RealView Compilation Tools
Assembler Guide

Copyright © 2002, 2003 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

<table>
<thead>
<tr>
<th>Date</th>
<th>Issue</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 2002</td>
<td>A</td>
<td>Release 1.2</td>
</tr>
<tr>
<td>January 2003</td>
<td>B</td>
<td>Release 2.0</td>
</tr>
<tr>
<td>September 2003</td>
<td>C</td>
<td>Release 2.0.1 for RVDS 2.0</td>
</tr>
</tbody>
</table>

Proprietary Notice

Words and logos marked with “®” or “™” are registered trademarks or trademarks owned by ARM Limited. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.

Product Status

The information in this document is final (information on a developed product).

Web Address

http://www.arm.com
Contents
RealView Compilation Tools Assembler Guide

Preface
About this book ... viii
Feedback .. xi

Chapter 1 Introduction
1.1 About the RealView Compilation Tools assemblers 1-2

Chapter 2 Writing ARM and Thumb Assembly Language
2.1 Introduction ... 2-2
2.2 Overview of the ARM architecture .. 2-3
2.3 Structure of assembly language modules 2-13
2.4 Using the C preprocessor ... 2-21
2.5 Conditional execution .. 2-22
2.6 Loading constants into registers 2-27
2.7 Loading addresses into registers 2-32
2.8 Load and store multiple register instructions..................... 2-41
2.9 Using macros ... 2-50
2.10 Describing data structures with MAP and FIELD directives .. 2-53
2.11 Using frame directives ... 2-68

Chapter 3 Assembler Reference
3.1 Command syntax .. 3-2
3.2 Format of source lines .. 3-8
3.3 Predefined register and coprocessor names 3-9
3.4 Built-in variables .. 3-10
3.5 Symbols .. 3-12
3.6 Expressions, literals, and operators ... 3-18

Chapter 4 ARM Instruction Reference
4.1 Conditional execution .. 4-6
4.2 ARM Memory access instructions ... 4-8
4.3 ARM general data processing instructions 4-32
4.4 ARM multiply instructions ... 4-51
4.5 ARM saturating instructions ... 4-77
4.6 ARM parallel instructions ... 4-82
4.7 ARM packing and unpacking instructions 4-90
4.8 ARM branch instructions .. 4-97
4.9 Coprocessor instructions ... 4-103
4.10 Miscellaneous ARM instructions .. 4-113
4.11 ARM pseudo-instructions ... 4-122

Chapter 5 Thumb Instruction Reference
5.1 Thumb memory access instructions .. 5-4
5.2 Thumb arithmetic instructions .. 5-15
5.3 Thumb general data processing instructions 5-22
5.4 Thumb branch instructions .. 5-34
5.5 Thumb miscellaneous instructions .. 5-41
5.6 Thumb pseudo-instructions ... 5-46

Chapter 6 Vector Floating-point Programming
6.1 The vector floating-point coprocessor 6-4
6.2 Floating-point registers .. 6-5
6.3 Vector and scalar operations ... 6-7
6.4 VFP and condition codes .. 6-8
6.5 VFP system registers ... 6-10
6.6 Flush-to-zero mode ... 6-13
6.7 VFP instructions .. 6-15
6.8 VFP pseudo-instruction ... 6-36
6.9 VFP directives and vector notation .. 6-38

Chapter 7 Directives Reference
7.1 Alphabetical list of directives .. 7-2
7.2 Symbol definition directives ... 7-3
7.3 Data definition directives .. 7-13
7.4 Assembly control directives ... 7-26
7.5 Frame description directives ... 7-34
7.6 Reporting directives ... 7-46
7.7 Miscellaneous directives .. 7-51

Copyright © 2002, 2003 ARM Limited. All rights reserved.
Glossary
Preface

This preface introduces the documentation for the RealView Compilation Tools (RVCT) assemblers and assembly language. It contains the following sections:

- *About this book* on page viii
- *Feedback* on page xi.
About this book

This book provides tutorial and reference information for the RVCT assemblers (armasm, the free-standing assembler, and inline assemblers in the C and C++ compilers). It describes the command-line options to the assembler, the pseudo-instructions and directives available to assembly language programmers, and the ARM, Thumb®, and Vector Floating-point (VFP) instruction sets.

Intended audience

This book is written for all developers who are producing applications using RVCT. It assumes that you are an experienced software developer and that you are familiar with the ARM development tools as described in RealView Compilation Tools v2.0 Essentials Guide.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this chapter for an introduction to the RVCT version 2.0 assemblers and assembly language.

Chapter 2 Writing ARM and Thumb Assembly Language
Read this chapter for tutorial information to help you use the ARM assemblers and assembly language.

Chapter 3 Assembler Reference
Read this chapter for reference material about the syntax and structure of the language provided by the ARM assemblers.

Chapter 4 ARM Instruction Reference
Read this chapter for reference material on the ARM instruction set.

Chapter 5 Thumb Instruction Reference
Read this chapter for reference material on the Thumb instruction set.

Chapter 6 Vector Floating-point Programming
Read this chapter for reference material on the VFP instruction set, and other VFP-specific assembly language information.
Chapter 7 Directives Reference

Read this chapter for reference material on the assembler directives available in the ARM assembler, armasm.

Typographical conventions

The following typographical conventions are used in this book:

- **monospace** Denotes text that can be entered at the keyboard, such as commands, file and program names, and source code.
- **monospace italic** Denotes arguments to commands and functions where the argument is to be replaced by a specific value.
- **monospace bold** Denotes language keywords when used outside example code.
- **italic** Highlights important notes, introduces special terminology, denotes internal cross-references, and citations.
- **bold** Highlights interface elements, such as menu names. Also used for emphasis in descriptive lists, where appropriate, and for ARM processor signal names.

Further reading

This section lists publications from both ARM Limited and third parties that provide additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See http://www.arm.com for current errata sheets and addenda, and the ARM Frequently Asked Questions.

ARM publications

This book contains reference information that is specific to development tools supplied with RVCT. Other publications included in the suite are:

- RealView Compilation Tools v2.0 Essentials Guide (ARM DUI 0202)
- RealView Compilation Tools v2.0 Developer Guide (ARM DUI 0203)
Preface

- RealView Compilation Tools v2.0 Compiler and Libraries Guide (ARM DUI 0205)
- RealView Compilation Tools v2.0 Linker and Utilities Guide (ARM DUI 0206)

The following additional documentation is provided with RealView Compilation Tools:

- ARM FLEXlm License Management Guide (ARM DUI 0209). This is supplied in DynaText and PDF format.
- ARM ELF specification (SWS ESPC 0003). This is supplied as a PDF file, ARMLELF.pdf, in $install_directory/Documentation/Specifications/1.0/release/platform/PDF$.
- TIS DWARF 2 specification. This is supplied as a PDF file, TIS-DWARF2.pdf, in $install_directory/Documentation/Specifications/1.0/release/platform/PDF$.
- ARM-Thumb Procedure Call Standard specification. This is supplied as a PDF file, ATPCS.pdf, in $install_directory/Documentation/Specifications/1.0/release/platform/PDF$.

In addition, refer to the following documentation for specific information relating to ARM products:

- RealView ARMulator ISS v1.3 User Guide (ARM DUI 0207)
- ARM Reference Peripheral Specification (ARM DDI 0062)
- the ARM datasheet or technical reference manual for your hardware device.

Other publications

The following book gives general information about the ARM architecture:

Feedback

ARM Limited welcomes feedback on both RealView Compilation Tools and the documentation.

Feedback on RealView Compilation Tools

If you have any problems with RealView Compilation Tools, contact your supplier. To help them provide a rapid and useful response, give:

- your name and company
- the serial number of the product
- details of the release you are using
- details of the platform you are running on, such as the hardware platform, operating system type and version
- a small standalone sample of code that reproduces the problem
- a clear explanation of what you expected to happen, and what actually happened
- the commands you used, including any command-line options
- sample output illustrating the problem
- the version string of the tools, including the version number and build numbers.

Feedback on this book

If you notice any errors or omissions in this book, send email to errata@arm.com giving:

- the document title
- the document number
- the page number(s) to which your comments apply
- a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
Chapter 1

Introduction

This chapter introduces the assemblers provided with RealView Compilation Tools version 2.0. It contains the following section:

- About the RealView Compilation Tools assemblers on page 1-2.
1.1 About the RealViewCompilation Tools assemblers

RealView Compilation Tools (RVCT) has:

- a freestanding assembler, armasm
- an optimizing inline assembler built into the C and C++ compilers.

The language that these assemblers take as input is basically the same. However, there are limitations on what features of the language you can use in the inline assemblers. Refer to the Mixing C, C++, and Assembly Language chapter in RealView Compilation Tools v2.0 Developer Guide for more information on the inline assemblers.

The remainder of this book relates mainly to armasm.
Chapter 2
Writing ARM and Thumb Assembly Language

This chapter provides an introduction to the general principles of writing ARM and Thumb assembly language. It contains the following sections:

- Introduction on page 2-2
- Overview of the ARM architecture on page 2-3
- Structure of assembly language modules on page 2-13
- Using the C preprocessor on page 2-21
- Conditional execution on page 2-22
- Loading constants into registers on page 2-27
- Loading addresses into registers on page 2-32
- Load and store multiple register instructions on page 2-41
- Using macros on page 2-50
- Describing data structures with MAP and FIELD directives on page 2-53
- Using frame directives on page 2-68.
2.1 Introduction

This chapter gives a basic, practical understanding of how to write ARM and Thumb assembly language modules. It also gives information on the facilities provided by the ARM assembler (armasm).

This chapter does not provide a detailed description of the ARM, Thumb, or VFP instruction sets. This information is in Chapter 4 ARM Instruction Reference, Chapter 5 Thumb Instruction Reference, and Chapter 6 Vector Floating-point Programming.

2.1.1 Code examples

There are a number of code examples in this chapter. Many of them are supplied in the examples\asm directory of the RVCT.

Follow these steps to build and link an assembly language file:

1. Type armasm -g filename.s at the command prompt to assemble the file and generate debug tables.

2. Type armlink filename.o -o filename to link the object file and generate an ELF executable image.

To execute and debug the image, load it into an ELF/DWARF2-compatible debugger with an appropriate debug target.

To see how the assembler converts the source code, enter:

```
fromelf -c filename.o
```

See RealView Compilation Tools v2.0 Linker and Utilities Guide for details on armlink and fromelf.
2.2 Overview of the ARM architecture

This section gives a brief overview of the ARM architecture.

ARM processors are typical of RISC processors in that they implement a load/store architecture. Only load and store instructions can access memory. Data processing instructions operate on register contents only.

2.2.1 Architecture versions

The information and examples in this book assume that you are using a processor that implements ARM architecture v3 or above. See ARM Architecture Reference Manual for details of the various architecture versions.

All these processors have a 32-bit addressing range.

2.2.2 ARM and Thumb state

ARM architecture versions v4T and above define a 16-bit instruction set called the Thumb instruction set. The functionality of the Thumb instruction set is a subset of the functionality of the 32-bit ARM instruction set. Refer to Thumb instruction set overview on page 2-10 for more information.

A processor that is executing Thumb instructions is operating in Thumb state. A processor that is executing ARM instructions is operating in ARM state.

A processor in ARM state cannot execute Thumb instructions, and a processor in Thumb state cannot execute ARM instructions. You must ensure that the processor never receives instructions of the wrong instruction set for the current state.

Each instruction set includes instructions to change processor state.

You must also switch the assembler mode to produce the correct opcodes using CODE16 and CODE32 directives. Refer to CODE16 and CODE32 on page 7-57 for details.

ARM processors always start executing code in ARM state.
2.2.3 Processor mode

ARM processors support up to seven processor modes, depending on the architecture version. These are:

- 0b1000 User
- 0b1001 FIQ - Fast Interrupt Request
- 0b1010 IRQ - Interrupt Request
- 0b1011 Supervisor
- 0b1111 Abort
- 0b1111 Undefined
- 0b11111 System (ARM architecture v4 and above).

All modes except User mode are referred to as privileged modes.

Applications that require task protection usually execute in User mode. Some embedded applications might run entirely in Supervisor or System modes.

Modes other than User mode are entered to service exceptions, or to access privileged resources. Refer to the Handling Processor Exceptions chapter in RealView Compilation Tools v2.0 Developer Guide, and ARM Architecture Reference Manual for more information.

