
2-36 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
Utilizing linker generated symbols

This method requires that the stack and heap sizes are specified in an object file.

First, define areas of an appropriate size for the stack and heap in an assembler source
file, for example, stackheap.s, as shown in Example 2-17.

Use the SPACE directive to reserve a zeroed block of memory. Set the NOINIT area
attribute to prevent this zeroing.

During development, you might choose to zero-initialize the stack so that the maximum
stack usage can be seen. Labels are not required in this source file.

Example 2-17 Placing sections for stack and heap

 AREA stack, DATA, NOINIT
 SPACE 0x3000 ; Reserve stack space

 AREA heap, DATA, NOINIT
 SPACE 0x3000 ; Reserve heap space

 END

You can then place these sections in their own execution region in the scatter-loading
description file, as shown in Example 2-18.

Example 2-18 Placing sections for stack and heap

LOAD_FLASH 0x24000000 0x04000000
{
 :
 STACKS 0x1000 UNINIT ; length = 0x3000
 {
 stackheap.o (stack) ; stack = 0x4000 to 0x1000
 }

 HEAP 0x15000 UNINIT ; length = 0x3000
 {
 stackheap.o (heap) ; heap = 0x15000 to 0x18000
 }
}

ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-37

Embedded Software Development
The linker generates symbols that point to the base and limit of each execution region,
that can be imported into the retargeting code to be used by
__user_initial_stackheap():

Image$$STACKS$$ZI$$Limit = 0x4000
Image$$STACKS$$ZI$$Base = 0x1000
Image$$HEAP$$ZI$$Base = 0x15000
Image$$HEAP$$ZI$$Limit = 0x18000

You can make this code more readable by using the DCD directive to give these values
more meaningful names, as shown in Example 2-19.

Example 2-19 Using the DCD directive

 IMPORT ||Image$$STACKS$$ZI$$Base||
 IMPORT ||Image$$STACKS$$ZI$$Limit||
 IMPORT ||Image$$HEAP$$ZI$$Base||
 IMPORT ||Image$$HEAP$$ZI$$Limit||

 stack_base DCD ||Image$$STACKS$$ZI$$Limit|| ; = 0x4000
 stack_limit DCD ||Image$$STACKS$$ZI$$Base|| ; = 0x1000

 heap_base DCD ||Image$$HEAP$$ZI$$Base|| ; = 0x15000
 heap_limit DCD ||Image$$HEAP$$ZI$$Limit|| ; = 0x18000

You can use these examples to place the heap base at 0x15000 and the stack base at
0x1000. You can then change the stack and heap base locations easily by editing the
addresses of the respective execution regions.

Using the scatter file EMPTY attribute

This method uses the scatter file EMPTY attribute of the linker. This enables regions to be
defined that contain no object code or data. This is a convenient method of defining a
stack or heap. The length of the region is specified after the EMPTY attribute. In the case
of a heap, that grows upwards in memory, the region length is positive. In the case of a
stack, the region length is marked as negative, to indicate that it grows downwards in
memory. Example 2-20 on page 2-39 shows how to use the EMPTY attribute.

The benefit of this approach is that the size and position of the stack and heap is defined
in one place, that is, in the scatter-loading description file. You do not have to create a
stackheap.s file.
2-38 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Embedded Software Development
Example 2-20 Placing stack and heap regions using EMPTY

ROM_LOAD 0x24000000 0x04000000
{
 ...
 HEAP 0x30000 EMPTY 0x3000
 {
 }

 STACKS 0x40000 EMPTY -0x3000
 {
 }
 ...
}

At link time, the linker generates symbols to represent these EMPTY regions:

Image$$HEAP$$ZI$$Base = 0x30000
Image$$HEAP$$ZI$$Limit = 0x33000
Image$$STACKS$$ZI$$Base = 0x3D000
Image$$STACKS$$ZI$$Limit = 0x40000

Your application code can then process these symbols as shown in Example 2-21.

Example 2-21 Linker generated symbols representing EMPTY regions

 IMPORT ||Image$$HEAP$$ZI$$Base||
 IMPORT ||Image$$HEAP$$ZI$$Limit||

heap_base DCD ||Image$$HEAP$$ZI$$Base||
heap_limit DCD ||Image$$HEAP$$ZI$$Limit||

 IMPORT ||Image$$STACKS$$ZI$$Base||
 IMPORT ||Image$$STACKS$$ZI$$Limit||

stack_base DCD ||Image$$STACKS$$ZI$$Limit||
stack_limit DCD ||Image$$STACKS$$ZI$$Base||
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 2-39

Embedded Software Development
2.6.3 Example code for Build 5

Build 5 of the example is equivalent to Build 4, but with all target memory map
information located in the scatter-loading description file as described in Placing
symbols explicitly on page 2-35:

Scatter-loading description file symbols

Symbols to locate the stack, heap, and peripherals are declared in
assembler modules.

Updated Scatter-loading description file

The embedded description file from Build 4 is updated to locate the stack,
heap, data TCM, and peripherals.

See the example build files in the main examples directory, in ...\emb_sw_dev\build5.

The stack and heap are located using linker symbols, see Utilizing linker generated
symbols on page 2-37.
2-40 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Chapter 3
Writing Position Independent Code and Data

This chapter describes how to write position independent code and data that makes use
of the Procedure Call Standard for the ARM Architecture (AAPCS). It contains the
following sections:

• Position independence on page 3-2

• Read-only position independence on page 3-3

• Read-write position independence on page 3-6.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-1

Writing Position Independent Code and Data
3.1 Position independence

Both the ARM® and Thumb® instruction sets support position-independent, or
relocatable, code through the use of PC-relative instructions (for example BL).

Note
 This is not the same as Relocatable ELF (an image type created by the linker).

You can write assembler code that is relocatable but it must not contain any address
constants. Any literal addresses used to refer to code must be PC-relative offsets. The
PC is added, using an ADD instruction, before the address is accessed.

Both code and data can be position-independent:

• To enable code to execute at different addresses, it must be position-independent
or relocatable. However, it can only access a single set of static data at a fixed
address.

• Position-independent data requires all data accesses to occur relative to the static
base register sb. This is used to implement a shared library mechanism.

RVCT supports position-independent code and data for C and assembler (but not C++),
and enables you to write code that is relocatable or reentrant. The rest of this chapter
contains information about how to do this.

For more information, see the following in RealView Compilation Tools v3.0 Compiler
and Libraries Guide:

• the section about position independence qualifiers in the chapter describing how
to use the compiler

• the section about writing reentrant and thread-safe code in the chapter describing
the C and C++ libraries.

3.1.1 Using the AAPCS

The Procedure Call Standard for the ARM Architecture (AAPCS) forms part of the
Application Binary Interface (ABI) for the ARM Architecture (base standard) [BSABI]
specification. By writing code that adheres to the AAPCS, you can ensure that
separately compiled and assembled modules can work together.

For more information, see the AAPCS specification in
install_directory\Documentation\....
3-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Writing Position Independent Code and Data
3.2 Read-only position independence

A program is Read-Only Position-Independent (ROPI) if all its read-only segments are
position independent.

An ROPI segment is often Position-Independent Code (PIC), but could be read-only
data, or a combination of PIC and read-only data.

Note
 ROPI does not form part of the AAPCS, because it is not supported for C++. However,
you can compile your C code or assembler code for ROPI by using the compiler or
assembler option --apcs /ropi.

Select the ROPI option to avoid committing yourself to loading your code in a particular
location in memory. This is particularly useful for routines that are:

• loaded in response to runtime events

• loaded into memory with different combinations of other routines in different
circumstances

• mapped at different addresses during their execution.

This section includes:

• Register usage with ROPI

• Writing C and assembler code for ROPI on page 3-4

• Linking your code on page 3-4

• FPIC addressing on page 3-4

• Code example on page 3-4.

3.2.1 Register usage with ROPI

As defined by the AAPCS, register use is the same with or without ROPI.

For more information, see the Procedure Call Standard for the ARM Architecture
specification, aapcs.pdf, in install_directory\Documentation\Specifications\...
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-3

Writing Position Independent Code and Data
3.2.2 Writing C and assembler code for ROPI

When you are writing C and assembler code for ROPI:

• Every reference from code in an ROPI segment to a symbol in the same ROPI
segment must be PC-relative. AAPCS does not define any other base register for
a read-only segment. An address of an item in an ROPI segment cannot be
assigned to an item in a different ROPI segment.

• Every reference from code in an ROPI segment to a symbol in a different ROPI
segment must be PC-relative. The two segments must be fixed relative to each
other.

• Every other reference from an ROPI segment must be to either:

— an absolute address

— an sb-relative reference to writable data (see Read-write position
independence on page 3-6).

• A read-write word that addresses a symbol in an ROPI segment must be adjusted
whenever the ROPI segment is moved.

3.2.3 Linking your code

Use the linker command-line option --ropi to make the load and execution region
containing the read-only output section position-independent. Usually each read-only
input section must be read-only position-independent. See RealView Compilation Tools
v3.0 Linker and Utilities Guide for details.

3.2.4 FPIC addressing

Use the /fpic qualifier to generate read-only position-independent code where relative
address references are independent of the location where your program is loaded.
Relative addressing is only implemented when your code makes use of System V shared
libraries. If your code uses shared objects, you do not have to compile with /fpic.

For information on System V shared library support in RVCT, see RealView
Compilation Tools v3.0 Linker and Utilities Guide.

3.2.5 Code example

For details of writing position-independent code, see the PIC-PID example provided
with RealView Development Suite in the main examples directory, that is in
install_directory\RVDS\Examples\picpid.
3-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Writing Position Independent Code and Data
This example consists of a kernel at a fixed address in ROM, together with a collection
of application modules that extend kernel functionality. Application modules are loaded
into memory following the kernel. However, the address where a module might be
loaded is unknown when the module is linked. Therefore, modules must be
position-independent (ROPI, PIC).

The example includes source code, a make file, batch files, and a detailed description of
how to compile and link the different modules (see readme.txt).
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-5

Writing Position Independent Code and Data
3.3 Read-write position independence

A program is Read-Write Position-Independent (RWPI) if all its read-write segments
are position independent.

An RWPI segment is usually Position-Independent Data (PID).

RWPI is an AAPCS variant. Use the compiler or assembler option --apcs /rwpi to avoid
committing yourself to a particular location of data in memory. This is particularly
useful for data that must be multiply instantiated for reentrant routines.

For more information, see the Procedure Call Standard for the ARM Architecture
specification, aapcs.pdf, in install_directory\Documentation\Specifications\...

This section includes:

• Reentrant routines

• Register usage with RWPI

• Position-independent data addressing on page 3-7

• Writing assembly language for RWPI on page 3-7

• Linking your code on page 3-7

• Code example on page 3-7.

3.3.1 Reentrant routines

A reentrant routine can be threaded by several processes at the same time. Each process
has its own copy of the read-write segments of the routine. Each copy is addressed by a
different value of the static base register (sb).

3.3.2 Register usage with RWPI

Register r9 is the static base register, sb. It must point to the base address of the
appropriate static data segments whenever you call any externally visible routine.

You can use r9 for other purposes in a routine that does not use sb. If you do this you
must save the contents of sb on entry to your routine and restore these before exit. You
must also restore the contents before any call to an external routine.

In all other respects the usage of registers is the same with or without RWPI.
3-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Writing Position Independent Code and Data
3.3.3 Position-independent data addressing

An RWPI segment can be repositioned until it is first used. The address of a symbol in
an RWPI segment is calculated as follows:

1. The linker calculates a read-only offset from a fixed location in the segment. By
convention, the fixed location is the first byte of the lowest addressed RWPI
segment of the program.

2. At runtime, this is used as an offset added to the contents of the static base register,
sb.

3.3.4 Writing assembly language for RWPI

Construct references from a read-only segment to the RWPI segment by adding a fixed
(read-only) offset to the value of sb (see DCDO in the Directives Reference chapter in
RealView Compilation Tools v3.0 Assembler Guide).

3.3.5 Linking your code

Use the linker command-line option --rwpi to make the load and execution region
containing the RW and ZI output sections position-independent. This option requires a
value for --rw-base. If --rw-base is not specified, --rw-base 0 is assumed. Usually each
writable input section must be RWPI. See RealView Compilation Tools v3.0 Linker and
Utilities Guide for details of these options.

3.3.6 Code example

For details of writing position-independent code, see the PIC-PID example provided
with RealView Development Suite in the main examples directory, that is in
install_directory\RVDS\Examples\picpid.

This example consists of a kernel at a fixed address in ROM, together with a collection
of application modules that extend kernel functionality. A module implements a set of
named services that can be multiply instantiated, and that can call one another through
the kernel. When a service is called, the kernel creates an instance of its static data and
then passes control to the service. However, the service might then call back to the
kernel. Therefore, modules must have position-independent data (RWPI, PID).

The example includes source code, a make file, batch files, and a detailed description of
how to compile and link the different modules (see readme.txt).
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 3-7

Writing Position Independent Code and Data
3-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Chapter 4
Interworking ARM and Thumb

This chapter explains how to change between ARM® state and Thumb® state when
writing code for processors that implement the Thumb instruction set. It contains the
following sections:

• About interworking on page 4-2

• Assembly language interworking on page 4-7

• C and C++ interworking and veneers on page 4-13

• Assembly language interworking using veneers on page 4-18.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-1

Interworking ARM and Thumb
4.1 About interworking

Interworking enables you to mix ARM and Thumb code so that:

• ARM routines return to a Thumb state caller

• Thumb routines return to an ARM state caller.

This means that, if you compile or assemble code for interworking, your code can call
a routine in a different module without considering which instruction set it uses.

The ARM linker detects when an ARM function is being called from Thumb state, or a
Thumb function is being called from ARM state. The ARM linker changes call and
return instructions, or inserts small code segments called veneers, to change processor
state as necessary.

The ARMv5T and later architectures provide methods to change processor state without
using any extra instructions. There is normally no cost associated with interworking on
ARMv5T processors.

Note
 Compiling for ARMv5TE and later automatically assumes interworking, and always
produces code that interworks. However, assembly code built for ARMv5TE does not
imply interworking, so you must build assembly code with the --apcs /interwork
assembler option.

4.1.1 Using the AAPCS

You can mix ARM and Thumb code as you require, provided that the code conforms to
the requirements of the AAPCS. For more information, see the Procedure Call
Standard for the ARM Architecture specification, aapcs.pdf, in
install_directory\Documentation\Specifications\...

If you are writing ARM assembly language modules you must ensure that your code
conforms to the AAPCS. If you are linking several source files together, all your files
must use compatible AAPCS options. If incompatible options are detected, the linker
produces an error message.

This section describes:

• When to use interworking on page 4-3

• Using the /interwork option on page 4-4

• Detecting interworking calls on page 4-4

• Linker generated veneers on page 4-5.
4-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Interworking ARM and Thumb
4.1.2 When to use interworking

When you write code for an ARM processor that supports Thumb instructions, you
probably write most of your application to run in Thumb state. This gives the best code
density. With 8-bit or 16-bit wide memory, it also gives the best performance. However,
you might want parts of your application to run in ARM state for reasons such as:

Speed Some parts of an application might be speed critical. These sections
might be more efficient running in ARM state than in Thumb state. In
some circumstances, a single ARM instruction can do more than the
equivalent Thumb instruction.

Some systems include a small amount of fast 32-bit memory. ARM code
can be run from this without the overhead of fetching each instruction
from 8-bit or 16-bit memory.

Functionality

Thumb instructions are less flexible than their equivalent ARM
instructions. Some operations are not possible in Thumb state. A state
change to ARM is required to carry out the following operations:

• accesses to CPSR to enable or disable interrupts, and to change mode

• accesses to coprocessors

• DSP math instructions that are not supported by C.

Exception handling

The processor automatically enters ARM state when a processor
exception occurs. This means that the first part of an exception handler
must be coded with ARM instructions, even if it re-enters Thumb state to
carry out the main processing of the exception. At the end of such
processing, the processor must be returned to ARM state to return from
the handler to the main application.

Standalone Thumb programs

An ARM processor that supports Thumb instructions always starts in
ARM state. To run simple Thumb assembly language programs under the
debugger, add an ARM header that carries out a state change to Thumb
state and then calls the main Thumb routine. See Example ARM header
on page 4-9 for an example.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-3

Interworking ARM and Thumb
4.1.3 Using the /interwork option

The option --apcs /interwork is available for the ARM compiler and assembler. If you
set this option:

• The compiler or assembler records an interworking attribute in the object file.

• The linker provides interworking veneers for subroutine entry.

• In assembly language, you must write function exit code that returns to the
instruction set state of the caller, for example BX lr.

• In C or C++, the compiler creates function exit code that returns to the instruction
set state of the caller.

• In C or C++, the compiler uses BX instructions for indirect or virtual calls.

Use the --apcs /interwork option if your object file contains:

• Thumb subroutines that might have to return to ARM code

• ARM subroutines that might have to return to Thumb code

• Thumb subroutines that might make indirect or virtual calls to ARM code

• ARM subroutines that might make indirect or virtual calls to Thumb code.

Note
 If a module contains functions marked with #pragma arm or #pragma thumb, the module
must be compiled with --apcs /interwork. This ensures that the functions can be called
successfully from the other (ARM or Thumb) state.

Otherwise, you do not have to use the /interwork option. For example, your object file
might contain any of the following without requiring /interwork:

• Thumb code that can be interrupted by an exception. The exception forces the
processor into ARM state so no veneer is required.

• Exception handling code that can handle exceptions from Thumb code. No veneer
is required for the return.

4.1.4 Detecting interworking calls

The linker generates an error if it detects a direct ARM/Thumb interworking call where
the called routine is not built for interworking. You must rebuild the called routine for
interworking.
4-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Interworking ARM and Thumb
For example, Example 4-1 shows the error that is produced if the ARM routine in
Example 4-3 on page 4-14 is compiled and linked without the --apcs /interwork
option.

Example 4-1

Error: L6239E: Cannot call ARM symbol 'arm_function' in non-interworking object
armsub.o from THUMB code in thumbmain.o(.text)

These types of error indicate that an ARM-to-Thumb or Thumb-to-ARM interworking
call has been detected from the object module object to the routine symbol, but the
called routine has not been compiled for interworking. You must recompile the module
that contains the symbol and specify --apcs /interwork.

4.1.5 Linker generated veneers

Veneers are small code segments that are automatically inserted by the linker if a branch
involves:

• a change of state

• a destination beyond the range of the branching instruction.

The veneer becomes the target of the original branch, that then branches to the target
address.

The linker can reuse a veneer generated for a previous call for subsequent calls to the
same function, provided they can be reached from both sections.

For more details on interworking with veneers, see:

• C and C++ interworking and veneers on page 4-13

• Assembly language interworking using veneers on page 4-18.

Types of veneer

Veneers can be:

long Can have an optional state change.

short Performs only a state change.

inline Performs only a state change, but is added to the start of the function that
is being veneered.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-5

Interworking ARM and Thumb
Veneer$$Code sections

The linker creates one input section called Veneer$$Code for each veneer. You can place
veneer code in a scatter-loading description file using *(Veneer$$Code). However, the
linker only places veneer code there if it safe to do so.

It might not be possible for a veneer input section to be assigned to the region because
of problems with address range or limitations on the size of execution regions. If the
veneer cannot be added to the specified region, it is added to the execution region
containing the relocated input section that generated the veneer.

See RealView Compilation Tools v3.0 Linker and Utilities Guide for more details.

Minimizing the use of veneers

You can minimize the use of veneers by:

• structuring the memory map to keep called functions within range of the caller

• encouraging sharing of veneers by keeping calling functions within range

• minimizing state changes.
4-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Interworking ARM and Thumb
4.2 Assembly language interworking

In an assembly language source file, you can have several areas (these correspond to
ELF sections). Each area can contain ARM instructions, Thumb instructions, or both.

You can use the linker to fix up calls to, and returns from, routines that use a different
instruction set from the caller. To do this, use BL to call the routine (see Assembly
language interworking using veneers on page 4-18).

If you prefer, you can write your code to make the instruction set changes explicitly. In
some circumstances you can write smaller or faster code by doing this.

The following instructions perform the processor state changes:

• BX, see The branch and exchange instruction

• BLX, LDR, LDM, and POP (ARMv5 and above only), see Interworking with ARM
architecture v5T and later on page 4-11.

The following directives instruct the assembler to assemble instructions from the
appropriate instruction set (see Changing the assembler mode on page 4-8):

• ARM

• THUMB

This section includes:

• The branch and exchange instruction

• Changing the assembler mode on page 4-8

• Example ARM header on page 4-9

• Interworking with ARM architecture v5T and later on page 4-11

• Labels in Thumb code on page 4-12.

4.2.1 The branch and exchange instruction

The BX instruction is available only on cores that support Thumb. The instruction
branches to the address contained in a specified register, and has a 4GB address range.
The value of bit 0 of the branch address determines whether execution continues in
ARM state or Thumb state. See Interworking with ARM architecture v5T and later on
page 4-11 for additional instructions available with ARMv5.

Bit 0 of an address can be used in this way because:

• all ARM instructions are word-aligned, so bits 0 and 1 of the address of any ARM
instruction are unused

• all Thumb instructions are halfword-aligned, so bit 0 of the address of any Thumb
instruction is unused.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-7

Interworking ARM and Thumb
Syntax

The syntax of BX is one of:

Thumb BX Rn

ARM BX{cond} Rn

where:

Rn Is a register in the range r0 to r15 that contains the address to branch to.
The value of bit 0 in this register determines the processor state:

• if bit 0 is set, the instructions at the branch address are executed in
Thumb state

• if bit 0 is clear, the instructions at the branch address are executed
in ARM state.

cond Is an optional condition code. Only the ARM version of BX can be
executed conditionally.

4.2.2 Changing the assembler mode

The ARM assembler can assemble both Thumb code and ARM code. By default, it
assembles ARM code unless it is invoked with the --thumb option.

Because all ARM processors that support Thumb start in ARM state, you must use the
BX instruction to branch and exchange to Thumb state, and then use the following
assembler directives to instruct the assembler to switch assembly mode:

THUMB Instructs the assembler to assemble the following instructions as Thumb
instructions. This also causes an alignment to a two-byte boundary, even
if no instructions follow it.

ARM Instructs the assembler to return to assembling ARM instructions. This
also causes an alignment to a four-byte boundary, even if no instructions
follow it.

See RealView Compilation Tools v3.0 Assembler Guide for more information on these
directives.
4-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Interworking ARM and Thumb
4.2.3 Example ARM header

Example 4-2 contains four sections of code. Each of the code sections is described after
the example.

Example 4-2

 PRESERVE8

 AREA AddReg,CODE,READONLY ; Name this block of code.
 ENTRY ; Mark first instruction to call.

; SECTION 1
start
 ADR r0, ThumbProg + 1 ; Generate branch target address
 ; and set bit 0, hence arrive
 ; at target in Thumb state.
 BX r0 ; Branch exchange to ThumbProg.

; SECTION 2
 THUMB ; Subsequent instructions are Thumb code.
ThumbProg
 MOVS r2, #2 ; Load r2 with value 2.
 MOVS r3, #3 ; Load r3 with value 3.
 ADDS r2, r2, r3 ; r2 = r2 + r3
 ADR r0, ARMProg
 BX r0 ; Branch exchange to ARMProg.

; SECTION 3
 ARM ; Subsequent instructions are ARM code.
ARMProg
 MOV r4, #4
 MOV r5, #5
 ADD r4, r4, r5

; SECTION 4
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC 0x123456 ; ARM semihosting (formerly SWI)
 END ; Mark end of this file.

SECTION 1 implements a short header section of ARM code that changes the processor
to Thumb state. The header code uses:

• An ADR pseudo-instruction to load the branch address and set the least significant
bit. The ADR pseudo-instruction generates the address by loading r0 with the value
pc+offset+1. That is, the address of ThumbProg plus one.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-9

Interworking ARM and Thumb
Note
 An ADR instruction is used for symbols within the same section. For larger ranges,

use the LDR instruction. See RealView Compilation Tools v3.0 Assembler Guide
for more information on the ADR and LDR pseudo-instructions.

• A BX instruction to branch to the Thumb code and change processor state.

SECTION 2 of the code, labeled ThumbProg, is prefixed by a THUMB directive. This instructs
the assembler to treat the following code as Thumb code. The Thumb code adds the
contents of two registers together.

The code again uses an ADR instruction to get the address of the label ARMProg, but this
time the least significant bit is left clear. The BX instruction changes the state back to
ARM state.

SECTION 3 of the code, labeled ARMProg, adds together the contents of two registers.

SECTION 4 of the code, labeled stop, uses semihosting to report normal application exit.
See RealView Compilation Tools v3.0 Compiler and Libraries Guide for more
information on semihosting.

Note
 Thumb semihosting uses a different SVC number from the ARM semihosting (0xAB
rather than 0x123456).

Exporting symbols

If you export a symbol that references Thumb instructions, the linker automatically adds
one to the address of any label in Thumb code.

If you do not export a symbol, you must manually add one to the symbol that references
the Thumb instructions. In Example 4-2 on page 4-9 it is ThumbProg+1. This is because
all references are resolved by the assembler, and the linker never detects the symbol.

Building the example

To build and execute the example:

1. Enter the code using any text editor and save the file as addreg.s.

2. Type armasm -g addreg.s at the command prompt to assemble the source file.

3. Type armlink addreg.o -o addreg to link the file.
4-10 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Interworking ARM and Thumb
4. Run the image using a compatible debugger, for example RealView® Debugger or
AXD, with an appropriate debug target. If you step through the program one
instruction at a time, you see the processor enter the Thumb state. See the user
documentation for the debugger you are using to find out how this change is
indicated.

4.2.4 Interworking with ARM architecture v5T and later

In ARMv5T and above:

• The following additional interworking instructions are available:

BLX address
The processor performs a PC-relative branch to address with link and
changes state. address must be within 32MB of the PC in ARM code,
or within 4MB of the PC in Thumb code.

BLX register
The processor performs a branch with link to an address contained in
the specified register. The value of bit[0] determines the new processor
state.

In either case, bit[0] of lr is set to the current value of the Thumb bit in the CPSR.
The means that the return instruction can automatically return to the correct
processor state.

• If LDR, LDM, or POP load to the PC, they set the Thumb bit in the CPSR to bit[0] of the
value loaded to the PC. You can use this to change instruction sets. This is
particularly useful for returning from subroutines. The same return instruction
can return to either an ARM or Thumb caller.

For more information, see RealView Compilation Tools v3.0 Assembler Guide and ARM
Architecture Reference Manual.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-11

Interworking ARM and Thumb
4.2.5 Labels in Thumb code

The linker distinguishes between labels referring to:

• ARM instructions

• Thumb instructions

• data.

When the linker relocates a value of a label referring to a Thumb instruction, it sets the
least significant bit of the relocated value. This means that a branch to a label can
automatically select the appropriate instruction set. This works if any of the following
instructions are used for the branch:

• BX in ARMv4T

• BX, BLX, or LDR in ARMv5T and above.

In releases of ARM Developer Suite™ (ADS) earlier than 1.2, it was necessary to mark
data in Thumb code with the DATA directive. This is no longer necessary.
4-12 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Interworking ARM and Thumb
4.3 C and C++ interworking and veneers

You can freely mix C and C++ code compiled for ARM and Thumb, but in ARMv4T
veneers are required between the ARM and Thumb code to carry out state changes. The
ARM linker generates these interworking veneers when it detects interworking calls.
See Linker generated veneers on page 4-5 for more details on veneers.

This section includes:

• Compiling code for interworking

• Basic rules for C and C++ interworking on page 4-16

• Pointers to functions in Thumb state on page 4-16

• Using two versions of the same function on page 4-17.

4.3.1 Compiling code for interworking

The --apcs /interwork compiler option enables the ARM compiler to compile C and
C++ modules containing routines that can be called by routines compiled for the other
processor state:

armcc --c90 --thumb --apcs /interwork
armcc --c90 --arm --apcs /interwork
armcc --cpp --thumb --apcs /interwork
armcc --cpp --arm --apcs /interwork

Note
 --arm is the default option. --c90 is the default for files with the extension .c, and --cpp
is the default for files with the extension .cpp.

Modules that are compiled for interworking on ARMv4T generate slightly larger code.
There is no difference for ARMv5.

In a leaf function, that is a function whose body contains no function calls, the only
change in the code generated by the compiler is to replace MOV pc,lr with BX lr. The
MOV instruction does not cause the necessary state change.

In nonleaf functions built for ARMv4T in Thumb mode, the compiler must replace, for
example, the single instruction:

 POP {r4,r5,pc}

with the sequence:

 POP {r4,r5}
 POP {r3}
 BX r3
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-13

Interworking ARM and Thumb
This has a small impact on performance. Compile all source modules for interworking,
unless you are sure they are never going to be used with interworking.

The --apcs /interwork option also sets the interwork attribute for the code area the
modules are compiled into. The linker detects this attribute and inserts the appropriate
veneer.

Note
 ARM code compiled for interworking can only be used on ARMv4T and later, because
earlier processors do not implement the BX instruction.

Use the linker option --info veneers to find the amount of space taken by the veneers.

C interworking example

Example 4-3 shows a Thumb routine that carries out an interworking call to an ARM
subroutine. The ARM subroutine call makes an interworking call to printf() in the
Thumb library. These two modules are provided in the main examples directory, in
...\interwork as thumbmain.c and armsub.c.

Example 4-3

 /*********************
 * thumbmain.c *
 **********************/
 #include <stdio.h>
 extern void arm_function(void);
 int main(void)
 {
 printf("Hello from Thumb\n");
 arm_function();
 printf("And goodbye from Thumb\n");
 return (0);
 }

 /*********************
 * armsub.c *
 **********************/
 #include <stdio.h>
 void arm_function(void)
 {
 printf("Hello and Goodbye from ARM\n");
 }
4-14 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Interworking ARM and Thumb
To compile and link these modules:

1. To compile the Thumb code for interworking, type:

armcc --thumb -c -g -O1 --apcs /interwork -o thumbmain.o thumbmain.c

2. To compile the ARM code for interworking, type:

armcc -c -g -O1 --apcs /interwork -o armsub.o armsub.c

3. To link the object files, type:

armlink thumbmain.o armsub.o -o thumbtoarm.axf

Alternatively, to view the size of the interworking veneers (as shown in
Example 4-4) type:

armlink armsub.o thumbmain.o -o thumbtoarm.axf --info veneers

Example 4-4

Adding TA veneer (4 bytes, Inline) for call to 'arm_function' from thumbmain.o(.text).
Adding AT veneer (8 bytes, Inline) for call to '__0printf' from armsub.o(.text).
Adding AT veneer (8 bytes, Inline) for call to '__rt_lib_init' from kernel.o(.text).
Adding AT veneer (12 bytes, Long) for call to '__rt_lib_shutdown' from kernel.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '__aeabi_memclr4' from stdio.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '_mutex_initialize' from stdio.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '__rt_raise' from stdio.o(.text).
Adding AT veneer (8 bytes, Inline) for call to '__raise' from rt_raise.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '__heap_extend' from malloc.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '__user_perproc_libspace' from malloc.o(.text).
Adding TA veneer (8 bytes, Short) for call to '__rt_exit' from exit.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '_fp_init' from lib_init.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '__ARM_argv_veneer' from lib_init.o(.text).
Adding TA veneer (4 bytes, Inline) for call to '_sys_exit' from abort.o(.text).

14 Veneer(s) (total 80bytes) added to the image.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-15

Interworking ARM and Thumb
4.3.2 Basic rules for C and C++ interworking

The following rules apply to interworking within an application:

• You must use the --apcs /interwork command-line option to compile any C or
C++ modules that contain functions that might return to the other instruction set.

• You must use the --apcs /interwork command-line option to compile any C or
C++ modules that contain indirect or virtual function calls that might be to
functions in the other instruction set.

• Never make indirect calls, such as calls using function pointers, to
non-interworking code from code in the other state.

• If any input object contains Thumb code, the linker selects the Thumb runtime
libraries. These are built for interworking.

If you specify one of your own libraries explicitly on the linker command line you
must ensure that it is an appropriate interworking library.

Note
 If a C or C++ module contains functions marked with #pragma arm or #pragma thumb, you
must compile the module with --apcs /interwork. This ensures that the functions can
be called successfully from the other (ARM or Thumb) state.

4.3.3 Pointers to functions in Thumb state

If you have a Thumb function, that is a function consisting of Thumb code, and that runs
in Thumb state, then any pointer to that function must have the least significant bit set.
This ensures that interworking works correctly.

When the linker relocates a value of a label referring to a Thumb instruction, it
automatically sets the least significant bit of the relocated value. The linker cannot do
this if you use absolute addresses to Thumb functions.

Therefore, if you have to use an absolute address to a Thumb function in your code, you
must add one to the address. For example, you might have a table of pointers to Thumb
functions, such as that shown in Example 4-5 on page 4-17.