2.2.4 Registers

ARM processors have 37 registers. The registers are arranged in partially overlapping banks. There is a different register bank for each processor mode. The banked registers give rapid context switching for dealing with processor exceptions and privileged operations. Refer to ARM Architecture Reference Manual for a detailed description of how registers are banked.

The following registers are available in ARM architecture v3 and above:

- 30 general-purpose, 32-bit registers
- The program counter (pc) on page 2-5
- The Current Program Status Register (CPSR) on page 2-5
- Five Saved Program Status Registers (SPSRs) on page 2-6.

30 general-purpose, 32-bit registers

Fifteen general-purpose registers are visible at any one time, depending on the current processor mode, as r0, r1, ... ,r13, r14.

By convention, r13 is used as a stack pointer (sp) in ARM assembly language. The C and C++ compilers always use r13 as the stack pointer.
In User mode, r14 is used as a *link register* (lr) to store the return address when a subroutine call is made. It can also be used as a general-purpose register if the return address is stored on the stack.

In the exception handling modes, r14 holds the return address for the exception, or a subroutine return address if subroutine calls are executed within an exception. r14 can be used as a general-purpose register if the return address is stored on the stack.

The program counter (pc)

The program counter is accessed as r15 (or pc). It is incremented by one word (four bytes) for each instruction in ARM state, or by two bytes in Thumb state. Branch instructions load the destination address into the program counter. You can also load the program counter directly using data operation instructions. For example, to return from a subroutine, you can copy the link register into the program counter using:

```
MOV pc, lr
```

During execution, r15 does not contain the address of the currently executing instruction. The address of the currently executing instruction is typically pc–8 for ARM, or pc–4 for Thumb.

The Current Program Status Register (CPSR)

The CPSR holds:

- copies of the *Arithmetic Logic Unit* (ALU) status flags
- the current processor mode
- interrupt disable flags.

The ALU status flags in the CPSR are used to determine whether conditional instructions are executed or not. Refer to *Conditional execution* on page 2-22 for more information.

On Thumb-capable or Jazelle-capable processors, the CPSR also holds the current processor state (ARM, Thumb, or Jazelle).

On ARM architecture v5TE, and v6 and above, the CPSR also holds the Q flag (see *The ALU status flags* on page 2-22).

On ARM architecture v6 and above, the CPSR also holds the GE flags (see *Parallel add and subtract* on page 4-83) and the Endianness bit (see *SETEND* on page 4-119).
Five Saved Program Status Registers (SPSRs)

The SPSRs are used to store the CPSR when an exception is taken. One SPSR is accessible in each of the exception-handling modes. User mode and System mode do not have an SPSR because they are not exception handling modes. Refer to the Handling Processor Exceptions chapter in RealView Compilation Tools v2.0 Developer Guide for more information.
2.2.5 ARM instruction set overview

All ARM instructions are 32 bits long. Instructions are stored word-aligned, so the least significant two bits of instruction addresses are always zero in ARM state. Some instructions use the least significant bit to determine whether the code being branched to is Thumb code or ARM code.

See Chapter 4 ARM Instruction Reference for detailed information on the syntax of the ARM instruction set.

ARM instructions can be classified into a number of functional groups:
- Branch instructions
- Data processing instructions
- Single register load and store instructions
- Multiple register load and store instructions
- Status register access instructions
- Coprocessor instructions

Branch instructions

These instructions are used to:
- branch backwards to form loops
- branch forward in conditional structures
- branch to subroutines
- change the processor from ARM state to Thumb state.

Data processing instructions

These instructions operate on the general-purpose registers. They can perform operations such as addition, subtraction, or bitwise logic on the contents of two registers and place the result in a third register. They can also operate on the value in a single register, or on a value in a register and a constant supplied within the instruction (an immediate value).

Long multiply instructions (unavailable in some architectures) give a 64-bit result in two registers.

Single register load and store instructions

These instructions load or store the value of a single register from or to memory. They can load or store a 32-bit word or an 8-bit unsigned byte. In ARM architecture v4 and above they can also load or store a 16-bit unsigned halfword, or load and sign extend a 16-bit halfword or an 8-bit byte.
Semaphore instructions load and alter a memory semaphore.

Multiple register load and store instructions

These instructions load or store any subset of the general-purpose registers from or to memory. Refer to *Load and store multiple register instructions* on page 2-41 for a detailed description of these instructions.

Status register access instructions

These instructions move the contents of the CPSR or an SPSR to or from a general-purpose register.

Coprocessor instructions

These instructions support a general way to extend the ARM architecture.
2.2.6 ARM instruction capabilities

The following general points apply to ARM instructions:

- **Conditional execution**
- **Register access**
- **Access to the inline barrel shifter.**

Conditional execution

Almost all ARM instructions can be executed conditionally on the value of the ALU status flags in the CPSR. You do not need to use branches to skip conditional instructions, although it can be better to do so when a series of instructions depend on the same condition.

You can specify whether a data processing instruction sets the state of these flags or not. You can use the flags set by one instruction to control execution of other instructions even if there are many instructions in between.

Refer to *Conditional execution* on page 2-22 for a detailed description.

Register access

In ARM state, all instructions can access r0 to r14, and most also allow access to r15 (pc). The MRS and MSR instructions can move the contents of the CPSR and SPSRs to a general-purpose register, where they can be manipulated by normal data processing operations. Refer to MRS on page 4-115 and MSR on page 4-116 for more information.

Access to the inline barrel shifter

The ARM arithmetic logic unit has a 32-bit barrel shifter that is capable of shift and rotate operations. The second operand to all ARM data-processing and single register data-transfer instructions can be shifted, before the data-processing or data-transfer is executed, as part of the instruction. This supports, but is not limited to:

- scaled addressing
- multiplication by a constant
- constructing constants.

Refer to *Loading constants into registers* on page 2-27 for more information on using the barrel-shifter to generate constants.
2.2.7 Thumb instruction set overview

The functionality of the Thumb instruction set is almost exactly a subset of the functionality of the ARM instruction set. The instruction set is optimized for production by a C or C++ compiler.

All Thumb instructions are 16 bits long and are stored halfword-aligned in memory. Because of this, the least significant bit of the address of an instruction is always zero in Thumb state. Some instructions use the least significant bit to determine whether the code being branched to is Thumb code or ARM code.

All Thumb data processing instructions:
- operate on full 32-bit values in registers
- use full 32-bit addresses for data access and for instruction fetches.

Refer to Chapter 5 Thumb Instruction Reference for detailed information on the syntax of the Thumb instruction set, and how Thumb instructions differ from their ARM counterparts.

2.2.8 Thumb instruction capabilities

The following general points apply to Thumb instructions:
- Conditional execution
- Register access
- Access to the barrel shifter on page 2-11.

Conditional execution

The conditional branch instruction is the only Thumb instruction that can be executed conditionally on the value of the ALU status flags in the CPSR. All data processing instructions update these flags, except when one or more high registers are specified as operands to the MOV or ADD instructions. In these cases the flags cannot be updated.

You cannot have any data processing instructions between an instruction that sets a condition and a conditional branch that depends on it. Use a conditional branch over any instruction that you wish to be conditional.

Register access

In Thumb state, most instructions can access only r0 to r7. These are referred to as the low registers.

Registers r8 to r15 are limited access registers. In Thumb state these are referred to as high registers. They can be used, for example, as fast temporary storage.
Refer to Chapter 5 *Thumb Instruction Reference* for a complete list of the Thumb data processing instructions that can access the high registers.

Access to the barrel shifter

In Thumb state you can use the barrel shifter only in a separate operation, using an *LSL*, *LSR*, *ASR*, or *ROR* instruction.

2.2.9 Differences between Thumb and ARM instruction sets

The general differences between the Thumb instruction set and the ARM instruction set are dealt with under the following headings:

- *Branch instructions*
- *Data processing instructions*
- *Single register load and store instructions* on page 2-12
- *Multiple register load and store instructions* on page 2-12.

There are no Thumb coprocessor instructions, no Thumb semaphore instructions, and no Thumb instructions to access the CPSR or SPSR.

Branch instructions

These instructions are used to:

- branch backwards to form loops
- branch forward in conditional structures
- branch to subroutines
- change the processor from Thumb state to ARM state.

Program-relative branches, particularly conditional branches, are more limited in range than in ARM code, and branches to subroutines can only be unconditional.

Data processing instructions

These operate on the general-purpose registers. In many cases, the result of the operation must be put in one of the operand registers, not in a third register. There are fewer data processing operations available than in ARM state. They have limited access to registers r8 to r15.

The ALU status flags in the CPSR are always updated by these instructions except when *MOV* or *ADD* instructions access registers r8 to r15. Thumb data processing instructions that access registers r8 to r15 cannot update the flags.
Single register load and store instructions

These instructions load or store the value of a single low register from or to memory. In Thumb state they can only access registers r0 to r7.

Multiple register load and store instructions

LDM and STM load from memory and store to memory any subset of the registers in the range r0 to r7.

PUSH and POP instructions implement a full descending stack using the stack pointer (r13) as the base. In addition to transferring r0 to r7, PUSH can store the link register and POP can load the program counter.
2.3 Structure of assembly language modules

Assembly language is the language that the ARM assembler (armasm) parses and assembles to produce object code. This can be:

- ARM assembly language
- Thumb assembly language
- a mixture of both.

2.3.1 Layout of assembly language source files

The general form of source lines in assembly language is:

{label} {instruction|directive|pseudo-instruction} {;comment}

Note: Instructions, pseudo-instructions, and directives must be preceded by white space, such as a space or a tab, even if there is no label.

All three sections of the source line are optional. You can use blank lines to make your code more readable.

Case rules

Instruction mnemonics, directives, and symbolic register names can be written in uppercase or lowercase, but not mixed.

Line length

To make source files easier to read, a long line of source can be split onto several lines by placing a backslash character (\) at the end of the line. The backslash must not be followed by any other characters (including spaces and tabs). The backslash/end-of-line sequence is treated by the assembler as white space.

Note: Do not use the backslash/end-of-line sequence within quoted strings.

The limit on the length of lines, including any extensions using backslashes, is 4095 characters.
Labels

Labels are symbols that represent addresses. The address given by a label is calculated during assembly.

The assembler calculates the address of a label relative to the origin of the section where the label is defined. A reference to a label within the same section can use the program counter plus or minus an offset. This is called program-relative addressing.

Labels can be defined in a map. See Describing data structures with MAP and FIELD directives on page 2-53. You can place the origin of the map in a specified register at runtime, and references to the label use the specified register plus an offset. This is called register-relative addressing.

Addresses of labels in other sections are calculated at link time, when the linker has allocated specific locations in memory for each section.

Local labels

Local labels are a subclass of label. A local label begins with a number in the range 0-99. Unlike other labels, a local label can be defined many times. Local labels are useful when you are generating labels with a macro. When the assembler finds a reference to a local label, it links it to a nearby instance of the local label.

The scope of local labels is limited by the AREA directive. You can use the ROUT directive to limit the scope more tightly.

Refer to the Local labels on page 3-16 for details of:
- the syntax of local label declarations
- how the assembler associates references to local labels with their labels.

Comments

The first semicolon on a line marks the beginning of a comment, except where the semicolon appears inside a string constant. The end of the line is the end of the comment. A comment alone is a valid line. All comments are ignored by the assembler.
Constants

Constants can be numeric, boolean, character, or string:

Numbers Numeric constants are accepted in the following forms:
- decimal, for example, 123
- hexadecimal, for example, 0x7B
- \(n_{\text{xxx}} \) where:
 - \(n \) is a base between 2 and 9
 - \(\text{xxx} \) is a number in that base.

Boolean The Boolean constants `TRUE` and `FALSE` must be written as `{TRUE}` and `{FALSE}`.

Characters Character constants consist of opening and closing single quotes, enclosing either a single character or an escaped character, using the standard C escape characters.

Strings Strings consist of opening and closing double quotes, enclosing characters and spaces. If double quotes or dollar signs are used within a string as literal text characters, they must be represented by a pair of the appropriate character. For example, you must use `$$` if you require a single `$` in the string. The standard C escape sequences can be used within string constants.
2.3.2 An example ARM assembly language module

Example 2-1 illustrates some of the core constituents of an assembly language module. The example is written in ARM assembly language. It is supplied as arme.s in the examples\asm subdirectory of RVCT. Refer to Code examples on page 2-2 for instructions on how to assemble, link, and execute the example.