See Assembly language interworking on page 4-7 for more details.
4-16 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Interworking ARM and Thumb
Example 4-5 Absolute addresses to Thumb functions

typedef int (*FN)();

myfunc() {
 FN fnptrs[] = {
 (FN)(0x8084 + 1), // Valid Thumb address
 (FN)(0x8074) // Invalid Thumb address
 };
 FN* myfunctions = fnptrs;

 myfunctions[0](); // Call OK
 myfunctions[1](); // Call Fails
}

4.3.4 Using two versions of the same function

You can have two functions with the same name, one compiled for ARM and the other
for Thumb.

ARM/Thumb synonyms

The linker enables multiple definitions of a symbol to coexist in an image, only if each
definition is associated with a different processor state. The linker applies the following
rules when a reference is made to a symbol with ARM/Thumb synonyms:

• B, BL, or BLX instructions to a symbol from ARM state resolve to the ARM
definition

• B, BL, or BLX instructions to a symbol from Thumb state resolve to the Thumb
definition.

Any other reference to the symbol resolves to the first definition encountered by the
linker. The linker produces a warning that specifies the chosen symbol.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-17

Interworking ARM and Thumb
4.4 Assembly language interworking using veneers

The assembly language ARM/Thumb interworking method described in Assembly
language interworking on page 4-7 carried out all the necessary intermediate
processing. There was no requirement for the linker to insert interworking veneers.

This section describes how you can make use of interworking veneers to:

• interwork between assembly language modules, see Assembly-only interworking
using veneers

• interwork between assembly language and C or C++ modules, see C, C++, and
assembly language interworking using veneers on page 4-20.

See Linker generated veneers on page 4-5 for more details on veneers.

4.4.1 Assembly-only interworking using veneers

You can write assembly language ARM/Thumb interworking code to make use of
interworking veneers generated by the linker. To do this, you write:

• A caller routine like any non-interworking routine, using a BL instruction to make
the call. A caller routine can be assembled with either --apcs /interwork or --apcs
/nointerwork.

Note
 The range of a BL instruction is 32MB in ARM state, and 4MB in Thumb state.

During development, your application might have calls to targets that are beyond
reach, or calls to functions in another state. The linker automatically inserts a
veneer in these cases. The veneer becomes the intermediate target of the original
BL, and the veneer code then sets the PC to the desired destination address.

• A callee routine using a BX instruction to return. A callee routine must be
assembled with --apcs /interwork. Also, you might have to export the function
label of the routine, for example, EXPORT ThumbSub (see Example 4-6 on
page 4-19). Where appropriate, the assembler code must conform to the AAPCS.

This is generally only necessary in ARMv4T, or if the caller and callee are widely
separated or in different areas. In ARMv5T and later, if the caller and callee are
sufficiently close together, no veneers are necessary.
4-18 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Interworking ARM and Thumb
Example of assembly language interworking using veneers

Example 4-6 shows the code to set registers r0 to r2 to the values 1, 2, and 3
respectively. Registers r0 and r2 are set by the ARM code. r1 is set by the Thumb code.
Observe that:

• the code must be assembled with the option --apcs /interwork

• a BX lr instruction is used to return from the subroutine, instead of the usual MOV
pc,lr.

Example 4-6

 ; *****
 ; arm.s
 ; *****

 PRESERVE8

 AREA Arm,CODE,READONLY ; Name this block of code.
 IMPORT ThumbProg
 ENTRY ; Mark 1st instruction to call.
ARMProg
 MOV r0,#1 ; Set r0 to show in ARM code.
 BL ThumbProg ; Call Thumb subroutine.
 MOV r2,#3 ; Set r2 to show returned to ARM.
 ; Terminate execution.
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC 0x123456 ; ARM semihosting (formerly SWI)
 END

 ; *******
 ; thumb.s
 ; *******
 AREA Thumb,CODE,READONLY ; Name this block of code.
 THUMB ; Subsequent instructions are Thumb.
 EXPORT ThumbProg
ThumbProg
 MOVS r1, #2 ; Set r1 to show reached Thumb code.
 BX lr ; Return to ARM subroutine.
 END ; Mark end of this file.

Follow these steps to build and link the modules, and examine the interworking veneers:

1. Type armasm -g arm.s to assemble the ARM code.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-19

Interworking ARM and Thumb
2. Type armasm --thumb -g --apcs /interwork thumb.s to assemble the Thumb code.

3. Type armlink arm.o thumb.o -o count to link the two object files.

4. Run the image using a compatible debugger (for example, RealView Debugger or
AXD) with an appropriate debug target.

You can see the interworking veneer that is inserted by the linker in the disassembled
code shown in Example 4-7. The veneer is inserted on the next word boundary, and
starts at address 0x0000801C.

Example 4-7

 ARMProg:
 00008000 E3A00001 MOV r0,#1
 00008004 EB000004 BL 0x801c
 00008008 E3A02003 MOV r2,#3
 0000800C E3A00018 MOV r0,#0x18
 00008010 E59F1000 LDR r1,0x8018
 00008014 EF123456 SVC 0x123456
 00008018 00020026 <Data> '&' 0x00 0x02 0x00
 0000801C E28FC001 ADR r12,{pc}+9 ; #0x8025
 00008020 E12FFF1C BX r12
 ThumbProg:
 00008024 2102 MOV r1,#2
 00008026 4770 BX r14

4.4.2 C, C++, and assembly language interworking using veneers

C and C++ code compiled to run in one state can call assembly language code designed
to run in the other state, and vice versa. To do this, write the caller routine as any
non-interworking routine and, if calling from assembly language, use a BL instruction to
make the call (see Example 4-8 on page 4-21). Then:

• if the callee routine is in C, compile it using --apcs /interwork

• if the callee routine is in assembly language, assemble with the --apcs /interwork
option and return using BX lr.

Note
 Any assembly language code or user library code used in this manner must conform to
the AAPCS where appropriate.
4-20 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Interworking ARM and Thumb
Example 4-8

 /**********************
 * thumb.c *
 **********************/
 #include <stdio.h>
 extern int arm_function(int);
 int main(void)
 {
 int i = 1;
 printf("i = %d\n", i);
 printf("And now i = %d\n", arm_function(i));
 return (0);
 }

 ; *****
 ; arm.s
 ; *****
 PRESERVE8
 AREA Arm,CODE,READONLY ; Name this block of code.
 EXPORT arm_function
arm_function
 ADD r0,r0,#4 ; Add 4 to first parameter.
 BX lr ; Return
 END

Follow these steps to build and link the modules:

1. Type armcc --thumb -g -c --apcs /interwork thumb.c to compile the Thumb code.

2. Type armasm -g --apcs /interwork arm.s to assemble the ARM code.

3. Type armlink arm.o thumb.o -o add --info veneers to link the two object files
and view the size of the interworking veneers.

4. Run the image using a compatible debugger (for example, RealView Debugger or
AXD) with an appropriate debug target.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 4-21

Interworking ARM and Thumb
4-22 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Chapter 5
Mixing C, C++, and Assembly Language

This chapter describes how to write mixed C, C++, and ARM® assembly language code.
It also describes how to use the ARM inline and embedded assemblers from C and C++.
It contains the following sections:

• Using the inline and embedded assemblers on page 5-2

• Accessing C global variables from assembly code on page 5-4

• Using C header files from C++ on page 5-5

• Calling between C, C++, and ARM assembly language on page 5-7.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-1

Mixing C, C++, and Assembly Language
5.1 Using the inline and embedded assemblers

The inline and embedded assemblers that are built into the ARM compiler enable you
to use features of the target processor that cannot be accessed directly from C or C++.
For example:

• saturating arithmetic (see RealView Compilation Tools v3.0 Assembler Guide)

• custom coprocessors

• the Program Status Register (PSR).

This section includes:

• Features of the inline assembler

• Features of the embedded assembler

• Differences between inline and embedded assembly code on page 5-3.

For more details, see the chapter on inline and embedded assemblers in RealView
Compilation Tools v3.0 Compiler and Libraries Guide.

5.1.1 Features of the inline assembler

The inline assembler supports very flexible interworking with C and C++. Any register
operand can be an arbitrary C or C++ expression. The inline assembler also expands
complex instructions and optimizes the assembly language code.

Note
 Inline assembly language is subject to optimization by the compiler if you use one of
the multi-optimization compiler options -O1, -O2, or -O3.

The inline assembler for ARM code implements most of the ARM instruction set
including generic coprocessor instructions, halfword instructions and long multiply.

5.1.2 Features of the embedded assembler

The embedded assembler provides unrestricted, low-level access to the target processor,
and enables you to use the C and C++ preprocessor directives, and gives easy access to
structure member offsets.

The embedded assembler enables you to use the full ARM assembler instruction set,
including assembler directives. Embedded assembly code is assembled separately from
the C and C++ code. A compiled object is produced that is then combined with the
object from the compilation of the C and C++ source.

The embedded assembler is supported in both ARM and Thumb® code. See RealView
Compilation Tools v3.0 Assembler Guide for details of the ARM/Thumb instruction set.
5-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Mixing C, C++, and Assembly Language
5.1.3 Differences between inline and embedded assembly code

Table 5-1 summarizes the main differences between inline assembler and embedded
assembler.

Note
 A list of differences between embedded assembler and C/ C++ is provided in the chapter
on inline and embedded assemblers in RealView Compilation Tools v3.0 Compiler and
Libraries Guide.

Table 5-1 Differences between inline and embedded assembler

Feature Embedded assembler Inline assembler

Instruction set ARM and Thumb. ARM only.

ARM assembler directives All supported. None supported.

C/C++ expressions Constant expressions only. Full C/C++ expressions.

Optimization of assembly code No optimization. Full optimization.

Inlining No. Possible.

Register access Specified physical registers are
used. You can also use PC, LR and
SP.

Uses virtual registers.

Using sp (r13), lr (r14), and pc (r15) gives an
error.

Return instructions You must add them in your code. Generated automatically. (The BX, BXJ, and
BLX instructions are not supported.)

BKPT instruction Supported directly. Not supported.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-3

Mixing C, C++, and Assembly Language
5.2 Accessing C global variables from assembly code

Global variables can only be accessed indirectly, through their address. To access a
global variable, use the IMPORT directive to do the import and then load the address into
a register. You can access the global variable with load and store instructions, depending
on its type.

For unsigned variables, for example, use:

• LDRB/STRB for char

• LDRH/STRH for short

• LDR/STR for int.

For signed variables, use the equivalent signed instruction, such as LDRSB and LDRSH.

Small structures of less than eight words can be accessed as a whole using the LDM and
STM instructions. Individual members of structures can be accessed by a load or store
instruction of the appropriate type. You must know the offset of a member from the start
of the structure in order to access it.

Example 5-1 loads the address of the integer global variable globvar into r1, loads the
value contained in that address into r0, adds 2 to it, then stores the new value back into
globvar.

Example 5-1 Accessing global variables

 PRESERVE8

 AREA globals,CODE,READONLY

 EXPORT asmsubroutine
 IMPORT globvar

asmsubroutine
 LDR r1, =globvar ; read address of globvar into
 ; r1 from literal pool
 LDR r0, [r1]
 ADD r0, r0, #2
 STR r0, [r1]
 BX lr
 END

For full details on the instructions available in ARM or Thumb code, see RealView
Compilation Tools v3.0 Assembler Guide.
5-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Mixing C, C++, and Assembly Language
5.3 Using C header files from C++

C header files must be wrapped in extern "C" directives before they are called from
C++.

This section describes:

• Including system C header files

• Including your own C header files on page 5-6.

5.3.1 Including system C header files

You do not have to take any special steps to include standard system C header files, such
as stdio.h. The standard C header files already contain the appropriate extern "C"
directives. For example:

#include <stdio.h>
int main()
{
 ... // C++ code
 return 0;
}

If you include headers using this syntax, all library names are placed in the global
namespace.

The C++ standard specifies that the functionality of the C header files is available
through C++ specific header files. These files are installed in
install_directory\RVCT\Data\3.0\build_num\include\platform, together with the
standard C header files, and can be referenced in the usual way. For example:

#include <cstdio>

In ARM C++, these headers #include the C headers. If you include headers using this
syntax, all C++ standard library names are defined in the namespace std, including the
C library names. This means that you must qualify all the library names by using one of
the following methods:

• specify the standard namespace, for example:

std::printf("example\n");

• use the C++ keyword using to import a name to the global namespace:

using namespace std;
printf("example\n");

• use the compiler option --using_std.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-5

Mixing C, C++, and Assembly Language
5.3.2 Including your own C header files

To include your own C header files, you must wrap the #include directive in an extern
"C" statement. You can do this in the following ways:

• When the file is #included (shown in Example 5-2).

• By adding the extern "C" statement to the header file (shown in Example 5-3).

Example 5-2 Directive before include file

// C++ code

extern "C" {
#include "my-header1.h"
#include "my-header2.h"
}

int main()
{
 // ...
 return 0;
}

Example 5-3 Directive in file header

/* C header file */

#ifdef __cplusplus /* Insert start of extern C construct */
extern "C" {
#endif

/* Body of header file */

#ifdef __cplusplus /* Insert end of extern C construct */
} /* The C header file can now be */
#endif /* included in either C or C++ code. */
5-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Mixing C, C++, and Assembly Language
5.4 Calling between C, C++, and ARM assembly language

This section provides examples that can help you to call C and assembly language code
from C++, and to call C++ code from C and assembly language. It also describes calling
conventions and data types, and includes:

• General rules for calling between languages

• Information specific to C++ on page 5-8

• Examples of calling between languages on page 5-9.

You can mix calls between C and C++ and assembly language routines provided you
comply with the AAPCS. For more information, see the Procedure Call Standard for
the ARM Architecture specification, aapcs.pdf, in
install_directory\Documentation\Specifications\...

Note
 The information in this section is implementation dependent and might change in future
releases.

5.4.1 General rules for calling between languages

The following general rules apply to calling between C, C++, and assembly language.
For more details, see RealView Compilation Tools v3.0 Compiler and Libraries Guide.

The embedded assembler and compliance with the Application Binary Interface (ABI)
for the ARM Architecture (base standard) [BSABI] make mixed language programming
easier to implement. These assist you with:

• name mangling, using the __cpp keyword

• the way the implicit this parameter is passed

• the way virtual functions are called

• the representation of references

• the layout of C++ class types that have base classes or virtual member functions

• the passing of class objects that are not plain old data structures.

The following general rules apply to mixed language programming:

• Use C calling conventions.

• In C++, nonmember functions can be declared as extern "C" to specify that they
have C linkage. In this release of RealView® Compilation Tools (RVCT), having
C linkage means that the symbol defining the function is not mangled. C linkage
can be used to implement a function in one language and call it from another.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-7

Mixing C, C++, and Assembly Language
Note
 Functions that are declared extern "C" cannot be overloaded.

• Assembly language modules must conform to the appropriate AAPCS standard
for the memory model used by the application.

The following rules apply to calling C++ functions from C and assembly language:

• To call a global (nonmember) C++ function, declare it extern "C" to give it C
linkage.

• Member functions (both static and non-static) always have mangled names. Using
the __cpp keyword of the embedded assembler means that you do not have to find
the mangled names manually.

• C++ inline functions cannot be called from C unless you ensure that the C++
compiler generates an out-of-line copy of the function. For example, taking the
address of the function results in an out-of-line copy.

• Nonstatic member functions receive the implicit this parameter as a first
argument in r0, or as a second argument in r1 if the function returns a non int-like
structure. Static member functions do not receive an implicit this parameter.

5.4.2 Information specific to C++

The following information applies specifically to C++.

C++ calling conventions

ARM C++ uses the same calling conventions as ARM C with one exception:

• Nonstatic member functions are called with the implicit this parameter as the first
argument, or as the second argument if the called function returns a non int-like
struct. This might change in future implementations.

C++ data types

ARM C++ uses the same data types as ARM C with the following exceptions and
additions:

• C++ objects of type struct or class have the same layout that is expected from
ARM C if they have no base classes or virtual functions. If such a struct has
neither a user-defined copy assignment operator nor a user-defined destructor, it
is a plain old data structure.
5-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Mixing C, C++, and Assembly Language
• References are represented as pointers.

• No distinction is made between pointers to C functions and pointers to C++
(nonmember) functions.

Symbol name mangling

The linker unmangles symbol names in messages.

C names must be declared as extern "C" in C++ programs. This is done already for the
ARM ISO C headers. See Using C header files from C++ on page 5-5 for more
information.

5.4.3 Examples of calling between languages

The following sections contain code examples that demonstrate how to mix language
calls:

• Calling assembly language from C on page 5-10

• Calling C from assembly language on page 5-11

• Calling C from C++ on page 5-12

• Calling assembly language from C++ on page 5-13

• Calling C++ from C on page 5-14

• Calling C++ from assembly language on page 5-15

• Calling C++ from C or assembly language on page 5-17

• Passing a reference between C and C++ on page 5-16.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-9

Mixing C, C++, and Assembly Language
Calling assembly language from C

Example 5-4 and Example 5-5 show a C program that uses a call to an assembly
language subroutine to copy one string over the top of another string.

Example 5-4 Calling assembly language from C

#include <stdio.h>
extern void strcopy(char *d, const char *s);
int main()
{ const char *srcstr = "First string - source ";
 char dststr[] = "Second string - destination ";
/* dststr is an array since we’re going to change it */
 printf("Before copying:\n");
 printf(" %s\n %s\n",srcstr,dststr);
 strcopy(dststr,srcstr);
 printf("After copying:\n");
 printf(" %s\n %s\n",srcstr,dststr);
 return (0);
}

Example 5-5 Assembly language string copy subroutine

 PRESERVE8

 AREA SCopy, CODE, READONLY
 EXPORT strcopy
strcopy ; r0 points to destination string.
 ; r1 points to source string.
 LDRB r2, [r1],#1 ; Load byte and update address.
 STRB r2, [r0],#1 ; Store byte and update address.
 CMP r2, #0 ; Check for zero terminator.
 BNE strcopy ; Keep going if not.
 BX lr ; Return.
 END

Example 5-4 is located in the main examples directory, in ...\asm as strtest.c and
scopy.s.

Follow these steps to build the example from the command line:

1. Type armasm --debug scopy.s to build the assembly language source.

2. Type armcc -c --debug strtest.c to build the C source.
5-10 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Mixing C, C++, and Assembly Language
3. Type armlink strtest.o scopy.o -o strtest to link the object files.

4. Run the image using a compatible debugger (for example, AXD or RealView
Debugger) with an appropriate debug target.

Calling C from assembly language

Example 5-6 and Example 5-7 show how to call C from assembly language.

Example 5-6 Defining the function in C

int g(int a, int b, int c, int d, int e)
{
 return a + b + c + d + e;
}

Example 5-7 Assembly language call

 ; int f(int i) { return g(i, 2*i, 3*i, 4*i, 5*i); }

 PRESERVE8

 EXPORT f
 AREA f, CODE, READONLY
 IMPORT g ; i is in r0
 STR lr, [sp, #-4]! ; preserve lr
 ADD r1, r0, r0 ; compute 2*i (2nd param)
 ADD r2, r1, r0 ; compute 3*i (3rd param)
 ADD r3, r1, r2 ; compute 5*i
 STR r3, [sp, #-4]! ; 5th param on stack
 ADD r3, r1, r1 ; compute 4*i (4th param)
 BL g ; branch to C function
 ADD sp, sp, #4 ; remove 5th param
 LDR pc, [sp], #4 ; return
 END
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-11

Mixing C, C++, and Assembly Language
Calling C from C++

Example 5-8 and Example 5-9 show how to call C from C++.

Example 5-8 Calling a C function from C++

struct S { // has no base classes
 // or virtual functions
 S(int s) : i(s) { }
 int i;
};
extern "C" void cfunc(S *);
// declare the C function to be called from C++
int f(){
 S s(2); // initialize 's'
 cfunc(&s); // call 'cfunc' so it can change 's'
 return s.i * 3;
}

Example 5-9 Defining the function in C

struct S {
 int i;
};
void cfunc(struct S *p) {
/* the definition of the C function to be called from C++ */
 p->i += 5;
}

5-12 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Mixing C, C++, and Assembly Language
Calling assembly language from C++

Example 5-10 and Example 5-11 show how to call assembly language from C++.

Example 5-10 Calling assembly language from C++

struct S { // has no base classes
 // or virtual functions
 S(int s) : i(s) { }
 int i;
};

extern "C" void asmfunc(S *); // declare the Asm function
 // to be called
int f() {
 S s(2); // initialize 's'
 asmfunc(&s); // call 'asmfunc' so it
 // can change 's'
 return s.i * 3;
}

Example 5-11 Defining the assembly language function

 PRESERVE8

 AREA Asm, CODE
 EXPORT asmfunc
asmfunc ; the definition of the Asm
 LDR r1, [r0] ; function to be called from C++
 ADD r1, r1, #5
 STR r1, [r0]
 BX lr
 END
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-13

Mixing C, C++, and Assembly Language
Calling C++ from C

Example 5-12 and Example 5-13 show how to call C++ from C.

Example 5-12 Defining the function to be called in C++

struct S { // has no base classes or virtual functions
 S(int s) : i(s) { }
 int i;
};

extern "C" void cppfunc(S *p) {
// Definition of the C++ function to be called from C.
// The function is written in C++, only the linkage is C
 p->i += 5; //
}

Example 5-13 Declaring and calling the function in C

struct S {
 int i;
};

extern void cppfunc(struct S *p);
/* Declaration of the C++ function to be called from C */

int f(void) {
 struct S s;
 s.i = 2; /* initialize 's' */
 cppfunc(&s); /* call 'cppfunc' so it */
 /* can change 's' */
 return s.i * 3;
}

5-14 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Mixing C, C++, and Assembly Language
Calling C++ from assembly language

Example 5-14 and Example 5-15 show how to call C++ from assembly language.

Example 5-14 Defining the function to be called in C++

struct S { // has no base classes or virtual functions
 S(int s) : i(s) { }
 int i;
};
extern "C" void cppfunc(S * p) {
// Definition of the C++ function to be called from ASM.
// The body is C++, only the linkage is C
 p->i += 5;
}

In ARM assembly language, import the name of the C++ function and use a Branch
with Link (BL) instruction to call it:

Example 5-15 Defining assembly language function

 AREA Asm, CODE
 IMPORT cppfunc ; import the name of the C++
 ; function to be called from Asm

 EXPORT f
f
 STMFD sp!,{lr}
 MOV r0,#2
 STR r0,[sp,#-4]! ; initialize struct
 MOV r0,sp ; argument is pointer to struct
 BL cppfunc ; call 'cppfunc' so it can change
 ; the struct
 LDR r0, [sp], #4
 ADD r0, r0, r0,LSL #1
 LDMFD sp!,{pc}
 END
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-15

Mixing C, C++, and Assembly Language
Passing a reference between C and C++

Example 5-16 and Example 5-17 show how to pass a reference between C and C++.

Example 5-16 Defining the C++ function

extern "C" int cfunc(const int&);
// Declaration of the C function to be called from C++

extern "C" int cppfunc(const int& r) {
// Definition of the C++ to be called from C.
 return 7 * r;
}

int f() {
 int i = 3;
 return cfunc(i); // passes a pointer to 'i'
}

Example 5-17 Defining the C function

extern int cppfunc(const int*);
/* declaration of the C++ to be called from C */

int cfunc(const int *p) {
/* definition of the C function to be called from C++ */
 int k = *p + 4;
 return cppfunc(&k);
}

5-16 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Mixing C, C++, and Assembly Language
Calling C++ from C or assembly language

The code in Example 5-18, Example 5-19 and Example 5-20 on page 5-18
demonstrates how to call a non-static, non-virtual C++ member function from C or
assembly language. Use the assembler output from the compiler to locate the mangled
name of the function.

Example 5-18 Calling a C++ member function

struct T {
 T(int i) : t(i) { }
 int t;
 int f(int i);
};

int T::f(int i) { return i + t; }
// Definition of the C++ function to be called from C.

extern "C" int cfunc(T*);
// declaration of the C function to be called from C++

int f() {
 T t(5); // create an object of type T
 return cfunc(&t);
}

Example 5-19 Defining the C function

struct T;

extern int _ZN1T1fEi(struct T*, int);
 /* the mangled name of the C++ */
 /* function to be called */

int cfunc(struct T* t) {
/* Definition of the C function to be called from C++. */
 return 3 * _ZN1T1fEi(t, 2); /* like '3 * t->f(2)' */
}

ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 5-17

Mixing C, C++, and Assembly Language
Example 5-20 Implementing the function in assembly language

 EXPORT cfunc
 AREA foo, CODE
 IMPORT _ZN1T1fEi

cfunc
 STMFD sp!,{lr} ; r0 already contains the object pointer
 MOV r1, #2
 BL _ZN1T1fEi
 ADD r0, r0, r0, LSL #1 ; multiply by 3
 LDMFD sp!,{pc}
 END

Alternatively, you can implement Example 5-18 on page 5-17 and Example 5-20 using
embedded assembly, as shown in Example 5-21. In this example, the __cpp keyword is
used to reference the function. Therefore, you do not have to know the mangled name
of the function.

Example 5-21 Implementing the function in embedded assembly

struct T {
 T(int i) : t(i) { }
 int t;
 int f(int i);
};
int T::f(int i) { return i + t; }

// Definition of asm function called from C++
__asm int asm_func(T*) {
 STMFD sp!, {lr}
 MOV r1, #2;
 BL __cpp(T::f);
 ADD r0, r0, r0, LSL #1 ; multiply by 3
 LDMFD sp!, {pc}
}

int f() {
 T t(5); // create an object of type T
 return asm_func(&t);
}

5-18 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Chapter 6
Handling Processor Exceptions

This chapter describes how to handle the different types of exception supported by
ARM® processors. It contains the following sections:

• About processor exceptions on page 6-2

• Determining the processor state on page 6-6

• Entering and leaving an exception on page 6-8

• Handling an exception on page 6-13

• Installing an exception handler on page 6-14

• SVC handlers on page 6-19

• Interrupt handlers on page 6-29

• Reset handlers on page 6-39

• Undefined Instruction handlers on page 6-40

• Prefetch Abort handler on page 6-41

• Data Abort handler on page 6-42

• Chaining exception handlers on page 6-43

• System mode on page 6-45.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-1

Handling Processor Exceptions
6.1 About processor exceptions

During the normal flow of execution through a program, the program counter (PC)
increases sequentially through the address space, with branches to nearby labels or
branch and links to subroutines.

Processor exceptions occur when this normal flow of execution is diverted, to enable the
processor to handle events generated by internal or external sources. Examples of such
events are:

• externally generated interrupts

• an attempt by the processor to execute an undefined instruction

• accessing privileged operating system functions.

It is necessary to preserve the previous processor status when handling such exceptions,
so that execution of the program that was running when the exception occurred can
resume when the appropriate exception routine has completed.

This section includes:

• Types of exception

• The vector table on page 6-3

• Use of modes and registers by exceptions on page 6-3

• Exception priorities on page 6-4.

6.1.1 Types of exception

Table 6-1 shows the different types of exception recognized by ARM processors.

Table 6-1 Exception types

Exception Description

Reset Occurs when the processor reset pin is asserted. This exception is only expected to occur for
signaling power-up, or for resetting as if the processor has powered up. A soft reset can be
done by branching to the reset vector (0x0000).

Undefined Instruction Occurs if neither the processor, nor any attached coprocessor, recognizes the currently
executing instruction.

Supervisor Call (SVC) This is a user-defined synchronous interrupt instruction. It enables a program running in User
mode, for example, to request privileged operations that run in Supervisor mode, such as an
RTOS function.

Prefetch Abort Occurs when the processor attempts to execute an instruction that was not fetched, because the
address was illegal (see Illegal addresses on page 6-3).
6-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
Illegal addresses

An illegal virtual address is one that does not currently correspond to an address in
physical memory, or one that the memory management subsystem has determined is
inaccessible to the processor in its current mode.

6.1.2 The vector table

The vector table controls processor exception handling. The vector table is a reserved
area of 32 bytes, usually at the bottom of the memory map. It has one word of space
allocated to each exception type, and one word that is currently reserved.

This is not enough space to contain the full code for a handler, so the vector entry for
each exception type typically contains a branch instruction or load PC instruction to
continue execution with the appropriate handler.

6.1.3 Use of modes and registers by exceptions

Typically, an application runs in User mode, but servicing exceptions requires a
privileged mode. An exception changes the processor mode, and this in turn means that
each exception handler has access to a certain subset of the banked registers:

• its own r13 or Stack Pointer (sp_mode)

• its own r14 or Link Register (lr_mode)

• its own Saved Program Status Register (spsr_ mode).

In the case of an FIQ, each exception handler has access to five more general purpose
registers (r8_FIQ to r12_FIQ).

Data Abort Occurs when a data transfer instruction attempts to load or store data at an illegal address (see
Illegal addresses).

IRQ Occurs when the processor external interrupt request pin is asserted (LOW) and the I bit in the
CPSR is clear.

FIQ Occurs when the processor external fast interrupt request pin is asserted (LOW) and the F bit
in the CPSR is clear.

Table 6-1 Exception types (continued)

Exception Description
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-3

Handling Processor Exceptions
Each exception handler must ensure that other registers are restored to their original
contents on exit. You can do this by saving the contents of any registers that the handler
has to use onto its stack and restoring them before returning. If you are using Angel or
RealView ARMulator® ISS, the required stacks are set up for you. Otherwise, you must
set them up yourself.

Note
 As supplied, the assembler does not predeclare symbolic register names of the form
register_mode. To use this form, you must declare the appropriate symbolic names with
the RN assembler directive, for example, lr_FIQ RN r14 declares the symbolic register
name lr_FIQ for r14. See the directives chapter in RealView Compilation Tools v3.0
Assembler Guide for more information on the RN directive.

6.1.4 Exception priorities

When several exceptions occur simultaneously, they are serviced in a fixed order of
priority. Each exception is handled in turn before execution of the user program
continues. It is not possible for all exceptions to occur concurrently. For example, the
Undefined Instruction and SVC exceptions are mutually exclusive because they are
both triggered by executing an instruction.

Table 6-2 shows the exceptions, their corresponding processor modes and their
handling priorities.

Table 6-2 Exception priorities

Vector address Exception type Exception mode Priority (1=high, 6=low)

0x0 Reset Supervisor (SVC) 1

0x4 Undefined Instruction Undef 6

0x8 Supervisor Call (SVC) Supervisor (SVC) 6

0xC Prefetch Abort Abort 5

0x10 Data Abort Abort 2

0x14 Reserved Not applicable Not applicable

0x18 Interrupt (IRQ) Interrupt (IRQ) 4

0x1C Fast Interrupt (FIQ) Fast Interrupt (FIQ) 3
6-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
Because the Data Abort exception has a higher priority than the FIQ exception, the Data
Abort is actually registered before the FIQ is handled. The Data Abort handler is
entered, but control is then passed immediately to the FIQ handler. When the FIQ has
been handled, control returns to the Data Abort handler. This means that the data
transfer error does not escape detection as it would if the FIQ were handled first.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-5

Handling Processor Exceptions
6.2 Determining the processor state

An exception handler might have to determine whether the processor was in ARM or
Thumb® state when the exception occurred.

SVC handlers, especially, might have to read the processor state. This is done by
examining the SPSR T-bit. This bit is set for Thumb state and clear for ARM state.

Both ARM and Thumb instruction sets have the SVC instruction. When calling SVCs
from Thumb state, you must consider the following:

• The instruction address is at (lr–2), rather than (lr–4).

• The instruction itself is 16-bit, and so requires a halfword load (see Figure 6-1).

• The SVC number is held in 8 bits instead of the 24 bits in ARM state.

Figure 6-1 Thumb SVC instruction

Example 6-1 on page 6-7 shows ARM code that handles a SVC from both sources.

Consider the following:

• Each of the do_svc_x routines could carry out a switch to Thumb state and back
again to improve code density if required.

• You can replace the jump table by a call to a C function containing a switch()
statement to implement the SVCs.

• It is possible for an SVC number to be handled differently depending on the state
it is called from.

• The range of SVC numbers accessible from Thumb state can be increased by
calling SVCs dynamically (as described in SVC handlers on page 6-19).

�� �� �� �� �� �� � � � �

����	�����	��

���������	����	� � �� � ���
6-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
Example 6-1 SVC handler

T_bit EQU 0x20 ; Thumb bit of CPSR/SPSR, that is,
 ; bit 5.
 :
 :
SVCHandler
 STMFD sp!, {r0-r3,r12,lr} ; Store registers.
 MRS r0, spsr ; Move SPSR into
 ; general purpose register.
 TST r0, #T_bit ; Occurred in Thumb state?
 LDRNEH r0,[lr,#-2] ; Yes: load halfword and...
 BICNE r0,r0,#0xFF00 ; ...extract comment field.
 LDREQ r0,[lr,#-4] ; No: load word and...
 BICEQ r0,r0,#0xFF000000 ; ...extract comment field.