The constituent parts of this example are described in more detail in the following sections.

```
AREA     ARMex, CODE, READONLY
        ; Name this block of code ARMex
ENTRY                   ; Mark first instruction to execute
start
    MOV r0, #10       ; Set up parameters
    MOV r1, #3
    ADD r0, r0, r1    ; r0 = r0 + r1
stop
    MOV r0, #0x18     ; angel_SWIreason_ReportException
    LDR r1, =0x20026  ; ADP_Stopped_ApplicationExit
    SWI 0x123456      ; ARM semihosting SWI
END                     ; Mark end of file
```

ELF sections and the AREA directive

ELF sections are independent, named, indivisible sequences of code or data. A single code section is the minimum required to produce an application.

The output of an assembly or compilation can include:
- One or more code sections. These are usually read-only sections.
- One or more data sections. These are usually read-write sections. They may be zero initialized (ZI).

The linker places each section in a program image according to section placement rules. Sections that are adjacent in source files are not necessarily adjacent in the application image. Refer to the Linker chapter in RealView Compilation Tools v2.0 Linker and Utilities Guide for more information on how the linker places sections.
In an ARM assembly language source file, the start of a section is marked by the **AREA** directive. This directive names the section and sets its attributes. The attributes are placed after the name, separated by commas. Refer to **AREA** on page 7-54 for a detailed description of the syntax of the **AREA** directive.

You can choose any name for your sections. However, names starting with any nonalphabetic character must be enclosed in bars, or an **AREA** name missing error is generated. For example: \[1_Data_Area\].

Example 2-1 on page 2-16 defines a single section called **ARMex** that contains code and is marked as being **READONLY**.

The ENTRY directive

The **ENTRY** directive marks the first instruction to be executed. In applications containing C code, an entry point is also contained within the C library initialization code. Initialization code and exception handlers also contain entry points.

Application execution

The application code in Example 2-1 on page 2-16 begins executing at the label **start**, where it loads the decimal values 10 and 3 into registers r0 and r1. These registers are added together and the result placed in r0.

Application termination

After executing the main code, the application terminates by returning control to the debugger. This is done using the ARM semihosting SWI (0x123456 by default), with the following parameters:

- r0 equal to **angel_SWI_reason_Report_Exception** (0x18)
- r1 equal to **ADP_Stopped_Application_Exit** (0x20026).

Refer to the **Semihosting SWIs** chapter in *RealView Compilation Tools v2.0 Compiler and Libraries Guide* for additional information.

The END directive

This directive instructs the assembler to stop processing this source file. Every assembly language source module must finish with an **END** directive on a line by itself.
2.3.3 Calling subroutines

To call subroutines, use a branch and link instruction. The syntax is:

```
BL destination
```

where destination is usually the label on the first instruction of the subroutine.

destination can also be a program-relative or register-relative expression. Refer to B and BL on page 4-98 for more information.

The BL instruction:
- places the return address in the link register (lr)
- sets pc to the address of the subroutine.

After the subroutine code is executed you can use a MOV pc, lr instruction to return. By convention, registers r0 to r3 are used to pass parameters to subroutines, and to pass results back to the callers.

Note

Calls between separately assembled or compiled modules must comply with the restrictions and conventions defined by the procedure call standard. Refer to the Using the Procedure Call Standard chapter in RealView Compilation Tools v2.0 Developer Guide for more information.

Example 2-2 shows a subroutine that adds the values of its two parameters and returns a result in r0. It is supplied as subrout.s in the examples\asm subdirectory of RVCT. Refer to Code examples on page 2-2 for instructions on how to assemble, link, and execute the example.

```
AREA    subrout, CODE, READONLY
ENTRY
start   MOV     r0, #10           ; Set up parameters
        MOV     r1, #3            ; Mark first instruction to execute
        BL      doadd            ; Call subroutine
        SWI     0x123456          ; ARM semihosting SWI
stop    MOV     r0, #0x18        ; angle_SWIreason_ReportException
        LDR     r1, =0x20026      ; ADP_Stopped_ApplicationExit
        SWI     0x123456          ; ARM semihosting SWI
```
doadd ADD r0, r0, r1 ; Subroutine code
MOV pc, lr ; Return from subroutine
END ; Mark end of file
2.3.4 An example Thumb assembly language module

Example 2-3 shows some of the core constituents of a Thumb assembly language module. It is based on subrout.s.s. It is supplied as thumbsub.s in the examples\asm subdirectory of the RVCT. Refer to Code examples on page 2-2 for instructions on how to assemble, link, and execute the example.

Example 2-3

```assembly
AREA ThumbSub, CODE, READONLY ; Name this block of code
ENTRY                           ; Mark first instruction to execute
CODE32                          ; Subsequent instructions are ARM

header ADR r0, start + 1        ; Processor starts in ARM state,
BX r0                            ; so small ARM code header used
; to call Thumb main program
CODE16                          ; Subsequent instructions are Thumb

start
MOV r0, #10                     ; Set up parameters
MOV r1, #3
BL doadd                       ; Call subroutine

stop
MOV r0, #0x18                   ; angel_SWIreason_ReportException
LDR r1, =0x20026                 ; ADP_Stopped_ApplicationExit
SWI 0xAB                        ; Thumb semihosting SWI

doadd
ADD r0, r0, r1                  ; Subroutine code
MOV pc, lr                       ; Return from subroutine

END                             ; Mark end of file
```

CODE32 and CODE16 directives

These directives instruct the assembler to assemble subsequent instructions as ARM (CODE32) or Thumb (CODE16) instructions. They do not assemble to an instruction to change the processor state at runtime. They only change the assembler state.

The ARM assembler, armasm, starts in ARM mode by default. You can use the -16 option in the command line if you want it to start in Thumb mode.

BX instruction

This instruction is a branch that can change processor state at runtime. The least significant bit of the target address specifies whether it is an ARM instruction (clear) or a Thumb instruction (set). In this example, this bit is set in the ADR pseudo-instruction.
2.4 Using the C preprocessor

You can include the C preprocessor command `#include` in your assembly language source file. If you do this, you must preprocess the file using the C preprocessor, before using `armasm` to assemble it. See *RealView Compilation Tools v2.0 Compiler and Libraries Guide*.

`armasm` correctly interprets `#line` commands in the resulting file. It can generate error messages and debug_line tables using the information in the `#line` commands.

Example 2-4 shows the commands you write to preprocess and assemble a file, `sourcefile.s`. In this example, the preprocessor outputs a file called `preprocessed.s`, and `armasm` assembles `preprocessed.s`.

Example 2-4 Preprocessing an assembly language source file

```bash
armcpp -E sourcefile.s > preprocessedfile.s
armasm preprocessedfile.s
```
2.5 Conditional execution

In ARM state, each data processing instruction has an option to update ALU status flags in the Current Program Status Register (CPSR) according to the result of the operation.

Add an S suffix to an ARM data processing instruction to make it update the ALU status flags in the CPSR.

Do not use the S suffix with CMP, CMN, TST, or TEQ. These comparison instructions always update the flags. This is their only effect.

In Thumb state, there is no option. All data processing instructions update the ALU status flags in the CPSR, except when one or more high registers are used in MOV and ADD instructions. MOV and ADD cannot update the status flags in these cases.

Almost every ARM instruction can be executed conditionally on the state of the ALU status flags in the CPSR. Refer to Table 2-1 on page 2-23 for a list of the suffixes to add to instructions to make them conditional.

In ARM state, you can:
- update the ALU status flags in the CPSR on the result of a data operation
- execute several other data operations without updating the flags
- execute following instructions or not, according to the state of the flags updated in the first operation.

In Thumb state, most data operations always update the flags, and conditional execution can only be achieved using the conditional branch instruction (B). The suffixes for this instruction are the same as in ARM state. No other instruction can be conditional.

2.5.1 The ALU status flags

The CPSR contains the following ALU status flags:

- **N**: Set when the result of the operation was Negative.
- **Z**: Set when the result of the operation was Zero.
- **C**: Set when the operation resulted in a Carry.
- **V**: Set when the operation caused Overflow.
- **Q**: ARM architecture v5E, v6 and later. Sticky flag (see The Q flag on page 4-7).

A carry occurs if the result of an addition is greater than or equal to 2^{32}, if the result of a subtraction is positive, or as the result of an inline barrel shifter operation in a move or logical instruction.

Overflow occurs if the result of an add, subtract, or compare is greater than or equal to 2^{31}, or less than -2^{31}.
2.5.2 Execution conditions

The relation of condition code suffixes to the N, Z, C and V flags is shown in Table 2-1.

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Flags</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>Z set</td>
<td>Equal</td>
</tr>
<tr>
<td>NE</td>
<td>Z clear</td>
<td>Not equal</td>
</tr>
<tr>
<td>CS/HS</td>
<td>C set</td>
<td>Higher or same (unsigned >=)</td>
</tr>
<tr>
<td>CC/L0</td>
<td>C clear</td>
<td>Lower (unsigned <)</td>
</tr>
<tr>
<td>MI</td>
<td>N set</td>
<td>Negative</td>
</tr>
<tr>
<td>PL</td>
<td>N clear</td>
<td>Positive or zero</td>
</tr>
<tr>
<td>VS</td>
<td>V set</td>
<td>Overflow</td>
</tr>
<tr>
<td>VC</td>
<td>V clear</td>
<td>No overflow</td>
</tr>
<tr>
<td>HI</td>
<td>C set and Z clear</td>
<td>Higher (unsigned >)</td>
</tr>
<tr>
<td>LS</td>
<td>C clear or Z set</td>
<td>Lower or same (unsigned <=)</td>
</tr>
<tr>
<td>GE</td>
<td>N and V the same</td>
<td>Signed >=</td>
</tr>
<tr>
<td>LT</td>
<td>N and V differ</td>
<td>Signed <</td>
</tr>
<tr>
<td>GT</td>
<td>Z clear, N and V the same</td>
<td>Signed ></td>
</tr>
<tr>
<td>LE</td>
<td>Z set, N and V differ</td>
<td>Signed <=</td>
</tr>
<tr>
<td>AL</td>
<td>Any</td>
<td>Always. This suffix is normally omitted.</td>
</tr>
</tbody>
</table>

Examples

```
ADD     r0, r1, r2    ; r0 = r1 + r2, don't update flags
ADDS    r0, r1, r2    ; r0 = r1 + r2, and update flags
ADDCSS  r0, r1, r2    ; If C flag set then r0 = r1 + r2, and update flags
CMP     r0, r1        ; update flags based on r0-r1.
```
2.5.3 Using conditional execution in ARM state

You can use conditional execution of ARM instructions to reduce the number of branch instructions in your code. This improves code density.

Branch instructions are also expensive in processor cycles. On ARM processors without branch prediction hardware, it typically takes three processor cycles to refill the processor pipeline each time a branch is taken.

Some ARM processors, for example ARM10™ and StrongARM®, have branch prediction hardware. In systems using these processors, the pipeline only needs to be flushed and refilled when there is a misprediction.

2.5.4 Example of the use of conditional execution

This example uses two implementations of Euclid’s *Greatest Common Divisor* (gcd) algorithm. It demonstrates how you can use conditional execution to improve code density and execution speed. The detailed analysis of execution speed only applies to an ARM7™ processor. The code density calculations apply to all ARM processors.

In C the algorithm can be expressed as:

```c
int gcd(int a, int b)
{
    while (a != b)
    {
        if (a > b)
            a = a - b;
        else
            b = b - a;
    }
    return a;
}
```

You can implement the gcd function with conditional execution of branches only, in the following way:

```
gcd     CMP      r0, r1
BEQ      end
BLT      less
SUB      r0, r0, r1
B        gcd
less
SUB      r1, r1, r0
B        gcd
end
```
Because of the number of branches, the code is seven instructions long. Every time a branch is taken, the processor must refill the pipeline and continue from the new location. The other instructions and non-executed branches use a single cycle each.