 ; r0 now contains SVC number

 CMP r0, #MaxSVC ; Rangecheck
 LDRLS pc, [pc, r0, LSL#2] ; Jump to the appropriate routine.
 B SVCOutOfRange
svctable
 DCD do_svc_1
 DCD do_svc_2
 :
 :
do_svc_1
 ; Handle the SVC.
 LDMFD sp!, {r0-r3,r12,pc}^ ; Restore the registers and return.
do_svc_2
 :
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-7

Handling Processor Exceptions
6.3 Entering and leaving an exception

This section describes the processor response to an exception, and how to return to the
place where an exception occurred after the exception has been handled. The method
for returning is different depending on the exception type (see Types of exception on
page 6-2).

Processors that support Thumb state use the same basic exception handling mechanism
as processors that do not support Thumb state. An exception causes the next instruction
to be fetched from the appropriate vector table entry.

The same vector table is used for exceptions in both Thumb state and ARM state. An
initial step (to switch to ARM state) is added to the exception handling procedure
described in The processor response to an exception.

In the following descriptions, it is clearly marked if there are further considerations that
you must take into account when writing exception handlers suitable for use on
processors that support Thumb state.

This section includes:

• The processor response to an exception

• Returning from an exception handler on page 6-9

• The return address and return instruction on page 6-10.

6.3.1 The processor response to an exception

When an exception is generated, the processor performs the following actions:

1. Copies the Current Program Status Register (CPSR) into the Saved Program
Status Register (SPSR) for the mode in which the exception is to be handled. This
saves the current mode, interrupt mask, and condition flags.

2. Switches to ARM state, if it is currently in Thumb state.

3. Changes the appropriate CPSR mode bits in order to:

• change to the appropriate mode, and map in the appropriate banked
registers for that mode

• disable interrupts. IRQs are disabled when any exception occurs. FIQs are
disabled when a FIQ occurs and on reset.

4. Sets lr_mode to the return address, as defined in The return address and return
instruction on page 6-10.

5. Sets the PC to the vector address for the exception.
6-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
For ARM processors that do not support Thumb, this forces a branch to the
appropriate exception handler.

For processors that support Thumb, the switch from Thumb state to ARM state in
step 2 ensures that the ARM instruction installed at this vector address (either a
branch or a PC-relative load) is correctly fetched, decoded, and executed. This
forces a branch to a top-level veneer that you must write in ARM code.

6.3.2 Returning from an exception handler

The method used to return from an exception depends on whether the exception handler
uses stack operations or not. In both cases, to return execution to the place where the
exception occurred an exception handler must:

• restore the CPSR from spsr_mode

• restore the PC using the return address stored in lr_mode.

For a simple return that does not require the destination mode registers to be restored
from the stack, the exception handler carries out these operations by performing a data
processing instruction with:

• the S flag set

• the PC as the destination register.

The return instruction required depends on the type of exception. See The return
address and return instruction on page 6-10 for instructions on how to return from each
exception type.

Note
 You do not have to return from the reset handler because the reset handler executes your
main code directly.

If the exception handler entry code uses the stack to store registers that must be
preserved while it handles the exception, it can return using a load multiple instruction
with the ^ qualifier. For example, an exception handler can return in one instruction
using:

 LDMFD sp!,{r0-r12,pc}^

To do this, the exception handler must save the following onto the stack:

• all the work registers in use when the handler is invoked

• the link register, modified to produce the same effect as the data processing
instructions described in The return address and return instruction on page 6-10.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-9

Handling Processor Exceptions
The ̂ qualifier specifies that the CPSR is restored from the SPSR. It must be used only from
a privileged mode. See the description of how to implement stacks with LDM and STM in
the RealView Compilation Tools v3.0 Assembler Guide for more general information on
stack operations.

6.3.3 The return address and return instruction

The actual location pointed to by the PC when an exception is taken depends on the
exception type. The return address might not necessarily be the next instruction pointed
to by the PC.

If an exception occurs in ARM state, the processor stores (PC– 4) in lr_ mode. However,
for exceptions that occur in Thumb state, the processor automatically stores a different
value for each of the exception types. This adjustment is required because Thumb
instructions take up only a halfword, rather than the full word that ARM instructions
occupy.

If this correction were not made by the processor, the handler would have to determine
the original state of the processor, and use a different instruction to return to Thumb
code rather than ARM code. By making this adjustment, however, the processor enables
the handler to have a single return instruction that returns correctly, regardless of the
processor state (ARM or Thumb) at the time the exception occurred.

The following sections detail the instructions to return correctly from handling code for
each type of exception.

Returning from SVC and Undefined Instruction handlers

The SVC and Undefined Instruction exceptions are generated by the instruction itself,
so the PC is not updated when the exception is taken. The processor stores (PC–4) in lr_
mode. This makes lr_mode point to the next instruction to be executed. Restoring the
PC from the link register with:

 MOVS pc, lr

returns control from the handler.

The handler entry and exit code to stack the return address and pop it on return is:

 STMFD sp!,{reglist,lr}
 ;...
 LDMFD sp!,{reglist,pc}^

For exceptions that occur in Thumb state, the handler return instruction (MOVS pc,lr)
changes the PC to the address of the next instruction to execute. This is at (PC–2), so
the value stored by the processor in lr_mode is (PC–2).
6-10 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
Returning from FIQ and IRQ handlers

After executing each instruction, the processor checks to see whether the interrupt pins
are LOW and whether the interrupt disable bits in the CPSR are clear. As a result, IRQ or
FIQ exceptions are generated only after the PC has been updated. The processor stores
(PC–4) in lr_mode. This makes lr_mode point one instruction beyond the end of the
instruction in which the exception occurred. When the handler has finished, execution
must continue from the instruction prior to the one pointed to by lr_mode. The address
to continue from is one word (four bytes) less than that in lr_mode, so the return
instruction is:

 SUBS pc, lr, #4

The handler entry and exit code to stack the return address and pop it on return is:

 SUB lr,lr,#4
 STMFD sp!,{reglist,lr}
 ;...
 LDMFD sp!,{reglist,pc}^

For exceptions that occur in Thumb state, the handler return instruction (SUBS pc,lr,#4)
changes the PC to the address of the next instruction to execute. Because the PC is
updated before the exception is taken, the next instruction is at (PC–4). The value stored
by the processor in lr_mode is therefore PC.

Returning from Prefetch Abort handlers

If the processor attempts to fetch an instruction from an illegal address, the instruction
is flagged as invalid. Instructions already in the pipeline continue to execute until the
invalid instruction is reached, at which point a Prefetch Abort is generated.

The exception handler loads the unmapped instruction into physical memory and uses
the MMU, if there is one, to map the virtual memory location into the physical one. The
handler must then return to retry the instruction that caused the exception. The
instruction now loads and executes.

Because the PC is not updated at the time the prefetch abort is issued, lr_ABT points to
the instruction following the one that caused the exception. The handler must return to
lr_ABT–4 with:

 SUBS pc,lr, #4

The handler entry and exit code to stack the return address and pop it on return is:

 SUB lr,lr,#4
 STMFD sp!,{reglist,lr}
 ;...
 LDMFD sp!,{reglist,pc}^
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-11

Handling Processor Exceptions
For exceptions that occur in Thumb state, the handler return instruction (SUBS pc,lr,#4)
changes the PC to the address of the aborted instruction. Because the PC is not updated
before the exception is taken, the aborted instruction is at (PC–4). The value stored by
the processor in lr_mode is therefore PC.

Returning from Data Abort handlers

When a load or store instruction tries to access memory, the PC has been updated. The
stored value of (PC–4) in lr_ABT points to the second instruction beyond the address
where the exception occurred. When the MMU, if present, has mapped the appropriate
address into physical memory, the handler must return to the original, aborted
instruction so that a second attempt can be made to execute it. The return address is
therefore two words (eight bytes) less than that in lr_ABT, making the return instruction:

 SUBS pc, lr, #8

The handler entry and exit code to stack the return address and pop it on return is:

 SUB lr,lr,#8
 STMFD sp!,{reglist,lr}
 ;...
 LDMFD sp!,{reglist,pc}^

For exceptions that occur in Thumb state, the handler return instruction (SUBS pc,lr,#8)
changes the PC to the address of the aborted instruction. Because the PC is updated
before the exception is taken, the aborted instruction is at (PC–6). The value stored by
the processor in lr_mode is therefore (PC+2).
6-12 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
6.4 Handling an exception

Your top-level veneer routine must save the processor status and any required registers
on the stack. You then have the following options for writing the exception handler:

• Write the whole exception handler in ARM code.

• Perform a BX (Branch and eXchange) to a Thumb code routine that handles the
exception. The routine must return to an ARM code veneer in order to return from
the exception, because the Thumb instruction set does not have the instructions
required to restore CPSR from SPSR.

Figure 6-2 shows how to implement this strategy.

Figure 6-2 Handling an exception in ARM or Thumb state

See Chapter 4 Interworking ARM and Thumb for details of how to combine ARM
and Thumb code in this way.

�������	
�

�

������	�

�����	
�

�������

�������	
�

���
�������	�������

��������	

���
����

��������	������

���������������

��������	

���
����

��������	
������
����

����������
�������	�

������������
����
����
����

��
�	����������
����
����
����

���� �!�����

�����������
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-13

Handling Processor Exceptions
6.5 Installing an exception handler

Any new exception handler must be installed in the vector table. When installation is
complete, the new handler executes whenever the corresponding exception occurs.

This section includes:

• Methods of installing exception handlers

• Installing the handlers at reset

• Installing the handlers from C on page 6-16.

6.5.1 Methods of installing exception handlers

Exception handlers can be installed in the following ways:

Branch instruction

This is the simplest way to reach the exception handler. Each entry in the
vector table contains a branch to the required handler routine. However,
this method does have a limitation. Because the branch instruction only
has a range of 32MB relative to the PC, with some memory organizations
the branch might be unable to reach the handler.

Load PC instruction

With this method, the PC is forced directly to the handler address by:

1. Storing the absolute address of the handler in a suitable memory
location (within 4KB of the vector address).

2. Placing an instruction in the vector that loads the PC with the
contents of the chosen memory location.

6.5.2 Installing the handlers at reset

If your application does not rely on the debugger or debug monitor to start program
execution, you can load the vector table directly from your assembly language reset (or
startup) code.

If your ROM is at location 0x0 in memory, you can have a branch statement for each
vector at the start of your code. This could also include the FIQ handler if it is running
directly from 0x1C (see Interrupt handlers on page 6-29).

Example 6-2 on page 6-15 shows code that sets up the vectors if they are located in
ROM at address zero. You can substitute branch statements for the loads.
6-14 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
Example 6-2

Vector_Init_Block
 LDR pc, Reset_Addr
 LDR pc, Undefined_Addr
 LDR pc, SVC_Addr
 LDR pc, Prefetch_Addr
 LDR pc, Abort_Addr
 NOP ;Reserved vector
 LDR pc, IRQ_Addr
 LDR pc, FIQ_Addr

Reset_Addr DCD Start_Boot
Undefined_Addr DCD Undefined_Handler
SVC_Addr DCD SVC_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler
 DCD 0 ;Reserved vector
IRQ_Addr DCD IRQ_Handler
FIQ_Addr DCD FIQ_Handler

You must have ROM at location 0x0 on reset. Your reset code can remap RAM to
location 0x0. Before doing this, it must copy the vectors (and the FIQ handler if
required) down from an area in ROM into the RAM.

In this case, you must use an LDR pc instruction to address the reset handler, so that the
reset vector code can be position independent.

Example 6-3 copies down the vectors given in Example 6-2 to the vector table in RAM.

Example 6-3

 MOV r8, #0
 ADR r9, Vector_Init_Block
 LDMIA r9!,{r0-r7} ;Copy the vectors (8 words)
 STMIA r8!,{r0-r7}
 LDMIA r9!,{r0-r7} ;Copy the DCD'ed addresses
 STMIA r8!,{r0-r7} ;(8 words again)

Alternatively, you can use the scatter-loading mechanism to define the load and
execution address of the vector table. In that case, the C library copies the vector table
for you (see Chapter 2 Embedded Software Development).
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-15

Handling Processor Exceptions
6.5.3 Installing the handlers from C

Sometimes during development work it is necessary to install exception handlers into
the vectors directly from the main application. As a result, the required instruction
encoding must be written to the appropriate vector address. This can be done for both
the branch and the load PC method of reaching the handler.

Branch method

The required instruction can be constructed as follows:

1. Take the address of the exception handler.

2. Subtract the address of the corresponding vector.

3. Subtract 0x8 to provide for prefetching.

4. Shift the result to the right by two to give a word offset, rather than a byte offset.

5. Test that the top eight bits of this are clear, to ensure that the result is only 24 bits
long (because the offset for the branch is limited to this).

6. Logically OR this with 0xEA000000 (the opcode for the Branch instruction) to
produce the value to be placed in the vector.

Example 6-4 on page 6-17 shows a C function that implements this algorithm.

It takes the following arguments:

• the address of the handler

• the address of the vector in which the handler is to be to installed.

The function can install the handler and return the original contents of the vector. This
result can be used to create a chain of handlers for a particular exception. See Chaining
exception handlers on page 6-43 for more details.

The following code calls this to install an IRQ handler:

unsigned *irqvec = (unsigned *)0x18;
Install_Handler ((unsigned)IRQHandler, irqvec);

In this case, the returned, original contents of the IRQ vector are discarded.
6-16 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
Example 6-4 Implementing the branch method

unsigned Install_Handler (unsigned routine, unsigned *vector)
/* Updates contents of 'vector' to contain branch instruction */
/* to reach ’routine’ from ’vector’. Function return value is */
/* original contents of 'vector'.*/
/* NB: ’Routine’ must be within range of 32MB from ’vector’.*/

{ unsigned vec, oldvec;
 vec = ((routine - (unsigned)vector - 0x8)>>2);
 if ((vec & 0xFF000000))
 {
 /* diagnose the fault */
 printf ("Installation of Handler failed");
 exit (1);
 }
 vec = 0xEA000000 | vec;
 oldvec = *vector;
 *vector = vec;
 return (oldvec);
}

Load PC method

The required instruction can be constructed as follows:

1. Take the address of the word containing the address of the exception handler.

2. Subtract the address of the corresponding vector.

3. Subtract 0x8 to provide for prefetching.

4. Check that the result can be represented in 12 bits.

5. Logically OR this with 0xe59FF000 (the opcode for LDR pc, [pc,#offset]) to
produce the value to be placed in the vector.

6. Put the address of the handler into the storage location.

Example 6-5 on page 6-18 shows a C routine that implements this method.

Again in this example the returned, original contents of the IRQ vector are discarded,
but they could be used to create a chain of handlers. See Chaining exception handlers
on page 6-43 for more information.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-17

Handling Processor Exceptions
Example 6-5 Implementing the load PC method

unsigned Install_Handler (unsigned location, unsigned *vector)

/* Updates contents of 'vector' to contain LDR pc, [pc, #offset] */
/* instruction to cause long branch to address in 'location'. */
/* Function return value is original contents of 'vector'. */

{ unsigned vec, oldvec;
 vec = ((unsigned)location - (unsigned)vector - 0x8) | 0xe59ff000;
 oldvec = *vector;
 *vector = vec;
 return (oldvec);
}

The following code calls this to install an IRQ handler:

unsigned *irqvec = (unsigned *)0x18;
static unsigned pIRQ_Handler = (unsigned)IRQ_handler
Install_Handler (&pIRQHandler, irqvec);

Note
 If you are using a processor with separate instruction and data caches you must ensure
that cache coherence problems do not prevent the new contents of the vectors from
being used.

The data cache (or at least the entries containing the modified vectors) must be cleaned
to ensure the new vector contents are written to main memory. You must then flush the
instruction cache to ensure that the new vector contents are read from main memory.

For details of cache clean and flush operations, see the Technical Reference Manual for
your target processor.
6-18 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
6.6 SVC handlers

This section describes SVC handlers, and includes:

• Determining the SVC to be called

• SVC handlers in assembly language on page 6-20

• SVC handlers in C and assembly language on page 6-21

• Using SVCs in Supervisor mode on page 6-22

• Calling SVCs from an application on page 6-24

• Calling SVCs dynamically from an application on page 6-26.

6.6.1 Determining the SVC to be called

When the SVC handler is entered, it must establish which SVC is being called. This
information can be stored in bits 0-23 of the instruction itself, as shown in Figure 6-3,
or passed in an integer register, usually one of r0-r3.

Figure 6-3 ARM SVC instruction

The top-level SVC handler can load the SVC instruction relative to the link register. Do
this in assembly language, C/C++ inline, or embedded assembler.