By using the conditional execution feature of the ARM instruction set, you can implement the gcd function in only four instructions:

```
gcd
CMP r0, r1
SUBGT r0, r0, r1
SUBLT r1, r1, r0
BNE gcd
```

In addition to improving code size, this code executes faster in most cases. Table 2-2 and Table 2-3 on page 2-26 show the number of cycles used by each implementation for the case where r0 equals 1 and r1 equals 2. In this case, replacing branches with conditional execution of all instructions saves three cycles.

The conditional version of the code executes in the same number of cycles for any case where r0 equals r1. In all other cases, the conditional version of the code executes in fewer cycles.

<table>
<thead>
<tr>
<th>r0: a</th>
<th>r1: b</th>
<th>Instruction</th>
<th>Cycles (ARM7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>CMP r0, r1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>BEQ end</td>
<td>1 (not executed)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>BLT less</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>SUB r1, r1, r0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>B gcd</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>CMP r0, r1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>BEQ end</td>
<td>3</td>
</tr>
</tbody>
</table>

Total = 13
Converting to Thumb

Because B is the only Thumb instruction that can be executed conditionally, the gcd algorithm must be written with conditional branches in Thumb code.

Like the ARM conditional branch implementation, the Thumb code requires seven instructions. However, because Thumb instructions are only 16 bits long, the overall code size is 14 bytes, compared to 16 bytes for the smaller ARM implementation.

In addition, on a system using 16-bit memory the Thumb version runs faster than the second ARM implementation because only one memory access is required for each Thumb instruction, whereas each ARM instruction requires two fetches.

Branch prediction and caches

To optimize code for execution speed you need detailed knowledge of the instruction timings, branch prediction logic, and cache behavior of your target system. Refer to ARM Architecture Reference Manual and the technical reference manuals for individual processors for full information.
2.6 Loading constants into registers

You cannot load an arbitrary 32-bit immediate constant into a register in a single instruction without performing a data load from memory. This is because ARM instructions are only 32 bits long.

Thumb instructions have a similar limitation.

You can load any 32-bit value into a register with a data load, but there are more direct and efficient ways to load many commonly-used constants. You can also include many commonly-used constants directly as operands within data-processing instructions, without a separate load operation at all.

The following sections describe:

- how to use the \texttt{MOV} and \texttt{MVN} instructions to load a range of immediate values, see Direct loading with MOV and MVN on page 2-28
- how to use the \texttt{LDR} pseudo-instruction to load any 32-bit constant, see Loading with LDR Rd, =\texttt{const} on page 2-29
- how to load floating-point constants, see Loading floating-point constants on page 2-31.
2.6.1 Direct loading with MOV and MVN

In ARM state, you can use the MOV and MVN instructions to load a range of eight-bit constant values directly into a register:

- MOV can load any eight-bit constant value, giving a range of 0-255. It can also rotate these values by any even number. Table 2-4 shows the range of values that this provides.

- MVN can load the bitwise complement of these values. The numerical values are \(- (n+1)\), where \(n\) are the values given in Table 2-4.

You do not need to calculate the necessary rotation. The assembler performs the calculation for you.

You do not need to decide whether to use MOV or MVN. The assembler uses whichever is appropriate. This is useful if the value is an assembly-time variable.

If you write an instruction with a constant that cannot be constructed, the assembler reports the error:

Immediate \(n\) out of range for this operation.

The range of values shown in Table 2-4 can also be used as one of the operands in data-processing operations. You cannot use their bitwise complements as operands, and you cannot use them as operands in multiplication operations.

<table>
<thead>
<tr>
<th>Rotate</th>
<th>Binary</th>
<th>Decimal</th>
<th>Step</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>No rotate</td>
<td>00</td>
<td>0-255</td>
<td>1</td>
<td>0-0xFF</td>
</tr>
<tr>
<td>Right, 30 bits</td>
<td>00</td>
<td>0-1020</td>
<td>4</td>
<td>0-0x3FC</td>
</tr>
<tr>
<td>Right, 28 bits</td>
<td>00</td>
<td>0-4080</td>
<td>16</td>
<td>0-0xFF0</td>
</tr>
<tr>
<td>Right, 26 bits</td>
<td>00</td>
<td>0-16320 64</td>
<td>0-0x3FC0</td>
<td></td>
</tr>
</tbody>
</table>

...

Right, 8 bits | xxx
Direct loading with MOV in Thumb state

In Thumb state you can use the MOV instruction to load constants in the range 0-255. You cannot generate constants outside this range because:

- The Thumb MOV instruction does not provide inline access to the barrel shifter. Constants cannot be right-rotated as they can in ARM state.
- The Thumb MVN instruction can act only on registers and not on constant values. Bitwise complements cannot be directly loaded as they can in ARM state.

If you attempt to use a MOV instruction with a value outside the range 0-255, the assembler reports the error:

Immediate \(n \) out of range for this operation.

2.6.2 Loading with LDR Rd, =const

The LDR Rd, =const pseudo-instruction can construct any 32-bit numeric constant in a single instruction. Use this pseudo-instruction to generate constants that are out of range of the MOV and MVN instructions.

The LDR pseudo-instruction generates the most efficient code for a specific constant:

- If the constant can be constructed with a MOV or MVN instruction, the assembler generates the appropriate instruction.
- If the constant cannot be constructed with a MOV or MVN instruction, the assembler:
 - places the value in a literal pool (a portion of memory embedded in the code to hold constant values)
 - generates an LDR instruction with a program-relative address that reads the constant from the literal pool.

For example:

\[
\text{LDR} \quad r_n, [\text{pc}, \#\text{offset to literal pool}]
\]

\[
\quad ; \text{load register} \ n \ \text{with one word}
\]

\[
\quad ; \text{from the address} \ [\text{pc} + \text{offset}]
\]

You must ensure that there is a literal pool within range of the LDR instruction generated by the assembler. Refer to Placing literal pools on page 2-30 for more information.

Refer to LDR ARM pseudo-instruction on page 4-126 for a description of the syntax of the LDR pseudo-instruction.
Placing literal pools

The assembler places a literal pool at the end of each section. These are defined by the AREA directive at the start of the following section, or by the END directive at the end of the assembly. The END directive at the end of an included file does not signal the end of a section.

In large sections the default literal pool can be out of range of one or more LDR instructions. The offset from the pc to the constant must be:
- less than 4KB in ARM state, but can be in either direction
- forward and less than 1KB in Thumb state.

When an LDR Rd,=const pseudo-instruction requires the constant to be placed in a literal pool, the assembler:
- Checks if the constant is available and addressable in any previous literal pools.
 If so, it addresses the existing constant.
- Attempts to place the constant in the next literal pool if it is not already available.

If the next literal pool is out of range, the assembler generates an error message. In this case you must use the LTORG directive to place an additional literal pool in the code. Place the LTORG directive after the failed LDR pseudo-instruction, and within 4KB (ARM) or 1KB (Thumb). Refer to LTORG on page 7-14 for a detailed description.

You must place literal pools where the processor does not attempt to execute them as instructions. Place them after unconditional branch instructions, or after the return instruction at the end of a subroutine.

Example 2-5 shows how this works in practice. It is supplied as loadcon.s in the examples\asm subdirectory of the RVCT. The instructions listed as comments are the ARM instructions that are generated by the assembler. Refer to Code examples on page 2-2 for instructions on how to assemble, link, and execute the example.

Example 2-5

```
AREA     Loadcon, CODE, READONLY
ENTRY
start   BL       func1                     ; Branch to first subroutine
         BL       func2                     ; Branch to second subroutine
stop    MOV      r0, #0x18                 ; angel_SWIreason_ReportException
         LDR      r1, =0x20026              ; ADP_Stopped_ApplicationExit
         SWI      0x123456                  ; ARM semihosting SWI
func1
         LDR      r0, =42                   ; => MOV R0, #42
         LDR      r1, =0x55555555           ; => LDR R1, [PC, #offset to
                                             ; Literal Pool 1]
```
2.6.3 Loading floating-point constants

You can load any single-precision or double-precision floating-point constant in a single instruction, using the FLD pseudo-instructions.

Refer to *FLD pseudo-instruction* on page 6-36 for details.
2.7 Loading addresses into registers

It is often necessary to load an address into a register. You might need to load the address of a variable, a string constant, or the start location of a jump table.

Addresses are normally expressed as offsets from the current pc or other register.

This section describes the following methods for loading an address into a register:
- load the register directly, see Direct loading with ADR and ADRL.
- load the address from a literal pool, see Loading addresses with LDR Rd, = label on page 2-37.

2.7.1 Direct loading with ADR and ADRL

The ADR and ADRL pseudo-instructions enable you to generate an address, within a certain range, without performing a data load. ADR and ADRL accept either of the following:

- A program-relative expression, which is a label with an optional offset, where the address of the label is relative to the current pc.
- A register-relative expression, which is a label with an optional offset, where the address of the label is relative to an address held in a specified general-purpose register. Refer to Describing data structures with MAP and FIELD directives on page 2-53 for information on specifying register-relative expressions.

The assembler converts an ADR \(r_n \), label pseudo-instruction by generating:
- a single ADD or SUB instruction that loads the address, if it is in range
- an error message if the address cannot be reached in a single instruction.

The offset range is \(\pm 255 \) bytes for an offset to a non word-aligned address, and \(\pm 1020 \) bytes (255 words) for an offset to a word-aligned address. (For Thumb, the address must be word aligned, and the offset must be positive.)

The assembler converts an ADRL \(r_n \), label pseudo-instruction by generating:
- two data-processing instructions that load the address, if it is in range
- an error message if the address cannot be constructed in two instructions.

The range of an ADRL pseudo-instruction is \(\pm 64\text{KB} \) for a non word-aligned address and \(\pm 256\text{KB} \) for a word-aligned address. (There is no ADRL pseudo-instruction for Thumb.)

ADRL assembles to two instructions, if successful. The assembler generates two instructions even if the address could be loaded in a single instruction.

Refer to Loading addresses with LDR Rd, = label on page 2-37 for information on loading addresses that are outside the range of the ADRL pseudo-instruction.
--- Note ---

The label used with ADR or ADRL must be within the same code section. The assembler faults references to labels that are out of range in the same section. The linker faults references to labels that are out of range in other code sections.

In Thumb state, ADR can generate word-aligned addresses only.

ADRL is not available in Thumb code. Use it only in ARM code.

Example 2-6 shows the type of code generated by the assembler when assembling ADR and ADRL pseudo-instructions. It is supplied as adrlabel.s in the examples\asm subdirectory of the RVCT. Refer to Code examples on page 2-2 for instructions on how to assemble, link, and execute the example.

The instructions listed in the comments are the ARM instructions generated by the assembler.

Example 2-6

```assembly
AREA adrlabel, CODE,READONLY
ENTRY                          ; Mark first instruction to execute

Start
BL      func                   ; Branch to subroutine
stop        MOV     r0, #0x18              ; angel_SWIreason_ReportException
LDR     r1, =0x20026           ; ADP_Stopped_ApplicationExit
SWI     0x123456               ; ARM semihosting SWI
LTORG
func        ADR     r0, Start              ; => SUB r0, PC, #offset to Start
ADR     r1, DataArea           ; => ADD r1, PC, #offset to DataArea
; ADR   r2, DataArea+4300      ; This would fail because the offset
cannot be expressed by operand2
; of an ADD
ADRL    r2, DataArea+4300      ; => ADD r2, PC, #offset1
MOV     pc, lr                 ; Return
DataArea    SPACE   8000                   ; Starting at the current location,
; clears a 8000 byte area of memory
; to zero
END
```
Implementing a jump table with ADR

Example 2-7 on page 2-35 shows ARM code that implements a jump table. It is supplied as jump.s in the examples\asm subdirectory of RVCT. Refer to Code examples on page 2-2 for instructions on how to assemble, link, and execute the example.

The ADR pseudo-instruction loads the address of the jump table.

In the example, the function arithfunc takes three arguments and returns a result in r0. The first argument determines which operation is carried out on the second and third arguments:

- argument1=0 Result = argument2 + argument3.
- argument1=1 Result = argument2 – argument3.

The jump table is implemented with the following instructions and assembler directives:

- EQU Is an assembler directive. It is used to give a value to a symbol. In this example it assigns the value 2 to num. When num is used elsewhere in the code, the value 2 is substituted. Using EQU in this way is similar to using #define to define a constant in C.

- DCD Declares one or more words of store. In this example each DCD stores the address of a routine that handles a particular clause of the jump table.

- LDR The LDR pc,[r3,r0,LSL#2] instruction loads the address of the required clause of the jump table into the pc. It:
 - multiplies the clause number in r0 by 4 to give a word offset
 - adds the result to the address of the jump table
 - loads the contents of the combined address into the program counter.
Example 2-7 ARM code jump table

```
AREA    Jump, CODE, READONLY     ; Name this block of code
CODE32                           ; Following code is ARM code
num    EQU     2                        ; Number of entries in jump table
ENTRY                            ; Mark first instruction to execute
start                                    ; First instruction to call
  MOV     r0, #0                   ; Set up the three parameters
  MOV     r1, #3                   
  MOV     r2, #2                   
  BL      arithfunc                ; Call the function
stop    MOV     r0, #0x18                ; angel_SWireason_ReportException
  LDR     r1, =0x20026             ; ADP_Stopped_ApplicationExit
  SWI     0x123456                 ; ARM semihosting SWI
arithfunc                                ; Label the function
  CMP     r0, #num                 ; Treat function code as unsigned integer
  MOVHS   pc, lr                   ; If code is >= num then simply return
  ADR     r3, JumpTable            ; Load address of jump table
  LDR     pc, [r3,r0,LSL#2]        ; Jump to the appropriate routine
JumpTable
  DCD     DoAdd                   
  DCD     DoSub                   
DoAdd    ADD     r0, r1, r2               ; Operation 0
  MOV     pc, lr                   ; Return
DoSub    SUB     r0, r1, r2               ; Operation 1
  MOV     pc, lr                   ; Return
END                              ; Mark the end of this file
```
Converting to Thumb

Example 2-8 shows the implementation of the jump table converted to Thumb code.

Most of the Thumb version is the same as the ARM code. The differences are commented in the Thumb version.

In Thumb state, you cannot:
- increment the base register of LDR and STR instructions
- load a value into the pc using an LDR instruction
- do an inline shift of a value held in a register.

Example 2-8 Thumb code jump table

```assembly
AREA    Jump, CODE, READONLY
CODE16                           ; Following code is Thumb code
num    EQU     2
ENTRY
start  MOV     r0, #0
       MOV     r1, #3
       MOV     r2, #2
       BL      arithfunc
stop   MOV     r0, #0x18
       LDR     r1, =0x20026
       SWI     0xAB                     ; Thumb semihosting SWI
arithfunc
       CMP     r0, #num
       BHS     exit                     ; MOV pc, lr cannot be conditional
       ADR     r3, JumpTable
       LSL     r0, r0, #2               ; 3 instructions needed to replace
       LDR     r0, [r3,r0]              ; LDR pc, [r3,r0,LSL#2]
       MOV     pc, r0
ALIGN                            ; Ensure that the table is aligned on a
; 4-byte boundary
JumpTable
       DCD     DoAdd
       DCD     DoSub
DoAdd ADD     r0, r1, r2
exit   MOV     pc, lr
DoSub SUB     r0, r1, r2
       MOV     pc, lr
END
```
2.7.2 Loading addresses with LDR Rd, = label

The LDR Rd, = pseudo-instruction can load any 32-bit constant into a register. See Loading with LDR Rd, =const on page 2-29. It also accepts program-relative expressions such as labels, and labels with offsets.

The assembler converts an LDR r0, =label pseudo-instruction by:

- Placing the address of label in a literal pool (a portion of memory embedded in the code to hold constant values).

- Generating a program-relative LDR instruction that reads the address from the literal pool, for example:

```
    LDR      r
    n      [pc, #offset to literal pool]
    ; load register n with one word
    ; from the address [pc + offset]
```

You must ensure that there is a literal pool within range. Refer to Placing literal pools on page 2-30 for more information.

Unlike the ADR and ADRL pseudo-instructions, you can use LDR with labels that are outside the current section. If the label is outside the current section, the assembler places a relocation directive in the object code when the source file is assembled. The relocation directive instructs the linker to resolve the address at link time. The address remains valid wherever the linker places the section containing the LDR and the literal pool.

Example 2-9 shows how this works. It is supplied as ldrlabel.s in the examples\asm subdirectory of the RVCT. Refer to Code examples on page 2-2 for instructions on how to assemble, link, and execute the example.

The instructions listed in the comments are the ARM instructions that are generated by the assembler.

Example 2-9

```
AREA    LDRlabel, CODE,READONLY
ENTRY                              ; Mark first instruction to execute
start
    BL      func1                      ; Branch to first subroutine
    BL      func2                      ; Branch to second subroutine
stop
    MOV     r0, #0x18                  ; angel_SWIreason_ReportException
    LDR     r1, =0x20026               ; ADP_Stopped_ApplicationExit
    SWI     0x123456                   ; ARM semihosting SWI
func1
    LDR     r0, =start                 ; => LDR R0,[PC, #offset into
```
LDR r1, =Darea + 12 ; => LDR R1, [PC, #offset into
; Literal Pool 1]
LDR r2, =Darea + 6000 ; => LDR R2, [PC, #offset into
; Literal Pool 1]
MOV pc, lr ; Return
LTORG ; Literal Pool 1
func2
LDR r3, =Darea + 6000 ; => LDR r3, [PC, #offset into
; Literal Pool 1]
; (sharing with previous literal)
; LDR r4, =Darea + 6004 ; If uncommented produces an error
; as Literal Pool 2 is out of range
MOV pc, lr ; Return
Darea SPACE 8000 ; Starting at the current location,
; clears a 8000 byte area of memory
; to zero
END ; Literal Pool 2 is out of range of
; the LDR instructions above
An LDR Rd, =label example: string copying

Example 2-10 shows an ARM code routine that overwrites one string with another string. It uses the LDR pseudo-instruction to load the addresses of the two strings from a data section. The following are particularly significant:

DCB
The DCB directive defines one or more bytes of store. In addition to integer values, DCB accepts quoted strings. Each character of the string is placed in a consecutive byte. Refer to DCB on page 7-18 for more information.

LDR/STR
The LDR and STR instructions use post-indexed addressing to update their address registers. For example, the instruction:

```
LDRB r2, [r1], #1
```

loads r2 with the contents of the address pointed to by r1 and then increments r1 by 1.

Example 2-10 String copy

```
AREA    StrCopy, CODE, READONLY
ENTRY
start   LDR     r1, =srcstr               ; Pointer to first string
        LDR     r0, =dststr               ; Pointer to second string
        BL      strcopy                   ; Call subroutine to do copy
stop    MOV     r0, #0x18                 ; angel_SWIreason_ReportException
        LDR     r1, =0x20026              ; ADP_Stopped_ApplicationExit
        SWI     0x123456                  ; ARM semihosting SWI
strcopy
        LDRB    r2, [r1], #1               ; Load byte and update address
        STRB    r2, [r0], #1               ; Store byte and update address
        CMP     r2, #0                    ; Check for zero terminator
        BNE     strcopy                   ; Keep going if not
        MOV     pc, lr                     ; Return

AREA    Strings, DATA, READWRITE
srcstr  DCB     "First string - source", 0
dststr  DCB     "Second string - destination", 0
END
```
Converting to Thumb

There is no post-indexed addressing mode for Thumb LDR and STR instructions. Because of this, you must use an ADD instruction to increment the address register after the LDR and STR instructions. For example:

```assembly
LDRB r2, [r1] ; load register 2
ADD r1, #1 ; increment the address in register 1.
```
2.8 Load and store multiple register instructions

The ARM and Thumb instruction sets include instructions that load and store multiple registers to and from memory.

Multiple register transfer instructions provide an efficient way of moving the contents of several registers to and from memory. They are most often used for block copy and for stack operations at subroutine entry and exit. The advantages of using a multiple register transfer instruction instead of a series of single data transfer instructions include:

- Smaller code size.
- A single instruction fetch overhead, rather than many instruction fetches.
- On uncached ARM processors, the first word of data transferred by a load or store multiple is always a nonsequential memory cycle, but all subsequent words transferred can be sequential memory cycles. Sequential memory cycles are faster in most systems.

Note

The lowest numbered register is transferred to or from the lowest memory address accessed, and the highest numbered register to or from the highest address accessed. The order of the registers in the register list in the instructions makes no difference.

Use the `-checkreglist` assembler command line option to check that registers in register lists are specified in increasing order. Refer to *Command syntax* on page 3-2 for more information.
2.8.1 ARM LDM and STM instructions

The load (or store) multiple instruction loads (stores) any subset of the 16 general-purpose registers from (to) memory, using a single instruction.

Syntax

The syntax of the LDM instructions is:

LDM{cond}address-mode Rn{!},reg-list^{}

where:

cond is an optional condition code. Refer to Conditional execution on page 2-22 for more information.

address-mode specifies the addressing mode of the instruction. Refer to LDM and STM addressing modes on page 2-43 for details.

Rn is the base register for the load operation. The address stored in this register is the starting address for the load operation. Do not specify r15 (pc) as the base register.

! specifies base register write back. If this is specified, the address in the base register is updated after the transfer. It is decremented or incremented by one word for each register in the register list.

register-list

is a comma-delimited list of symbolic register names and register ranges enclosed in braces. There must be at least one register in the list. Register ranges are specified with a dash. For example:

{r0,r1,r4-r6,pc}

Do not specify writeback if the base register Rn is in register-list.

^ You must not use this option in User or System mode. For details of its use in privileged modes, see the Handling Processor Exceptions chapter in RealView Compilation Tools v2.0 Developer Guide and LDM and STM on page 4-20.

The syntax of the STM instruction corresponds exactly, except for some details in the effect of the ^ option.
2.8.2 LDM and STM addressing modes

There are four different addressing modes. The base register can be incremented or decremented by one word for each register in the operation, and the increment or decrement can occur before or after the operation. The suffixes for these options are:

- **IA**: Increment after.
- **IB**: Increment before.
- **DA**: Decrement after.
- **DB**: Decrement before.

There are alternative addressing mode suffixes that are easier to use for stack operations. See Implementing stacks with *LDM* and *STM* on page 2-44.
2.8.3 Implementing stacks with LDM and STM

The load and store multiple instructions can update the base register. For stack operations, the base register is usually the stack pointer, r13. This means that you can use load and store multiple instructions to implement push and pop operations for any number of registers in a single instruction.

The load and store multiple instructions can be used with several types of stack:

Descending or ascending

The stack grows downwards, starting with a high address and progressing to a lower one (a descending stack), or upwards, starting from a low address and progressing to a higher address (an ascending stack).

Full or empty

The stack pointer can either point to the last item in the stack (a full stack), or the next free space on the stack (an empty stack).

To make it easier for the programmer, stack-oriented suffixes can be used instead of the increment or decrement and before or after suffixes. Refer to Table 2-5 for a list of stack-oriented suffixes.

<table>
<thead>
<tr>
<th>Stack type</th>
<th>Push</th>
<th>Pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full descending</td>
<td>STMFD</td>
<td>LDMFD</td>
</tr>
<tr>
<td></td>
<td>(STMDB)</td>
<td>(LDMIA)</td>
</tr>
<tr>
<td>Full ascending</td>
<td>STMFA</td>
<td>LDMFA</td>
</tr>
<tr>
<td></td>
<td>(STMIB)</td>
<td>(LDMDA)</td>
</tr>
<tr>
<td>Empty descending</td>
<td>STMED</td>
<td>LDMED</td>
</tr>
<tr>
<td></td>
<td>(STMDA)</td>
<td>(LDMIB)</td>
</tr>
<tr>
<td>Empty ascending</td>
<td>STMEA</td>
<td>LDMEA</td>
</tr>
<tr>
<td></td>
<td>(STMIA)</td>
<td>(LDMDB)</td>
</tr>
</tbody>
</table>

For example:

STMFD r13!, {r0-r5} ; Push onto a Full Descending Stack
LDMFD r13!, {r0-r5} ; Pop from a Full Descending Stack.

Note

The ARM-Thumb Procedure Call Standard (ATPCS), and ARM and Thumb C and C++ compilers always use a full descending stack.
Stacking registers for nested subroutines

Stack operations are very useful at subroutine entry and exit. At the start of a subroutine, any working registers required can be stored on the stack, and at exit they can be popped off again.