The handler must first load the SVC instruction that caused the exception into a register.
At this point, lr_SVC holds the address of the instruction that follows the SVC instruction,
so the SVC is loaded into the register (in this case r0) using:

 LDR r0, [lr,#-4]

The handler can then examine the comment field bits, to determine the required
operation. The SVC number is extracted by clearing the top eight bits of the opcode:

 BIC r0, r0, #0xFF000000

Example 6-6 on page 6-20 shows how you can put these instructions together to form a
top-level SVC handler.

See Determining the processor state on page 6-6 for an example of a handler that deals
with SVC instructions in both ARM state and Thumb state.

�� �� �� �� �� �� �� �

���� ����������	����	� � � �

����	�����	��
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-19

Handling Processor Exceptions
Example 6-6 Top-level SVC handler

 PRESERVE8

 AREA TopLevelSVC, CODE, READONLY ; Name this block of code.
 EXPORT SVC_Handler
SVC_Handler
 STMFD sp!,{r0-r12,lr} ; Store registers.
 LDR r0,[lr,#-4] ; Calculate address of SVC instruction

; and load it into r0.
 BIC r0,r0,#0xff000000 ; Mask off top 8 bits of instruction

; to give SVC number.
 ;
 ; Use value in r0 to determine which SVC routine to execute.
 ;
 LDMFD sp!, {r0-r12,pc}^ ; Restore registers and return.
 END ; Mark end of this file.

6.6.2 SVC handlers in assembly language

The easiest way to call the handler for the requested SVC number is to use a jump table.
If r0 contains the SVC number, the code in Example 6-7 can be inserted into the
top-level handler given in Example 6-6, following on from the BIC instruction.

Example 6-7 SVC jump table

 CMP r0,#MaxSVC ; Range check
 LDRLS pc, [pc,r0,LSL #2]
 B SVCOutOfRange
SVCJumpTable
 DCD SVCnum0
 DCD SVCnum1
 ; DCD for each of other SVC routines
SVCnum0 ; SVC number 0 code
 B EndofSVC
SVCnum1 ; SVC number 1 code
 B EndofSVC
 ; Rest of SVC handling code
 ;
EndofSVC
 ; Return execution to top level
 ; SVC handler so as to restore
 ; registers and return to program.
6-20 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
6.6.3 SVC handlers in C and assembly language

Although the top-level handler must always be written in ARM assembly language, the
routines that handle each SVC can be written in either assembly language or in C. See
Using SVCs in Supervisor mode on page 6-22 for a description of restrictions.

The top-level handler uses a BL (Branch with Link) instruction to jump to the
appropriate C function. Because the SVC number is loaded into r0 by the assembly
routine, this is passed to the C function as the first parameter. The function can use this
value in, for example, a switch() statement.

You can add the following line to the SVC_Handler routine in Example 6-6 on page 6-20:

 BL C_SVC_Handler ; Call C routine to handle the SVC

Example 6-8 shows how to implement the C function.

Example 6-8

void C_SVC_handler (unsigned number)
{
 switch (number)
 {
 case 0 : /* SVC number 0 code */
 break;
 case 1 : /* SVC number 1 code */
 break;
 ...
 default : /* Unknown SVC - report error */
 }
}

The supervisor stack space might be limited, so avoid using functions that require a
large amount of stack space.

 MOV r1, sp ; Second parameter to C routine...
 ; ...is pointer to register values.
 BL C_SVC_Handler ; Call C routine to handle the SVC

You can pass values in and out of an SVC handler written in C, provided that the
top-level handler passes the stack pointer value into the C function as the second
parameter (in r1):

and the C function is updated to access it:

void C_SVC_handler(unsigned number, unsigned *reg)
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-21

Handling Processor Exceptions
The C function can now access the values contained in the registers at the time the SVC
instruction was encountered in the main application code (see Figure 6-4). It can read
from them:

 value_in_reg_0 = reg [0];
 value_in_reg_1 = reg [1];
 value_in_reg_2 = reg [2];
 value_in_reg_3 = reg [3];

and also write back to them:

 reg [0] = updated_value_0;
 reg [1] = updated_value_1;
 reg [2] = updated_value_2;
 reg [3] = updated_value_3;

This causes the updated value to be written into the appropriate stack position, and then
restored into the register by the top-level handler.

Figure 6-4 Accessing the supervisor stack

6.6.4 Using SVCs in Supervisor mode

When a SVC instruction is executed:

1. The processor enters Supervisor mode.

2. The CPSR is stored into spsr_SVC.

3. The return address is stored in lr_SVC (see The processor response to an exception
on page 6-8).

If the processor is already in Supervisor mode, lr_SVC and spsr_SVC are corrupted.

��"�!�

��

�#

�$

�%

�����	�
�
�"�!�

�"�!�
������

������
6-22 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
If you call an SVC while in Supervisor mode you must store lr_SVC and spsr_SVC to
ensure that the original values of the link register and the SPSR are not lost. For example,
if the handler routine for a particular SVC number calls another SVC, you must ensure
that the handler routine stores both lr_SVC and spsr_SVC on the stack. This guarantees
that each invocation of the handler saves the information required to return to the
instruction following the SVC that invoked it. Example 6-9 shows how to do this.

Example 6-9 SVC Handler

 AREA SVC_Area, CODE, READONLY

 PRESERVE8

 EXPORT SVC_Handler
 IMPORT C_SVC_Handler

T_bit EQU 0x20

SVC_Handler

 STMFD sp!,{r0-r3,r12,lr} ; Store registers.
 MOV r1, sp ; Set pointer to parameters.
 MRS r0, spsr ; Get spsr.
 STMFD sp!, {r0, r3} ; Store spsr onto stack and another register to maintain
 ; 8-byte-aligned stack. This is only really needed in case of
 ; nested SVCs.

 ; the next two instructions only work for SVC calls from ARM state.
 ; See Example 6-18 on page 6-36 for a version that works for calls from either ARM or Thumb.

 LDR r0,[lr,#-4] ; Calculate address of SVC instruction and load it into r0.
 BIC r0,r0,#0xFF000000 ; Mask off top 8 bits of instruction to give SVC number.

 ; r0 now contains SVC number
 ; r1 now contains pointer to stacked registers

 BL C_SVC_Handler ; Call C routine to handle the SVC.
 LDMFD sp!, {r0, r3} ; Get spsr from stack.
 MSR spsr_cf, r0 ; Restore spsr.
 LDMFD sp!, {r0-r3,r12,pc}^ ; Restore registers and return.

 END
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-23

Handling Processor Exceptions
Nested SVCs in C and C++

You can write nested SVCs in C or C++. Code generated by the ARM compiler stores
and reloads lr_SVC as necessary.

6.6.5 Calling SVCs from an application

You can call an SVC from assembly language or C/C++.

In assembly language, set up any required register values and issue the relevant SVC.
For example:

 MOV r0, #65 ; load r0 with the value 65
 SVC 0x0 ; Call SVC 0x0 with parameter value in r0

The SVC instruction can be conditionally executed, as can almost all ARM instructions.

From C/C++, declare the SVC as an __SVC function, and call it. For example:

 __svc(0) void my_svc(int);
 .
 .
 .
 my_svc(65);

This enables an SVC to be compiled inline, without additional calling overhead,
provided that:

• any arguments are passed in r0-r3 only

• any results are returned in r0-r3 only.

The parameters are passed to the SVC as if the SVC were a real function call. However,
if there are between two and four return values, you must tell the compiler that the return
values are being returned in a structure, and use the __value_in_regs directive. This is
because a struct-valued function is usually treated as if it were a void function whose
first argument is the address where the result structure must be placed.

Example 6-10 on page 6-25 and Example 6-11 on page 6-25 show an SVC handler that
provides SVC numbers 0x0, 0x1, 0x2 and 0x3. SVCs 0x0 and 0x1 each take two integer
parameters and return a single result. SVC 0x2 takes four parameters and returns a single
result. SVC 0x3 takes four parameters and returns four results. This example is in the
main examples directory, in ...\svc\main.c. and ...\svc\svc.h.
6-24 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
Example 6-10 main.c

#include <stdio.h>
#include "svc.h"

unsigned *svc_vec = (unsigned *)0x08;
extern void SVC_Handler(void);

int main(void)
{
 int result1, result2;
 struct four_results res_3;
 Install_Handler((unsigned) SVC_Handler, svc_vec);
 printf("result1 = multiply_two(2,4) = %d\n", result1 = multiply_two(2,4));
 printf("result2 = multiply_two(3,6) = %d\n", result2 = multiply_two(3,6));
 printf("add_two(result1, result2) = %d\n", add_two(result1, result2));
 printf("add_multiply_two(2,4,3,6) = %d\n", add_multiply_two(2,4,3,6));
 res_3 = many_operations(12, 4, 3, 1);
 printf("res_3.a = %d\n", res_3.a);
 printf("res_3.b = %d\n", res_3.b);
 printf("res_3.c = %d\n", res_3.c);
 printf("res_3.d = %d\n", res_3.d);
 return 0;
}

Example 6-11 svc.h

__svc(0) int multiply_two(int, int);
__svc(1) int add_two(int, int);
__svc(2) int add_multiply_two(int, int, int, int);

struct four_results
{
 int a;
 int b;
 int c;
 int d;
};

__svc(3) __value_in_regs struct four_results
 many_operations(int, int, int, int);
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-25

Handling Processor Exceptions
6.6.6 Calling SVCs dynamically from an application

In some circumstances it might be necessary to call an SVC whose number is not known
until runtime. This situation might occur, for example, when there are a number of
related operations that can be performed on an object, and each operation has its own
SVC. In this case, the methods described in the previous sections are not appropriate.

There are several ways of dealing with this, for example:

• Construct the SVC instruction from the SVC number, store it somewhere, then
execute it.

• Use a generic SVC that takes, as an extra argument, a code for the actual operation
to be performed on its arguments. The generic SVC decodes the operation and
performs it.

The second mechanism can be implemented in assembly language by passing the
required operation number in a register, typically r0 or r12. You can then rewrite the
SVC handler to act on the value in the appropriate register.

Because some value has to be passed to the SVC in the comment field, it is possible for
a combination of these two methods to be used.

For example, an operating system might make use of only a single SVC instruction and
employ a register to pass the number of the required operation. This leaves the rest of
the SVC space available for application-specific SVCs. You can use this method if the
overhead of extracting the SVC number from the instruction is too great in a particular
application. This is how the ARM (0x123456) and Thumb (0xAB) semihosted SVCs are
implemented.

Example 6-12 shows how __svc can be used to map a C function call onto a semihosting
SVC. It is derived from retarget.c in the main examples directory, in
...\emb_sw_dev\source\retarget.c.

Example 6-12 Mapping a C function onto a semihosting SVC

#ifdef __thumb
/* Thumb Semihosting */
#define SemiSVC 0xAB
#else
/* ARM Semihosting */
#define SemiSVC 0x123456
#endif

/* Semihosting SVC to write a character */
__svc(SemiSVC) void Semihosting(unsigned op, char *c);
6-26 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
#define WriteC(c) Semihosting (0x3,c)

void write_a_character(int ch)
{
 char tempch = ch;
 WriteC(&tempch);
}

The compiler includes a mechanism to support the use of r12 to pass the value of the
required operation. Under the AAPCS, r12 is the ip register and has a dedicated role
only during function calls. At other times, you can use it as a scratch register. The
arguments to the generic SVC are passed in registers r0-r3 and values are optionally
returned in r0-r3 as described earlier (see Calling SVCs from an application on
page 6-24). The operation number passed in r12 can be the number of the SVC to be
called by the generic SVC. However, this is not required.

Example 6-13 shows a C fragment that uses a generic, or indirect SVC.

Example 6-13

__svc_indirect(0x80)
 unsigned SVC_ManipulateObject(unsigned operationNumber,
 unsigned object,unsigned parameter);

unsigned DoSelectedManipulation(unsigned object,
 unsigned parameter, unsigned operation)
{ return SVC_ManipulateObject(operation, object, parameter);
}

This produces the following code:

DoSelectedManipulation PROC
 STMFD sp!,{r3,lr}
 MOV r12,r2
 SVC 0x80
 LDMFD sp!,{r3,pc}
 ENDP

It is also possible to pass the SVC number in r0 from C using the __svc mechanism. For
example, if SVC 0x0 is used as the generic SVC and operation 0 is a character read and
operation 1 a character write, you can set up the following:

__svc (0) char __ReadCharacter (unsigned op);
__svc (0) void __WriteCharacter (unsigned op, char c);
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-27

Handling Processor Exceptions
These can be used in a more reader-friendly way by defining the following:

#define ReadCharacter () __ReadCharacter (0);
#define WriteCharacter (c) __WriteCharacter (1, c);

However, if you use r0 in this way, then only three registers are available for passing
parameters to the SVC. Usually, if you have to pass more parameters to a subroutine in
addition to r0-r3, you can do this using the stack. However, stacked parameters are not
easily accessible to an SVC handler, because they typically exist on the User mode stack
rather than the supervisor stack employed by the SVC handler.

Alternatively, one of the registers (typically r1) can be used to point to a block of
memory storing the other parameters.
6-28 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
6.7 Interrupt handlers

This section describes the how to write interrupt handlers to service the external
interrupts FIQ and IRQ, and includes:

• Levels of external interrupt

• Simple interrupt handlers in C

• Reentrant interrupt handlers on page 6-31

• Example interrupt handlers in assembly language on page 6-33.

6.7.1 Levels of external interrupt

The ARM processor has two levels of external interrupt, FIQ and IRQ, both of which
are level-sensitive active LOW signals into the core. For an interrupt to be taken, the
appropriate disable bit in the CPSR must be clear.

FIQs have higher priority than IRQs in the following ways:

• FIQs are serviced first when multiple interrupts occur.

• Servicing an FIQ causes IRQs to be disabled, preventing them from being
serviced until after the FIQ handler has re-enabled them. This is usually done by
restoring the CPSR from the SPSR at the end of the handler.

The FIQ vector is the last entry in the vector table (at address 0x1C) so that the FIQ
handler can be placed directly at the vector location and run sequentially from that
address. This removes the requirement for a branch and its associated delays, and also
means that if the system has a cache, the vector table and FIQ handler might all be
locked down in one block within it. This is important because FIQs are designed to
service interrupts as quickly as possible. The five extra FIQ mode banked registers
enable status to be held between calls to the handler, again increasing execution speed.

Note
 An interrupt handler must contain code to clear the source of the interrupt.

6.7.2 Simple interrupt handlers in C

You can write simple C interrupt handlers by using the __irq function declaration
keyword. You can use the __irq keyword both for simple one-level interrupt handlers,
and interrupt handlers that call subroutines. However, you cannot use the __irq keyword
for reentrant interrupt handlers, because it does not cause the SPSR to be saved or
restored. In this context, reentrant means that the handler re-enables interrupts, and can
itself be interrupted. See Reentrant interrupt handlers on page 6-31 for more
information.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-29

Handling Processor Exceptions
The __irq keyword:

• preserves all AAPCS corruptible registers

• preserves all other registers (excluding the floating-point registers) used by the
function

• exits the function by setting the PC to (lr–4) and restoring the CPSR to its original
value.

If the function calls a subroutine, __irq preserves the link register for the interrupt mode
in addition to preserving the other corruptible registers. See Calling subroutines from
interrupt handlers for more information.

Note
 C interrupt handlers cannot be produced in this way when compiling Thumb C code.
When compiling for Thumb (--thumb option or #pragma thumb), any functions specified
as __irq are compiled for ARM.

However, the subroutine called by an __irq function can be compiled for Thumb, with
interworking enabled. See Chapter 4 Interworking ARM and Thumb for more
information on interworking.

Calling subroutines from interrupt handlers

If you call subroutines from your top-level interrupt handler, the __irq keyword also
restores the value of lr_IRQ from the stack so that it can be used by a SUBS instruction to
return to the correct address after the interrupt has been handled.

Example 6-14 shows how this works. The top level interrupt handler reads the value of
a memory-mapped interrupt controller base address at 0x80000000. If the value of the
address is 1, the top-level handler branches to a handler written in C.