In addition, if the link register is pushed onto the stack at entry, additional subroutine calls can safely be made without causing the return address to be lost. If you do this, you can also return from a subroutine by popping the pc off the stack at exit, instead of popping lr and then moving that value into the pc. For example:

```
subroutine   STMFD   sp!, {r5-r7,lr} ; Push work registers and lr
            ; code
            BL      somewhere_else
            ; Code
            LDMFD   sp!, {r5-r7,pc} ; Pop work registers and pc
```

--- Note ---

Use this with care in mixed ARM and Thumb systems. In ARM architecture v4T systems, you cannot change state by popping directly into the program counter.

In ARM architecture v5T and above, you can change state in this way.

See the Interworking ARM and Thumb chapter in RealView Compilation Tools v2.0 Developer Guide for more information on mixing ARM and Thumb.
2.8.4 Block copy with LDM and STM

Example 2-11 is an ARM code routine that copies a set of words from a source location to a destination by copying a single word at a time. It is supplied as word.s in the examples\asm subdirectory of the RVCT. Refer to Code examples on page 2-2 for instructions on how to assemble, link, and execute the example.

Example 2-11 Block copy

```
AREA    Word, CODE, READONLY     ; name this block of code
num     EQU     20                       ; set number of words to be copied
ENTRY                            ; mark the first instruction to call

start
LDR     r0, =src                 ; r0 = pointer to source block
LDR     r1, =dst                 ; r1 = pointer to destination block
MOV     r2, #num                 ; r2 = number of words to copy

wordcopy LDR     r3, [r0], #4             ; load a word from the source and
STR     r3, [r1], #4             ; store it to the destination
SUBS    r2, r2, #1               ; decrement the counter
BNE     wordcopy                 ; ... copy more

stop    MOV     r0, #0x18                ; angel_SWIreason_ReportException
        LDR     r1, =0x20026             ; ADP_Stopped_ApplicationExit
        SWI     0x123456                 ; ARM semihosting SWI

AREA    BlockData, DATA, READWRITE

src     DCD     1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst     DCD     0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
END
```

This module can be made more efficient by using LDM and STM for as much of the copying as possible. Eight is a sensible number of words to transfer at a time, given the number of registers that the ARM has. The number of eight-word multiples in the block to be copied can be found (if r2 = number of words to be copied) using:

```
MOVS   r3, r2, LSR #3    ; number of eight word multiples
```

This value can be used to control the number of iterations through a loop that copies eight words per iteration. When there are less than eight words left, the number of words left can be found (assuming that r2 has not been corrupted) using:

```
ANDS   r2, r2, #7
```

Example 2-12 on page 2-47 lists the block copy module rewritten to use LDM and STM for copying.
Example 2-12

```
AREA Block, CODE, READONLY ; name this block of code
num   EQU 20                       ; set number of words to be copied
ENTRY ; mark the first instruction to call

start
  LDR  r0, =src                 ; r0 = pointer to source block
  LDR  r1, =dst                 ; r1 = pointer to destination block
  MOV  r2, #num                 ; r2 = number of words to copy
  MOV  sp, #0x400               ; Set up stack pointer (r13)
blockcopy
  MOVS  r3,r2, LSR #3            ; Number of eight word multiples
  BEQ   copywords                ; Less than eight words to move?
  STMFD sp!, {r4-r11}            ; Save some working registers
  octcopy
    LDMIA  r0!, {r4-r11}            ; Load 8 words from the source
    STMIA  r1!, {r4-r11}            ; and put them at the destination
    SUBS  r3, r3, #1               ; Decrement the counter
    BNE    octcopy                  ; ... copy more
    LDMFD sp!, {r4-r11}            ; Don't need these now - restore
                                        ; originals
  copywords
    ANDS  r2, r2, #7               ; Number of odd words to copy
    BEQ   stop                     ; No words left to copy?
  wordcopy
    LDR  r3, [r0], #4             ; Load a word from the source and
    STR  r3, [r1], #4             ; store it to the destination
    SUBS  r2, r2, #1               ; Decrement the counter
    BNE    wordcopy                 ; ... copy more
  stop
    MOV  r0, #0x18                ; SWI reason_ReportException
    LDR  r1, =0x20026             ; ADP_Stopped_ApplicationExit
    SWI   0x123456                 ; ARM semihosting SWI

AREA BlockData, DATA, READWRITE

src    DCD  1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst    DCD  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
END
```
2.8.5 Thumb LDM and STM instructions

The Thumb instruction set contains the following pairs of multiple-register transfer instructions:

- LDM and STM for block memory transfers
- PUSH and POP for stack operations.

LDM and STM

These instructions can be used to load or store any subset of the low registers from or to memory. The base register is always updated at the end of the multiple register transfer instruction. You must specify the ! character. The only valid suffix for these instructions is IA.

Examples of these instructions are:

- LDMIA r1!, {r0,r2-r7}
- STMIA r4!, {r0-r3}

PUSH and POP

These instructions can be used to push any subset of the low registers and (optionally) the link register onto the stack, and to pop any subset of the low registers and (optionally) the pc off the stack. The base address of the stack is held in r13. Examples of these instructions are:

- PUSH {r0-r3}
- POP {r0-r3}
- PUSH {r4-r7,lr}
- POP {r4-r7,pc}

The optional addition of the lr or pc to the register list provides support for subroutine entry and exit.

The stack is always full descending.

Thumb-state block copy example

The block copy example, Example 2-11 on page 2-46, can be converted into Thumb instructions (see Example 2-13 on page 2-49).

Because the Thumb LDM and STM instructions can access only the low registers, the number of words copied per iteration is reduced from eight to four. In addition, the LDM and STM instructions can be used to carry out the single word at a time copy, because they update the base pointer after each access. If LDR and STR were used for this, separate ADD instructions would be required to update each base pointer.
Example 2-13

```
AREA    Tblock, CODE, READONLY   ; Name this block of code
num     EQU     20                       ; Set number of words to be copied
ENTRY                            ; Mark first instruction to execute
header                                   ; The first instruction to call
  MOV     sp, #0x400               ; Set up stack pointer (r13)
  ADR     r0, start + 1            ; Processor starts in ARM state, 
  BX      r0                       ; so small ARM code header used
                      ; to call Thumb main program
  CODE16                           ; Subsequent instructions are Thumb
start
  LDR     r0, =src                 ; r0 =pointer to source block
  LDR     r1, =dst                 ; r1 =pointer to destination block
  MOV     r2, #num                 ; r2 =number of words to copy
blockcopy
  LSR     r3, r2, #2                ; Number of four word multiples
  BEQ     copywords                ; Less than four words to move?
  PUSH    {r4-r7}                  ; Save some working registers
quadcopy
    LDMIA   r0!, {r4-r7}             ; Load 4 words from the source
    STMIA   r1!, {r4-r7}             ; and put them at the destination
    SUB     r3, #1                   ; Decrement the counter
    BNE     quadcopy                 ; ... copy more
    POP     {r4-r7}                  ; Don't need these now-restore originals
copywords
  MOV     r3, #3                   ; Bottom two bits represent number
  AND     r2, r3                   ; ...of odd words left to copy
  BEQ     stop                     ; No words left to copy?
wordcopy
    LDMIA   r0!, {r3}                ; load a word from the source and
    STMIA   r1!, {r3}                ; store it to the destination
    SUB     r2, #1                   ; Decrement the counter
    BNE     wordcopy                 ; ... copy more
stop
    MOV     r0, #0x18                ; angel_SWIreason_ReportException
    LDR     r1, =0x20026             ; ADP_Stopped_ApplicationExit
    SWI     0xAB                     ; Thumb semihosting SWI

AREA    BlockData, DATA, READWRITE
src     DCD     1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst     DCD     0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
END
```
2.9 Using macros

A macro definition is a block of code enclosed between MACRO and MEND directives. It defines a name that can be used instead of repeating the whole block of code. The main uses for a macro are:

- to make it easier to follow the logic of the source code, by replacing a block of code with a single, meaningful name
- to avoid repeating a block of code several times.

Refer to MACRO and MEND on page 7-27 for more details.

2.9.1 Test-and-branch macro example

A test-and-branch operation requires two ARM instructions to implement.

You can define a macro definition such as this:

MACRO
$label TestAndBranch $dest, $reg, $cc

$label CMP $reg, #0
B$cc $dest
MEND

The line after the MACRO directive is the macro prototype statement. The macro prototype statement defines the name (TestAndBranch) you use to invoke the macro. It also defines parameters ($label, $dest, $reg, and $cc). You must give values to the parameters when you invoke the macro. The assembler substitutes the values you give into the code.

This macro can be invoked as follows:

test TestAndBranch NonZero, r0, NE
 ...
 ...
NonZero

After substitution this becomes:

test CMP r0, #0
 BNE NonZero
 ...
 ...
NonZero
2.9.2 Unsigned integer division macro example

Example 2-14 shows a macro that performs an unsigned integer division. It takes four parameters:

$Bot
The register that holds the divisor.

$Top
The register that holds the dividend before the instructions are executed. After the instructions are executed, it holds the remainder.

$Div
The register where the quotient of the division is placed. It can be NULL ("") if only the remainder is required.

$Temp
A temporary register used during the calculation.

Example 2-14

```assembly
MACRO
$Lab DivMod $Div,$Top,$Bot,$Temp
    ASSERT $Top <> $Bot ; Produce an error message if the
    ASSERT $Top <> $Temp ; registers supplied are
    ASSERT $Bot <> $Temp ; not all different
    IF "$Div" <> ""
        ASSERT $Div <> $Top ; These three only matter if $Div
        ASSERT $Div <> $Bot ; is not null ("")
        ASSERT $Div <> $Temp
    ENDIF
    $Lab
    MOV     $Temp, $Bot              ; Put divisor in $Temp
    CMP     $Temp, $Top, LSR #1      ; double it until
    90      MOVLS   $Temp, $Temp, LSL #1     ; 2 * $Temp > $Top
    CMP     $Temp, $Top, LSR #1
    BLS     %b90                     ; The b means search backwards
    IF "$Div" <> ""
        MOV     $Div, #0             ; Initialize quotient
    ENDIF
    91      CMP     $Top, $Temp              ; Can we subtract $Temp?
    SUBCS   $Top, $Top,$Temp         ; If we can, do so
    IF "$Div" <> ""
        ADC     $Div, $Div, $Div     ; Double $Div
    ENDIF
    MOV     $Temp, $Temp, LSR #1     ; Halve $Temp,
    CMP     $Temp, $Bot              ; and loop until
    BHS     %b91                     ; less than divisor
MEND
```
The macro checks that no two parameters use the same register. It also optimizes the code produced if only the remainder is required.

To avoid multiple definitions of labels if DivMod is used more than once in the assembler source, the macro uses local labels (90, 91). Refer to Local labels on page 2-14 for more information.

Example 2-15 shows the code that this macro produces if it is invoked as follows:

```
ratio DivMod r0,r5,r4,r2
```

```
Example 2-15

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>MOV r2, r4</td>
<td>Put divisor in $Temp</td>
</tr>
<tr>
<td></td>
<td>CMP r2, r5, LSR #1</td>
<td>double it until</td>
</tr>
<tr>
<td></td>
<td>MOVLS r2, r2, LSL #1</td>
<td>2 * r2 &gt; r5</td>
</tr>
<tr>
<td></td>
<td>CMP r2, r5, LSR #1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLS %b90</td>
<td>The b means search backwards</td>
</tr>
<tr>
<td></td>
<td>MOV r0, #0</td>
<td>Initialize quotient</td>
</tr>
<tr>
<td>91</td>
<td>CMP r5, r2</td>
<td>Can we subtract r2?</td>
</tr>
<tr>
<td></td>
<td>SUBCS r5, r5, r2</td>
<td>If we can, do so</td>
</tr>
<tr>
<td></td>
<td>ADC r0, r0, r0</td>
<td>Double r0</td>
</tr>
<tr>
<td></td>
<td>MOV r2, r2, LSR #1</td>
<td>Halve r2,</td>
</tr>
<tr>
<td></td>
<td>CMP r2, r4</td>
<td>and loop until</td>
</tr>
<tr>
<td></td>
<td>BHS %b91</td>
<td>less than divisor</td>
</tr>
</tbody>
</table>
```
2.10 Describing data structures with MAP and FIELD directives

You can use the \texttt{MAP} and \texttt{FIELD} directives to describe data structures. These directives are always used together.