Example 6-14

__irq void IRQHandler (void)
{
 volatile unsigned int *base = (unsigned int *) 0x80000000;

 if (*base == 1) // which interrupt was it?
 {
 C_int_handler(); // process the interrupt
 }
 *(base+1) = 0; // clear the interrupt
}

6-30 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
Compiled with armcc, Example 6-14 on page 6-30 produces the following code:

IRQHandler PROC
 STMFD sp!,{r0-r4,r12,lr}
 MOV r4,#0x80000000
 LDR r0,[r4,#0]
 SUB sp,sp,#4
 CMP r0,#1
 BLEQ C_int_handler
 MOV r0,#0
 STR r0,[r4,#4]
 ADD sp,sp,#4
 LDMFD sp!,{r0-r4,r12,lr}
 SUBS pc,lr,#4
 ENDP

Compare this with the result when the __irq keyword is not used:

IRQHandler PROC
 STMFD sp!,{r4,lr}
 MOV r4,#0x80000000
 LDR r0,[r4,#0]
 CMP r0,#1
 BLEQ C_int_handler
 MOV r0,#0
 STR r0,[r4,#4]
 LDMFD sp!,{r4,pc}
 ENDP

6.7.3 Reentrant interrupt handlers

If an interrupt handler re-enables interrupts, then calls a subroutine, and another
interrupt occurs, the return address of the subroutine (stored in lr_IRQ) is corrupted
when the second IRQ is taken. Using the __irq keyword in C does not cause the SPSR to
be saved and restored, as required by reentrant interrupt handlers, so you must write
your top level interrupt handler in assembly language.

A reentrant interrupt handler must save the IRQ state, switch processor modes, and save
the state for the new processor mode before branching to a nested subroutine or C
function.

In ARMv4 or later you can switch to System mode. System mode uses the User mode
registers, and enables privileged access that might be required by your exception
handler. See System mode on page 6-45 for more information. In ARM architectures
prior to ARMv4 you must switch to Supervisor mode instead.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-31

Handling Processor Exceptions
Note
 This method works for both IRQ and FIQ interrupts. However, because FIQ interrupts
are meant to be serviced as quickly as possible there is normally only one interrupt
source, so it might not be necessary to provide for reentrancy.

The steps required to safely re-enable interrupts in an IRQ handler are:

1. Construct the return address and save it on the IRQ stack.

2. Save the work registers and spsr_IRQ.

3. Clear the source of the interrupt.

4. Switch to System mode and re-enable interrupts.

5. Save User mode link register and non callee-saved registers.

6. Call the C interrupt handler function.

7. When the C interrupt handler returns, restore User mode registers and disable
interrupts.

8. Switch to IRQ mode, disabling interrupts.

9. Restore work registers and spsr_IRQ.

10. Return from the IRQ.

Example 6-15 shows how this works for System mode. Registers r12 and r14 are used
as temporary work registers after lr_IRQ is pushed on the stack.

Example 6-15

 PRESERVE8

 AREA INTERRUPT, CODE, READONLY
 IMPORT C_irq_handler
IRQ
 SUB lr, lr, #4 ; construct the return address
 STMFD sp!, {lr} ; and push the adjusted lr_IRQ
 MRS r14, SPSR ; copy spsr_IRQ to r14
 STMFD sp!, {r12, r14} ; save work regs and spsr_IRQ

 ; Add instructions to clear the interrupt here
 ; then re-enable interrupts.
6-32 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
 MSR CPSR_c, #0x1F ; switch to SYS mode, FIQ and IRQ
 ; enabled. USR mode registers
 ; are now current.
 STMFD sp!, {r0-r3, lr} ; save lr_USR and non-callee
 ; saved registers
 BL C_irq_handler ; branch to C IRQ handler.
 LDMFD sp!, {r0-r3, lr} ; restore registers
 MSR CPSR_c, #0x92 ; switch to IRQ mode and disable
 ; IRQs. FIQ is still enabled.

 LDMFD sp!, {r12, r14} ; restore work regs and spsr_IRQ
 MSR SPSR_cf, r14
 LDMFD sp!, {pc}^ ; return from IRQ.
 END

This example assumes that FIQ remains permanently enabled.

6.7.4 Example interrupt handlers in assembly language

Interrupt handlers are often written in assembly language to ensure that they execute
quickly. The following sections give some examples:

• Single-channel DMA transfer

• Dual-channel DMA transfer on page 6-34

• Interrupt prioritization on page 6-35

• Context switch on page 6-37.

Single-channel DMA transfer

Example 6-16 on page 6-34 shows an interrupt handler that performs interrupt driven
I/O to memory transfers (soft DMA). The code is an FIQ handler. It uses the banked
FIQ registers to maintain state between interrupts. This code is best situated at location
0x1C.

In the example code:

r8 Points to the base address of the I/O device that data is read from.

IOData Is the offset from the base address to the 32-bit data register that is read.
Reading this register clears the interrupt.

r9 Points to the memory location to where that data is being transferred.

r10 Points to the last address to transfer to.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-33

Handling Processor Exceptions
The entire sequence for handling a normal transfer is four instructions. Code situated
after the conditional return is used to signal that the transfer is complete.

Example 6-16 FIQ handler

 LDR r11, [r8, #IOData] ; Load port data from the IO device.
 STR r11, [r9], #4 ; Store it to memory: update the pointer.
 CMP r9, r10 ; Reached the end ?
 SUBLSS pc, lr, #4 ; No, so return.
 ; Insert transfer complete
 ; code here.

Byte transfers can be made by replacing the load instructions with load byte
instructions. Transfers from memory to an I/O device are made by swapping the
addressing modes between the load instruction and the store instruction.

Dual-channel DMA transfer

Example 6-17 on page 6-35 is similar to Example 6-16, except that there are two
channels being handled. The code is an FIQ handler. It uses the banked FIQ registers to
maintain state between interrupts. It is best situated at location 0x1c.

In the example code:

r8 Points to the base address of the I/O device from which data is
read.

IOStat Is the offset from the base address to a register indicating which of
two ports caused the interrupt.

IOPort1Active Is a bit mask indicating if the first port caused the interrupt
(otherwise it is assumed that the second port caused the interrupt).

IOPort1, IOPort2 Are offsets to the two data registers to be read. Reading a data
register clears the interrupt for the corresponding port.

r9 Points to the memory location to which data from the first port is
being transferred.

r10 Points to the memory location to which data from the second port
is being transferred.

r11, r12 Point to the last address to transfer to (r11 for the first port, r12 for
the second).
6-34 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
The entire sequence to handle a normal transfer takes nine instructions. Code situated
after the conditional return is used to signal that the transfer is complete.

Example 6-17 FIQ handler

 LDR r13, [r8, #IOStat] ; Load status register to find which port
 ; caused the interrupt.
 TST r13, #IOPort1Active
 LDREQ r13, [r8, #IOPort1] ; Load port 1 data.
 LDRNE r13, [r8, #IOPort2] ; Load port 2 data.
 STREQ r13, [r9], #4 ; Store to buffer 1.
 STRNE r13, [r10], #4 ; Store to buffer 2.
 CMP r9, r11 ; Reached the end?
 CMPLE r10, r12 ; On either channel?
 SUBNES pc, lr, #4 ; Return
 ; Insert transfer complete code here.

Byte transfers can be made by replacing the load instructions with load byte
instructions. Transfers from memory to an I/O device are made by swapping the
addressing modes between the conditional load instructions and the conditional store
instructions.

Interrupt prioritization

Example 6-18 on page 6-36 dispatches up to 32 interrupt sources to their appropriate
handler routines. Because it is designed for use with the normal interrupt vector (IRQ),
it is branched to from location 0x18.

External hardware is used to prioritize the interrupt and present the high-priority active
interrupt in an I/O register.

In the example code:

IntBase Holds the base address of the interrupt controller.

IntLevel Holds the offset of the register containing the highest-priority active
interrupt.

r13 Is assumed to point to a small full descending stack.

Interrupts are enabled after ten instructions, including the branch to this code.

The specific handler for each interrupt is entered after a further two instructions (with
all registers preserved on the stack).
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-35

Handling Processor Exceptions
In addition, the last three instructions of each handler are executed with interrupts
turned off again, so that the SPSR can be safely recovered from the stack.

Note
 Application Note 30: Software Prioritization of Interrupts describes multiple-source
prioritization of interrupts using software, as opposed to using hardware as described
here.

Example 6-18

 ; first save the critical state
 SUB lr, lr, #4 ; Adjust the return address
 ; before we save it.
 STMFD sp!, {lr} ; Stack return address
 MRS r14, SPSR ; get the SPSR ...
 STMFD sp!, {r12, r14} ; ... and stack that plus a
 ; working register too.
 ; Now get the priority level of the
 ; highest priority active interrupt.
 MOV r12, #IntBase ; Get the interrupt controller's
 ; base address.
 LDR r12, [r12, #IntLevel] ; Get the interrupt level (0 to 31).

 ; Now read-modify-write the CPSR to enable interrupts.

 MRS r14, CPSR ; Read the status register.
 BIC r14, r14, #0x80 ; Clear the I bit
 ; (use 0x40 for the F bit).
 MSR CPSR_c, r14 ; Write it back to re-enable
 ; interrupts and
 LDR pc, [pc, r12, LSL #2] ; jump to the correct handler.
 ; PC base address points to this
 ; instruction + 8
 NOP ; pad so the PC indexes this table.

 ; Table of handler start addresses
 DCD Priority0Handler
 DCD Priority1Handler
 DCD Priority2Handler
; ...
 Priority0Handler
 STMFD sp!, {r0 - r11} ; Save other working registers.
 ; Insert handler code here.
; ...
 LDMFD sp!, {r0 - r11} ; Restore working registers (not r12).
6-36 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
 ; Now read-modify-write the CPSR to disable interrupts.
 MRS r12, CPSR ; Read the status register.
 ORR r12, r12, #0x80 ; Set the I bit
 ; (use 0x40 for the F bit).
 MSR CPSR_c, r12 ; Write it back to disable interrupts.

 ; Now that interrupt disabled, can safely restore SPSR then return.
 LDMFD sp!, {r12, r14} ; Restore r12 and get SPSR.
 MSR SPSR_csxf, r14 ; Restore status register from r14.
 LDMFD sp!, {pc}^ ; Return from handler.
Priority1Handler
; ...

Context switch

Example 6-19 on page 6-38 performs a context switch on the User mode process. The
code is based around a list of pointers to Process Control Blocks (PCBs) of processes
that are ready to run.

Figure 6-5 shows the layout of the PCBs that the example expects.

Figure 6-5 PCB layout

The pointer to the PCB of the next process to run is pointed to by r12, and the end of the
list has a zero pointer. Register r13 is a pointer to the PCB, and is preserved between
time slices, so that on entry it points to the PCB of the currently running process.

��
��
��
��
��
��
�	
�

��
��

�
�

��
�
�
�

�
	
�
�
�
�

�����������

�
������������
���

ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-37

Handling Processor Exceptions
Example 6-19

 STMIA r13, {r0 - r14}^ ; Dump user registers above r13.
 MRS r0, SPSR ; Pick up the user status
 STMDB r13, {r0, lr} ; and dump with return address below.
 LDR r13, [r12], #4 ; Load next process info pointer.
 CMP r13, #0 ; If it is zero, it is invalid
 LDMNEDB r13, {r0, lr} ; Pick up status and return address.
 MSRNE SPSR_cxsf, r0 ; Restore the status.
 LDMNEIA r13, {r0 - r14}^ ; Get the rest of the registers
 NOP
 SUBNES pc, lr, #4 ; and return and restore CPSR.
 ; Insert "no next process code" here.
6-38 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
6.8 Reset handlers

The operations carried out by the Reset handler depend on the system for which the
software is being developed. For example, it might:

• Set up exception vectors. See Installing an exception handler on page 6-14 for
details.

• Initialize stacks and registers.

• Initialize the memory system, if using an MMU.

• Initialize any critical I/O devices.

• Enable interrupts.

• Change processor mode and/or state.

• Initialize variables required by C and call the main application.

See Chapter 2 Embedded Software Development for more information.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-39

Handling Processor Exceptions
6.9 Undefined Instruction handlers

Instructions that are not recognized by the processor are offered to any coprocessors
attached to the system. If the instruction remains unrecognized, an Undefined
Instruction exception is generated. It might be the case that the instruction is intended
for a coprocessor, but that the relevant coprocessor, for example a Floating-Point
Accelerator (FPA), is not attached to the system. However, a software emulator for such
a coprocessor might be available.

Such an emulator must:

1. Attach itself to the Undefined Instruction vector and store the old contents.

2. Examine the Undefined Instruction to see if it has to be emulated. This is similar
to the way in which an SVC handler extracts the number of an SVC, but rather
than extracting the bottom 24 bits, the emulator must extract bits [27:24].

These bits determine whether the instruction is a coprocessor operation in the
following way:

• If bits [27:24] = b1110 or b110x, the instruction is a coprocessor instruction.

• If bits [8:11] show that this coprocessor emulator has to handle the
instruction, the emulator must process the instruction and return to the user
program.

3. Otherwise the emulator must pass the exception onto the original handler (or the
next emulator in the chain) using the vector stored when the emulator was
installed.

When a chain of emulators is exhausted, no further processing of the instruction can
take place, so the Undefined Instruction handler must report an error and quit. See
Chaining exception handlers on page 6-43 for more information.

Note
 The Thumb instruction set does not have coprocessor instructions, so there is no
requirement for the Undefined Instruction handler to emulate such instructions.
6-40 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
6.10 Prefetch Abort handler

If the system has no MMU, the Prefetch Abort handler can report the error and quit.
Otherwise the address that caused the abort must be restored into physical memory.
lr_ABT points to the instruction at the address following the one that caused the abort,
so the address to be restored is at lr_ABT-4. The virtual memory fault for that address
can be dealt with and the instruction fetch retried. The handler therefore returns to the
same instruction rather than the following one, for example:

 SUBS pc,lr,#4
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-41

Handling Processor Exceptions
6.11 Data Abort handler

If there is no MMU, the Data Abort handler must report the error and quit. If there is an
MMU, the handler must deal with the virtual memory fault.

The instruction that caused the abort is at lr_ABT-8 because lr_ABT points two
instructions beyond the instruction that caused the abort.

The following types of instruction can cause this abort:

Single Register Load or Store (LDR or STR)

The response depends on the processor type:

• If the abort takes place on an ARM7 processor, including the
ARM7TDMI®, the address register has been updated and the
change must be undone.

• If the abort takes place on an ARM9, ARM10, StrongARM, or later
processor, the address is restored by the processor to the value it
had before the instruction started. No further action is required to
undo the change.

Swap (SWP) There is no address register update involved with this instruction.

Load Multiple or Store Multiple (LDM or STM)

The response depends on the processor type:

• If the abort takes place on an ARM7 processor, and writeback is
enabled, the base register is updated as if the whole transfer had
taken place.

In the case of an LDM with the base register in the register list, the
processor replaces the overwritten value with the modified base
value so that recovery is possible. The original base address can
then be recalculated using the number of registers involved.

• If the abort takes place on an ARM9, ARM10, StrongARM, or later
processor and writeback is enabled, the base register is restored to
the value it had before the instruction started.

In each of the three cases the MMU can load the required virtual memory into physical
memory. The MMU Fault Address Register (FAR) contains the address that caused the
abort. When this is done, the handler can return and try to execute the instruction again.

You can find example Data Abort handler code in the main examples directory, in
...\databort.
6-42 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
6.12 Chaining exception handlers

In some situations there can be several different sources of a particular exception. For
example:

• Angel uses an Undefined Instruction to implement breakpoints. However,
Undefined Instruction exceptions also occur when a coprocessor instruction is
executed, and no coprocessor is present.

• Angel uses an SVC for various purposes, such as entering Supervisor mode from
User mode and supporting semihosting requests during development. However, a
Real Time Operating System (RTOS) or an application might also implement
some SVCs.

In such situations the following approaches can be taken to extend the exception
handling code:

• A single extended handler.

• Several chained handlers.

6.12.1 A single extended handler

In some circumstances it is possible to extend the code in the exception handler to work
out what the source of the exception was, and then directly call the appropriate code. In
this case, you are modifying the source code for the exception handler.

Angel has been written to make this approach simple. Angel decodes SVCs and
Undefined Instructions, and the Angel exception handlers can be extended to deal with
non-Angel SVCs and Undefined Instructions.

However, this approach is only useful if all the sources of an exception are known when
the single exception handler is written.

6.12.2 Several chained handlers

Some circumstances require more than a single handler. Consider the situation in which
a standard Angel debugger is executing, and a standalone user application (or RTOS) is
then downloaded that wants to support some additional SVCs. The newly loaded
application might have its own entirely-independent exception handler that it wants to
install, but which cannot replace the Angel handler.

In this case the address of the old handler must be noted so that the new handler is able
to call the old handler if it discovers that the source of the exception is not a source it
can deal with. For example, an RTOS SVC handler would call the Angel SVC handler
on discovering that the SVC was not an RTOS SVC, so that the Angel SVC handler gets
a chance to process it.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-43

Handling Processor Exceptions
This approach can be extended to any number of levels to build a chain of handlers.
Although code that takes this approach enables each handler to be entirely independent,
it is less efficient than code that uses a single handler, or at least it becomes less efficient
the further down the chain of handlers it has to go.

Both routines given in Installing the handlers from C on page 6-16 return the old
contents of the vector. This value can be decoded to give:

The offset for a branch instruction

This can be used to calculate the location of the original handler and
enable a new branch instruction to be constructed and stored at a suitable
place in memory. If the replacement handler fails to handle the exception,
it can branch to the constructed branch instruction, which in turn
branches to the original handler.

The location used to store the address of the original handler

If the application handler fails to handle the exception, it has to load the
PC from that location.

In most cases, such calculations are not necessary because information on the debug
monitor or RTOS handlers is available to you. If so, the instructions required to chain
in the next handler can be hard-coded into the application. The last section of the
handler must check that the cause of the exception has been handled. If it has, the
handler can return to the application. If not, it must call the next handler in the chain.

Note
 When chaining in a handler before a debug monitor handler, you must remove the chain
when the monitor is removed from the system, then directly install the application
handler.
6-44 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Handling Processor Exceptions
6.13 System mode

The ARM Architecture defines a User mode that has 15 general purpose registers, a PC,
and a CPSR. In addition to this mode there are other privileged processor modes, each of
which has an SPSR and a number of registers that replace some of the 15 User mode
general purpose registers.

Note
 This section only applies to processors that implement architectures ARMv4, ARMv4T,
and later.

When a processor exception occurs, the current PC is copied into the link register for
the exception mode, and the CPSR is copied into the SPSR for the exception mode. The
CPSR is then altered in an exception-dependent way, and the PC is set to an
exception-defined address to start the exception handler.

The ARM subroutine call instruction (BL) copies the return address into r14 before
changing the PC, so the subroutine return instruction moves r14 to PC (MOV pc,lr).

Together these actions imply that ARM modes that handle exceptions must ensure that
another exception of the same type cannot occur if they call subroutines, because the
subroutine return address is overwritten with the exception return address.

In earlier versions of the ARM architecture, this problem has been solved by either
carefully avoiding subroutine calls in exception code, or changing from the privileged
mode to User mode. The first solution is often too restrictive, and the second means the
task might not have the privileged access it requires to run correctly.

ARMv4 and later provide a processor mode called System mode, to overcome this
problem. System mode is a privileged processor mode that shares the User mode
registers. Privileged mode tasks can run in this mode, and exceptions no longer
overwrite the link register.

Note
 System mode cannot be entered by an exception. The exception handlers modify the
CPSR to enter System mode. See Reentrant interrupt handlers on page 6-31 for an
example.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 6-45

Handling Processor Exceptions
6-46 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Chapter 7
Debug Communications Channel

This chapter explains how to use the Debug Communications Channel (DCC). It
contains the following sections:

• About the Debug Communications Channel on page 7-2

• Target transfer of data on page 7-3

• Polled debug communications on page 7-4

• Interrupt-driven debug communications on page 7-8

• Access from Thumb state on page 7-9.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 7-1

Debug Communications Channel
7.1 About the Debug Communications Channel

The EmbeddedICE® logic in ARM® cores such as ARM7TDMI® and ARM9TDMI®
contains a debug communications channel. This enables data to be passed between the
target and the host debugger using the JTAG port and a protocol converter such as
Multi-ICE®, without stopping the program flow or entering debug state. This chapter
describes how the DCC can be accessed by a program running on the target, and by the
host debugger.

7.1.1 Semihosting

You can use the debug communications channel for semihosting if you are using
Multi-ICE with $semihosting_enabled=2. See the Multi-ICE User Guide for more
information.
7-2 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Debug Communications Channel
7.2 Target transfer of data

The target accesses the DCC as coprocessor 14 on the core using the ARM instructions
MCR and MRC.

Two registers are provided to transfer data:

Comms data read register

A 32-bit wide register used to receive data from the debugger. The
following instruction returns the read register value in Rd:

MRC p14, 0, Rd, c1, c0

Comms data write register

A 32-bit wide register used to send data to the debugger. The following
instruction writes the value in Rn to the write register:

MCR p14, 0, Rn, c1, c0

Note
 See the appropriate Technical Reference Manual for information on accessing DCC
registers for the ARM10 and ARM11 cores. The instructions used, positions of the
status bits, and interpretation of the status bits are different for processors later than
ARM9.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 7-3

Debug Communications Channel
7.3 Polled debug communications

In addition to the comms data read and write registers, a comms data control register is
provided by the DCC. This section includes:

• Comms data control register

• Target to debugger communication on page 7-5

• Debugger to target communication on page 7-6.

7.3.1 Comms data control register

The following instruction returns the control register value in Rd:

 MRC p14, 0, Rd, c0, c0

Two bits in this control register provide synchronized handshaking between the target
and the host debugger:

Bit 1 (W bit) Denotes whether the comms data write register is free (from the
target point of view):

W = 0 New data can be written by the target application.

W = 1 The host debugger can scan new data out of the write
register.

Bit 0 (R bit) Denotes whether there is new data in the comms data read register
(from the target point of view):

R = 1 New data is available to be read by the target
application.

R = 0 The host debugger can scan new data into the read
register.

Note
 The debugger cannot use coprocessor 14 to access the debug communications channel
directly, because this has no meaning to the debugger. Instead, the debugger can read
from and write to the DCC registers using the scan chain. The DCC data and control
registers are mapped into addresses in the EmbeddedICE logic. To view the
EmbeddedICE logic registers, see the documentation for your debugger and debug
target.
7-4 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Debug Communications Channel
7.3.2 Target to debugger communication

This is the sequence of events for an application running on the ARM core to
communicate with a debugger running on the host:

1. The target application verifies that the DCC write register is free for use. It does
this using the MRC instruction to read the debug communications channel control
register to check that the W bit is clear.

2. If the W bit is clear, the comms data write register is clear and the application
writes a word to it using an MCR instruction to coprocessor 14. The action of
writing to the register automatically sets the W bit. If the W bit is set, the debugger
has not emptied the comms data write register. If the application has to send
another word, it must poll the W bit until it is clear.

3. The debugger polls the comms data control register through scan chain 2. If the
debugger sees that the W bit is set, it can read the DCC data register to read the
message sent by the application. The process of reading the data automatically
clears the W bit in the comms data control register.

Example 7-1 shows how this works. The example code is available in the main
examples directory, in ...\dcc\outchan.s.

Example 7-1

 AREA OutChannel, CODE, READONLY
 ENTRY
 MOV r1,#3 ; Number of words to send
 ADR r2, outdata ; Address of data to send
pollout
 MRC p14,0,r0,c0,c0 ; Read control register
 TST r0, #2
 BNE pollout ; if W set, register still full
write
 LDR r3,[r2],#4 ; Read word from outdata
 ; into r3 and update the pointer
 MCR p14,0,r3,c1,c0 ; Write word from r3
 SUBS r1,r1,#1 ; Update counter
 BNE pollout ; Loop if more words to be written
 MOV r0, #0x18 ; Angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC 0x123456 ; ARM semihosting (formerly SWI)
outdata
 DCB "Hello there!"
 END
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 7-5

Debug Communications Channel
To execute the example:

1. Assemble outchan.s:

armasm --debug outchan.s

2. Link the output object:

armlink outchan.o -o outchan.axf

The link step creates the executable file outchan.axf

3. Load and execute the image. See your debugger documentation for details.

7.3.3 Debugger to target communication

This is the sequence of events for message transfer from a debugger running on the host
to the application running on the core:

1. The debugger polls the comms data control register R bit. If the R bit is clear, the
comms data read register is clear and data can be written there for the target
application to read.

2. The debugger scans the data into the comms data read register through scan chain
2. The R bit in the comms data control register is automatically set by this.

3. The target application polls the R bit in the comms data control register. If it is set,
there is data in the comms data read register that can be read by the application,
using an MRC instruction to read from coprocessor 14. The R bit is cleared as part
of the read instruction.

The target application code shown in Example 7-2 on page 7-7 shows this in action. The
example code is available in the main examples directory, in ...\dcc\inchan.s, .

To execute the example:

1. Create an input file on the host containing, for example, And goodbye!.

2. Assemble inchan.s:

armasm --debug inchan.s

3. Link the output object:

armlink inchan.o -o inchan.axf

The link step creates the executable file inchan.axf

4. Load the and execute the image. See your debugger documentation for details.
7-6 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Debug Communications Channel
Example 7-2

 AREA InChannel, CODE, READONLY
 ENTRY
 MOV r1,#3 ; Number of words to read
 LDR r2, =indata ; Address to store data read
pollin
 MRC p14,0,r0,c0,c0 ; Read control register
 TST r0, #1
 BEQ pollin ; If R bit clear then loop
read
 MRC p14,0,r3,c1,c0 ; read word into r3
 STR r3,[r2],#4 ; Store to memory and
 ; update pointer
 SUBS r1,r1,#1 ; Update counter
 BNE pollin ; Loop if more words to read
 MOV r0, #0x18 ; Angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC 0x123456 ; ARM semihosting (formerly SWI)

 AREA Storage, DATA, READWRITE
indata
 DCB "Duffmessage#"
 END
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 7-7

Debug Communications Channel
7.4 Interrupt-driven debug communications

The examples given in Polled debug communications on page 7-4 demonstrate polling
the DCC. You can convert these to interrupt-driven examples by connecting up COMMRX
and COMMTX signals from the Embedded ICE logic to your interrupt controller.

The read and write code in Example 7-1 on page 7-5 and Example 7-2 on page 7-7 can
then be moved into an interrupt handler.

See Interrupt handlers on page 6-29 for information on writing interrupt handlers.
7-8 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

Debug Communications Channel
7.5 Access from Thumb state

Because the Thumb® instruction set does not contain coprocessor instructions, you
cannot use the debug communications channel while the core is in Thumb state.

There are three possible ways around this:

• You can write each polling routine in an SVC handler, that can then be executed
while in either ARM or Thumb state. Entering the SVC handler immediately puts
the core into ARM state where the coprocessor instructions are available. See
Chapter 6 Handling Processor Exceptions for more information on SVCs.

• Thumb code can make interworking calls to ARM subroutines that implement the
polling. See Chapter 4 Interworking ARM and Thumb for more information on
mixing ARM and Thumb code.

• Use interrupt-driven communication rather than polled communication. The
interrupt handler would be written in ARM instructions, so the coprocessor
instructions can be accessed directly.
ARM DUI 0203G Copyright © 2002-2006 ARM Limited. All rights reserved. 7-9

Debug Communications Channel
7-10 Copyright © 2002-2006 ARM Limited. All rights reserved. ARM DUI 0203G

	RealView Compilation Tools Developer Guide
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Further reading

	Feedback
	Feedback on RealView Compilation Tools
	Feedback on this book

	Introduction
	1.1 About RVCT
	1.1.1 Using the examples

	1.2 General programming issues
	1.2.1 Unaligned pointers
	1.2.2 Unaligned fields in structures
	1.2.3 Porting code and detecting unaligned accesses

	1.3 Developing for the ARM processors
	1.3.1 Embedded software development
	1.3.2 Interworking ARM and Thumb code
	1.3.3 Mixing C, C++, and assembly language
	1.3.4 Handling processor exceptions
	1.3.5 Using the AAPCS
	1.3.6 Compatibility with legacy objects and libraries

	1.4 ARM architecture v6 support
	1.4.1 Instruction generation
	1.4.2 Alignment support
	1.4.3 Endian support
	1.4.4 Example 1 - Sign/Zero extension
	1.4.5 Example 2 - Packed structures

	Embedded Software Development
	2.1 About embedded software development
	2.1.1 Example code

	2.2 Default compilation tool behavior in the absence of a target system
	2.2.1 Semihosting
	2.2.2 C library structure
	2.2.3 Default memory map
	2.2.4 Linker placement rules
	2.2.5 Application startup
	2.2.6 Example code for Build 1

	2.3 Tailoring the C library to your target hardware
	2.3.1 Retargeting the C library
	2.3.2 Avoiding C library semihosting
	2.3.3 Example code for Build 2

	2.4 Tailoring the image memory map to your target hardware
	2.4.1 Scatter-loading
	2.4.2 Scatter-loading description file syntax
	2.4.3 Scatter-loading description file example
	2.4.4 Placing objects in a scatter-loading description file
	2.4.5 Root regions
	2.4.6 Placing the stack and heap
	2.4.7 Runtime memory models
	2.4.8 Example code for Build 3

	2.5 Reset and initialization
	2.5.1 Initialization sequence
	2.5.2 The vector table
	2.5.3 ROM/RAM remapping
	2.5.4 Local memory setup considerations
	2.5.5 Scatter-loading and memory setup
	2.5.6 Stack pointer initialization
	2.5.7 Hardware initialization
	2.5.8 Execution mode considerations
	2.5.9 Example code for Build 4

	2.6 Further memory map considerations
	2.6.1 Locating target peripherals in the scatter-loading description file
	2.6.2 Placing the stack and heap in the scatter-loading description file
	2.6.3 Example code for Build 5

	Writing Position Independent Code and Data
	3.1 Position independence
	3.1.1 Using the AAPCS

	3.2 Read-only position independence
	3.2.1 Register usage with ROPI
	3.2.2 Writing C and assembler code for ROPI
	3.2.3 Linking your code
	3.2.4 FPIC addressing
	3.2.5 Code example

	3.3 Read-write position independence
	3.3.1 Reentrant routines
	3.3.2 Register usage with RWPI
	3.3.3 Position-independent data addressing
	3.3.4 Writing assembly language for RWPI
	3.3.5 Linking your code
	3.3.6 Code example

	Interworking ARM and Thumb
	4.1 About interworking
	4.1.1 Using the AAPCS
	4.1.2 When to use interworking
	4.1.3 Using the /interwork option
	4.1.4 Detecting interworking calls
	4.1.5 Linker generated veneers

	4.2 Assembly language interworking
	4.2.1 The branch and exchange instruction
	4.2.2 Changing the assembler mode
	4.2.3 Example ARM header
	4.2.4 Interworking with ARM architecture v5T and later
	4.2.5 Labels in Thumb code

	4.3 C and C++ interworking and veneers
	4.3.1 Compiling code for interworking
	4.3.2 Basic rules for C and C++ interworking
	4.3.3 Pointers to functions in Thumb state
	4.3.4 Using two versions of the same function

	4.4 Assembly language interworking using veneers
	4.4.1 Assembly-only interworking using veneers
	4.4.2 C, C++, and assembly language interworking using veneers

	Mixing C, C++, and Assembly Language
	5.1 Using the inline and embedded assemblers
	5.1.1 Features of the inline assembler
	5.1.2 Features of the embedded assembler
	5.1.3 Differences between inline and embedded assembly code

	5.2 Accessing C global variables from assembly code
	5.3 Using C header files from C++
	5.3.1 Including system C header files
	5.3.2 Including your own C header files

	5.4 Calling between C, C++, and ARM assembly language
	5.4.1 General rules for calling between languages
	5.4.2 Information specific to C++
	5.4.3 Examples of calling between languages

	Handling Processor Exceptions
	6.1 About processor exceptions
	6.1.1 Types of exception
	6.1.2 The vector table
	6.1.3 Use of modes and registers by exceptions
	6.1.4 Exception priorities

	6.2 Determining the processor state
	6.3 Entering and leaving an exception
	6.3.1 The processor response to an exception
	6.3.2 Returning from an exception handler
	6.3.3 The return address and return instruction

	6.4 Handling an exception
	6.5 Installing an exception handler
	6.5.1 Methods of installing exception handlers
	6.5.2 Installing the handlers at reset
	6.5.3 Installing the handlers from C

	6.6 SVC handlers
	6.6.1 Determining the SVC to be called
	6.6.2 SVC handlers in assembly language
	6.6.3 SVC handlers in C and assembly language
	6.6.4 Using SVCs in Supervisor mode
	6.6.5 Calling SVCs from an application
	6.6.6 Calling SVCs dynamically from an application

	6.7 Interrupt handlers
	6.7.1 Levels of external interrupt
	6.7.2 Simple interrupt handlers in C
	6.7.3 Reentrant interrupt handlers
	6.7.4 Example interrupt handlers in assembly language

	6.8 Reset handlers
	6.9 Undefined Instruction handlers
	6.10 Prefetch Abort handler
	6.11 Data Abort handler
	6.12 Chaining exception handlers
	6.12.1 A single extended handler
	6.12.2 Several chained handlers

	6.13 System mode

	Debug Communications Channel
	7.1 About the Debug Communications Channel
	7.1.1 Semihosting

	7.2 Target transfer of data
	7.3 Polled debug communications
	7.3.1 Comms data control register
	7.3.2 Target to debugger communication
	7.3.3 Debugger to target communication

	7.4 Interrupt-driven debug communications
	7.5 Access from Thumb state