Data structures defined using \texttt{MAP} and \texttt{FIELD}:

- are easily maintainable
- can be used to describe multiple instances of the same structure
- make it easy to access data efficiently.

The \texttt{MAP} directive specifies the base address of the data structure. Refer to \texttt{MAP} on page 7-15 for more information.

The \texttt{FIELD} directive specifies the amount of memory required for a data item, and can give the data item a label. It is repeated for each data item in the structure. Refer to \texttt{FIELD} on page 7-16 for more information.

\textbf{Note}

No space in memory is allocated when a map is defined. Use define constant directives (for example, \texttt{DCD}) to allocate space in memory.
2.10.1 Relative maps

To access data more than 4KB away from the current instruction, you can use a register-relative instruction, such as:

```
LDR     r4,[r9,#offset]
```

offset is limited to 4096, so r9 must already contain a value within 4KB of the address of the data.

Example 2-16

<table>
<thead>
<tr>
<th>MAP</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>consta FIELD 4</td>
<td>; consta uses four bytes, located at offset 0</td>
</tr>
<tr>
<td>constb FIELD 4</td>
<td>; constb uses four bytes, located at offset 4</td>
</tr>
<tr>
<td>x FIELD 8</td>
<td>; x uses eight bytes, located at offset 8</td>
</tr>
<tr>
<td>y FIELD 8</td>
<td>; y uses eight bytes, located at offset 16</td>
</tr>
<tr>
<td>string FIELD 256</td>
<td>; string is up to 256 bytes long, starting at offset 24</td>
</tr>
</tbody>
</table>

Using the map in Example 2-16, you can access the data structure using the following instructions:

```
MOV     r9,#4096
LDR     r4,[r9,#constb]
```

The labels are relative to the start of the data structure. The register used to hold the start address of the map (r9 in this case) is called the base register.

There are likely to be many LDR or STR instructions accessing data in this data structure.

This map does not contain the location of the data structure. The location of the structure is determined by the value loaded into the base register at runtime.

The same map can be used to describe many instances of the data structure. These can be located anywhere in memory.

There are restrictions on what addresses can be loaded into a register using the MOV instruction. Refer to Loading addresses into registers on page 2-32 for details of how to load arbitrary addresses.

Note

r9 is the static base register (sb) in the ARM-Thumb Procedure Call Standard. Refer to the Using the Procedure Call Standard chapter in RealView Compilation Tools v2.0 Developer Guide for more information.
2.10.2 Register-based maps

In many cases, you can use the same register as the base register every time you access a data structure. You can include the name of the register in the base address of the map. Example 2-17 shows such a register-based map. The labels defined in the map include the register.

Example 2-17

MAP 0,r9
consta FIELD 4 ; consta uses four bytes, located at offset 0 (from r9)
constb FIELD 4 ; constb uses four bytes, located at offset 4
x FIELD 8 ; x uses eight bytes, located at offset 8
y FIELD 8 ; y uses eight bytes, located at offset 16
string FIELD 256 ; string is up to 256 bytes long, starting at offset 24

Using the map in Example 2-17, you can access the data structure wherever it is:

ADR r9, datastart
LDR r4, constb ; => LDR r4, [r9, #4]

constb contains the offset of the data item from the start of the data structure, and also includes the base register. In this case the base register is r9, defined in the MAP directive.
2.10.3 Program-relative maps

You can use the program counter (r15) as the base register for a map. In this case, each STM or LDM instruction must be within 4KB of the data item it addresses, because the offset is limited to 4KB. The data structure must be in the same section as the instructions, because otherwise there is no guarantee that the data items will be within range after linking.

Example 2-18 shows a program fragment with such a map. It includes a directive which allocates space in memory for the data structure, and an instruction which accesses it.

Example 2-18

```
datastruc   SPACE   280         ; reserves 280 bytes of memory for datastruc
MAP     datastruc
consta      FIELD   4
constb      FIELD   4
x           FIELD   8
y           FIELD   8
string      FIELD   256

code        LDR     r2,constb   ; => LDR r2,[pc,offset]
```

In this case, there is no need to load the base register before loading the data as the program counter already holds the correct address. (This is not actually the same as the address of the LDR instruction, because of pipelining in the processor. However, the assembler takes care of this for you.)
2.10.4 Finding the end of the allocated data

You can use the `FIELD` directive with an operand of 0 to label a location within a structure. The location is labeled, but the location counter is not incremented.

The size of the data structure defined in Example 2-19 depends on the values of `MaxStrLen` and `ArrayLen`. If these values are too large, the structure overruns the end of available memory.

Example 2-19 uses:
- an `EQU` directive to define the end of available memory
- a `FIELD` directive with an operand of 0 to label the end of the data structure.

An `ASSERT` directive checks that the end of the data structure does not overrun the available memory.

Example 2-19

```
StartOfData EQU     0x1000
EndOfData   EQU     0x2000
MAP StartOfData
Integer     FIELD   4
Integer2    FIELD   4
String      FIELD   MaxStrLen
Array       FIELD   ArrayLen*8
BitMask     FIELD   4
EndOfUsedData FIELD   0
ASSERT EndOfUsedData <= EndOfData
```
2.10.5 Forcing correct alignment

You are likely to have problems if you include some character variables in the data structure, as in Example 2-20. This is because a lot of words are misaligned.

Example 2-20

<table>
<thead>
<tr>
<th>StartOfData</th>
<th>EQU</th>
<th>0x1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>EndOfData</td>
<td>EQU</td>
<td>0x2000</td>
</tr>
</tbody>
</table>

MAP StartOfData

Char FIELD 1
Char2 FIELD 1
Char3 FIELD 1
Integer FIELD 4 ; alignment = 3
Integer2 FIELD 4
String FIELD MaxStrLen
Array FIELD ArrayLen*8
BitMask FIELD 4
EndOfUsedData FIELD 0

ASSERT EndOfUsedData <= EndOfData

You cannot use the ALIGN directive, because the ALIGN directive aligns the current location within memory. MAP and FIELD directives do not allocate any memory for the structures they define.

You could insert a dummy FIELD 1 after Char3 FIELD 1. However, this makes maintenance difficult if you change the number of character variables. You must recalculate the right amount of padding each time.

Example 2-21 on page 2-59 shows a better way of adjusting the padding. The example uses a FIELD directive with a 0 operand to label the end of the character data. A second FIELD directive inserts the correct amount of padding based on the value of the label. An :AND: operator is used to calculate the correct value.

The (-EndOfChars):AND:3 expression calculates the correct amount of padding:

0 if EndOfChars is 0 mod 4;
3 if EndOfChars is 1 mod 4;
2 if EndOfChars is 2 mod 4;
1 if EndOfChars is 3 mod 4.

This automatically adjusts the amount of padding used whenever character variables are added or removed.
Example 2-21

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>StartOfData</td>
<td>EQU</td>
<td>0x1000</td>
</tr>
<tr>
<td>EndOfData</td>
<td>EQU</td>
<td>0x2000</td>
</tr>
<tr>
<td>MAP</td>
<td>StartOfData</td>
<td></td>
</tr>
<tr>
<td>Char</td>
<td>FIELD</td>
<td>1</td>
</tr>
<tr>
<td>Char2</td>
<td>FIELD</td>
<td>1</td>
</tr>
<tr>
<td>Char3</td>
<td>FIELD</td>
<td>1</td>
</tr>
<tr>
<td>EndOfChars</td>
<td>FIELD</td>
<td>0</td>
</tr>
<tr>
<td>Padding</td>
<td>FIELD</td>
<td>(-EndOfChars):AND:3</td>
</tr>
<tr>
<td>Integer</td>
<td>FIELD</td>
<td>4</td>
</tr>
<tr>
<td>Integer2</td>
<td>FIELD</td>
<td>4</td>
</tr>
<tr>
<td>String</td>
<td>FIELD</td>
<td>MaxStrLen</td>
</tr>
<tr>
<td>Array</td>
<td>FIELD</td>
<td>ArrayLen*8</td>
</tr>
<tr>
<td>BitMask</td>
<td>FIELD</td>
<td>4</td>
</tr>
<tr>
<td>EndOfUsedData</td>
<td>FIELD</td>
<td>0</td>
</tr>
</tbody>
</table>

ASSERT EndOfUsedData <= EndOfData
2.10.6 Using register-based MAP and FIELD directives

Register-based MAP and FIELD directives define register-based symbols. The main uses for register-based symbols:

- defining structures similar to C structures
- gaining faster access to memory sections described by non register-based MAP and FIELD directives.

Defining register-based symbols

Register-based symbols can be very useful, but you must be careful when using them. As a general rule, use them only in the following ways:

- As the location for a load or store instruction to load from or store to. If Location is a register-based symbol based on the register Rb and with numeric offset, the assembler automatically translates, for example, LDR Rn, Location into LDR Rn, [Rb, #offset].

 In an ADR or ADRL instruction, ADR Rn, Location is converted by the assembler into ADD Rn, Rb, #offset.

- Adding an ordinary numeric expression to a register-based symbol to get another register-based symbol.

- Subtracting an ordinary numeric expression from a register-based symbol to get another register-based symbol.

- Subtracting a register-based symbol from another register-based symbol to get an ordinary numeric expression. Do not do this unless the two register-based symbols are based on the same register. Otherwise, you have a combination of two registers and a numeric value. This results in an assembler error.

- As the operand of a :BASE: or :INDEX: operator. These operators are mainly of use in macros.

Other uses usually result in assembler error messages. For example, if you write LDR Rn, =Location, where Location is register-based, you are asking the assembler to load Rn from a memory location that always has the current value of the register Rb plus offset in it. It cannot do this, because there is no such memory location.

Similarly, if you write ADD Rd, Rn, #expression, and expression is register-based, you are asking for a single ADD instruction that adds both the base register of the expression and its offset to Rn. Again, the assembler cannot do this. You must use two ADD instructions to perform these two additions.
Setting up a C-type structure

Using structures in C requires that you:
1. Declare the fields that the structure contains.
2. Generate the structure in memory, and use it.

For example, the following `typedef` statement defines a point structure that contains three `float` fields named `x`, `y` and `z`, but it does not allocate any memory. The second statement allocates three structures of type `Point` in memory, named `origin`, `oldloc`, and `newloc`:

```c
typedef struct Point {
    float x,y,z;
} Point;
```

```c
Point origin,oldloc,newloc;
```

The following assembly language code is equivalent to the `typedef` statement above:

```assembly
PointBase   RN      r11
MAP     0,PointBase
Point_x     FIELD   4
Point_y     FIELD   4
Point_z     FIELD   4
```

The following assembly language code allocates space in memory. This is equivalent to the last line of C code:

```assembly
origin  SPACE   12
oldloc  SPACE   12
newloc  SPACE   12
```

You must load the base address of the data structure into the base register before you can use the labels defined in the map. For example:

```assembly
LDR     PointBase,=origin
MOV     r0,#0
STR     r0,Point_x
MOV     r0,#2
STR     r0,Point_y
MOV     r0,#3
STR     r0,Point_z
```

is equivalent to the C code:

```c
origin.x = 0;
origin.y = 2;
origin.z = 3;
```
Making faster access possible

To gain faster access to a section of memory:

1. Describe the memory section as a structure.
2. Use a register to address the structure.

For example, consider the definitions in Example 2-22.

Example 2-22

```assembly
StartOfData   EQU     0x1000
EndOfData     EQU     0x2000
MAP           StartOfData
Integer       FIELD   4
String        FIELD   MaxStrLen
Array         FIELD   ArrayLen*8
BitMask       FIELD   4
EndOfUsedData FIELD   0
              ASSERT EndOfUsedData <= EndOfData
```

If you want the equivalent of the C code:

- Integer = 1;
- String = "";
- BitMask = 0xA000000A;

With the definitions from Example 2-22, the assembly language code can be as shown in Example 2-23.

Example 2-23

```assembly
MOV     r0,#1
LDR     r1,"=Integer"
STR     r0,[r1]
MOV     r0,#0
LDR     r1,"=String"
STRB    r0,[r1]
MOV     r0,#0xA000000A
LDR     r1,"=BitMask"
STRB    r0,[r1]
```

Example 2-23 uses LDR pseudo-instructions. Refer to Loading with LDR Rd, =const on page 2-29 for an explanation of these.
Example 2-23 on page 2-62 contains separate LDR pseudo-instructions to load the address of each of the data items. Each LDR pseudo-instruction is converted to a separate instruction by the assembler. However, it is possible to access the entire data section with a single LDR pseudo-instruction. Example 2-24 shows how to do this. Both speed and code size are improved.

Example 2-24

```
AREA    data, DATA
StartOfData  EQU     0x1000
EndOfData    EQU     0x2000
DataAreaBase RN      r11
 MAP    0,DataAreaBase
StartOfUsedData FIELD   0
 Integer    FIELD   4
 String     FIELD   MaxStrLen
 Array      FIELD   ArrayLen*8
 BitMask    FIELD   4
 EndOfUsedData FIELD   0
UsedDataLen EQU     EndOfUsedData - StartOfUsedData
 ASSERT    UsedDataLen <= (EndOfData - StartOfData)

AREA    code, CODE
LDR     DataAreaBase,=StartOfData
MOV     r0,#1
STR     r0,Integer
MOV     r0,#0
STRB    r0,String
MOV     r0,#0xA000000A
STRB    r0,BitMask
```

Note

In this example, the MAP directive is:

MAP 0, DataAreaBase

not:

MAP StartOfData,DataAreaBase

The MAP and FIELD directives give the position of the data relative to the DataAreaBase register, not the absolute position. The LDR DataAreaBase,=StartOfData statement provides the absolute position of the entire data section.
If you use the same technique for a section of memory containing memory-mapped I/O (or whose absolute addresses must not change for other reasons), you must take care to keep the code maintainable.

One method is to add comments to the code warning maintainers to take care when modifying the definitions. A better method is to use definitions of the absolute addresses to control the register-based definitions.

Using MAP offset, reg followed by label FIELD 0 makes label into a register-based symbol with register part reg and numeric part offset. Example 2-25 shows this.

Example 2-25

<table>
<thead>
<tr>
<th>StartOfIOArea</th>
<th>EQU</th>
<th>0x1000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>SendFlag_Abs</td>
<td>EQU</td>
<td>0x1000000</td>
</tr>
<tr>
<td>SendData_Abs</td>
<td>EQU</td>
<td>0x1000004</td>
</tr>
<tr>
<td>RcvFlag_Abs</td>
<td>EQU</td>
<td>0x1000008</td>
</tr>
<tr>
<td>RcvData_Abs</td>
<td>EQU</td>
<td>0x100000C</td>
</tr>
<tr>
<td>IOAreaBase</td>
<td>RN</td>
<td>r11</td>
</tr>
<tr>
<td>SendFlag</td>
<td>FIELD</td>
<td>0</td>
</tr>
<tr>
<td>SendData</td>
<td>FIELD</td>
<td>0</td>
</tr>
<tr>
<td>RcvFlag</td>
<td>FIELD</td>
<td>0</td>
</tr>
<tr>
<td>RcvData</td>
<td>FIELD</td>
<td>0</td>
</tr>
</tbody>
</table>

Load the base address with LDR IOAreaBase, =StartOfIOArea. This allows the individual locations to be accessed with statements like LDR R0, RcvFlag and STR R4, SendData.
2.10.7 Using two register-based structures

Sometimes you need to operate on two structures of the same type at the same time. For example, if you want the equivalent of the pseudo-code:

```
newloc.x = oldloc.x + (value in r0);
newloc.y = oldloc.y + (value in r1);
newloc.z = oldloc.z + (value in r2);
```

The base register needs to point alternately to the `oldloc` structure and to the `newloc` one. Repeatedly changing the base register would be inefficient. Instead, use a non-register-based map, and set up two pointers in two different registers as in Example 2-26.

Example 2-26

<table>
<thead>
<tr>
<th>MAP</th>
<th>0</th>
<th>; Non-register based relative map used twice, for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pointx</td>
<td>FIELD 4</td>
<td>; old and new data at oldloc and newloc</td>
</tr>
<tr>
<td>Pointy</td>
<td>FIELD 4</td>
<td>; oldloc and newloc are labels for</td>
</tr>
<tr>
<td>Pointz</td>
<td>FIELD 4</td>
<td>; memory allocated in other sections</td>
</tr>
</tbody>
</table>

; code

```
ADR    r8,oldloc
ADR    r9,newloc
LDR    r3,[r8,Pointx] ; load from oldloc (r8)
ADD    r3,r3,r0
STR    r3,[r9,Pointx] ; store to newloc (r9)
LDR    r3,[r8,Pointy]
ADD    r3,r3,r1
STR    r3,[r9,Pointy]
LDR    r3,[r8,Pointz]
ADD    r3,r3,r2
STR    r3,[r9,Pointz]
```
Using MAP and FIELD directives can help you to produce maintainable data structures. However, this is only true if the order the elements are placed in memory is not important to either the programmer or the program.

You can have problems if you load or store multiple elements of a structure in a single instruction. These problems arise in operations such as:

- loading several single-byte elements into one register
- using a store multiple or load multiple instruction (STM and LDM) to store or load multiple words from or to multiple registers.

These operations require the data elements in the structure to be contiguous in memory, and to be in a specific order. If the order of the elements is changed, or a new element is added, the program is broken in a way that cannot be detected by the assembler.

There are several methods for avoiding problems such as this. Example 2-27 shows a sample structure.

Example 2-27

<table>
<thead>
<tr>
<th>MiscBase</th>
<th>RN</th>
<th>r10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAP</td>
<td>0,MiscBase</td>
</tr>
<tr>
<td>MiscStart</td>
<td>FIELD</td>
<td>0</td>
</tr>
<tr>
<td>Misc_a</td>
<td>FIELD</td>
<td>1</td>
</tr>
<tr>
<td>Misc_b</td>
<td>FIELD</td>
<td>1</td>
</tr>
<tr>
<td>Misc_c</td>
<td>FIELD</td>
<td>1</td>
</tr>
<tr>
<td>Misc_d</td>
<td>FIELD</td>
<td>1</td>
</tr>
<tr>
<td>MiscEndOfChars</td>
<td>FIELD</td>
<td>0</td>
</tr>
<tr>
<td>MiscPadding</td>
<td>FIELD</td>
<td>(:INDEX:MiscEndOfChars) :AND: 3</td>
</tr>
<tr>
<td>Misc_I</td>
<td>FIELD</td>
<td>4</td>
</tr>
<tr>
<td>Misc_J</td>
<td>FIELD</td>
<td>4</td>
</tr>
<tr>
<td>Misc_K</td>
<td>FIELD</td>
<td>4</td>
</tr>
<tr>
<td>Misc_data</td>
<td>FIELD</td>
<td>4+20</td>
</tr>
<tr>
<td>MiscEnd</td>
<td>FIELD</td>
<td>0</td>
</tr>
<tr>
<td>MiscLen</td>
<td>EQU</td>
<td>MiscEnd-MiscStart</td>
</tr>
</tbody>
</table>

There is no problem in using LDM and STM instructions for accessing single data elements that are larger than a word (for example, arrays). An example of this is the 20-word element Misc_data. It could be accessed as follows:

<table>
<thead>
<tr>
<th>ArrayBase</th>
<th>RN</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADR</td>
<td>ArrayBase, MiscBase</td>
</tr>
<tr>
<td></td>
<td>LDMIA</td>
<td>ArrayBase, {R0-R5}</td>
</tr>
</tbody>
</table>
Example 2-27 on page 2-66 loads the first six items in the array Misc_data. The array is a single element and therefore covers contiguous memory locations. No one is likely to want to split it into separate arrays in the future.

However, for loading Misc_I, Misc_J, and Misc_K into registers r0, r1, and r2 the following code works, but might cause problems in the future:

```
ArrayBase RN r9
    ADR ArrayBase, Misc_I
    LDMIA ArrayBase, {r0-r2}
```

Problems arise if the order of Misc_I, Misc_J, and Misc_K is changed, or if a new element Misc_New is added in the middle. Either of these small changes breaks the code.

If these elements are accessed separately elsewhere, you must not amalgamate them into a single array element. In this case, you must amend the code. The first remedy is to comment the structure to prevent changes affecting this section:

```
Misc_I FIELD 4 ; ==} Do not split/reorder
Misc_J FIELD 4 ; } these 3 elements, STM
Misc_K FIELD 4 ; ==} and LDM instructions used.
```

If the code is strongly commented, no deliberate changes are likely to be made that affect the workings of the program. Unfortunately, mistakes can occur. A second method of catching these problems is to add ASSERT directives just before the STM and LDM instructions to check that the labels are consecutive and in the correct order:

```
ArrayBase RN r9
    ; Check that the structure elements
    ; are correctly ordered for LDM
    ASSERT (((Misc_J-Misc_I) = 4) :LAND: ((Misc_K-Misc_J) = 4))
    ADR ArrayBase, Misc_I
    LDMIA ArrayBase, {r0-r2}
```

This ASSERT directive stops assembly at this point if the structure is not in the correct order to be loaded with an LDM. Remember that the element with the lowest address is always loaded from, or stored to, the lowest numbered register.
2.11 Using frame directives

You must use frame directives to describe the way that your code uses the stack if you want to be able to do either of the following:

- debug your application using stack unwinding
- use either flat or call-graph profiling.

Refer to Frame description directives on page 7-34 for details of these directives.

The assembler uses these directives to insert DWARF2 debug frame information into the object file in ELF format that it produces. This information is required by the debuggers for stack unwinding and for profiling. Refer to the Using the Procedure Call Standard chapter in RealView Compilation Tools v2.0 Developer Guide for more information about stack unwinding.

Frame directives do not affect the code produced by armasm.
Chapter 3
Assembler Reference

This chapter provides general reference material on the ARM assemblers. It contains the following sections:

- Command syntax on page 3-2
- Format of source lines on page 3-8
- Predefined register and coprocessor names on page 3-9
- Built-in variables on page 3-10
- Symbols on page 3-12
- Expressions, literals, and operators on page 3-18.

This chapter does not explain how to write ARM assembly language. See Chapter 2 Writing ARM and Thumb Assembly Language for tutorial information.

It also does not describe the instructions, directives, or pseudo-instructions. See the separate chapters for reference information on these.
3.1 Command syntax

This section relates only to armasm. The inline assemblers are part of the C and C++ compilers, and have no command syntax of their own.

The armasm command line is case-insensitive, except in filenames, and where specified.

Invoke the ARM assembler using this command:

```
```

where:

-16 instructs the assembler to interpret instructions as Thumb instructions. This is equivalent to a CODE16 directive at the head of the source file.

-32 instructs the assembler to interpret instructions as ARM instructions. This is the default.

-apcs [none|[/qualifier[/qualifier[...]]]]

specifies whether you are using the ARM-Thumb Procedure Call Standard (ATPCS). It can also specify some attributes of code sections.
See RealView Compilation Tools v2.0 Developer Guide for more information about the ATPCS.

/none specifies that inputfile does not use ATPCS. ATPCS registers are not set up. Qualifiers are not allowed.

--- Note ---
ATPCS qualifiers do not affect the code produced by the assembler. They are an assertion by the programmer that the code in inputfile complies with a particular variant of ATPCS. They cause attributes to be set in the object file produced by the assembler. The linker uses these attributes to check compatibility of files, and to select appropriate library variants.

Values for qualifier are:

/interwork specifies that the code in inputfile is suitable for ARM/Thumb interworking. See RealView Compilation Tools v2.0 Developer Guide for information on interworking.
/nointerwork specifies that the code in inputfile is not suitable for ARM/Thumb interworking. This is the default.

/ropi specifies that the content of inputfile is read-only position-independent.

/noropi specifies that the content of inputfile is not read-only position-independent. This is the default.

/pic is a synonym for /ropi.

/nopic is a synonym for /noropi.

/rwpi specifies that the content of inputfile is read-write position-independent.

/norwpi specifies that the content of inputfile is not read-write position-independent. This is the default.

/pid is a synonym for /rwpi.

/nopid is a synonym for /norwpi.

/swstackcheck specifies that the code in inputfile carries out software stack-limit checking.

/noswstackcheck specifies that the code in inputfile does not carry out software stack-limit checking. This is the default.

/swstna specifies that the code in inputfile is compatible both with code which carries out stack-limit checking, and with code that does not carry out stack-limit checking.

-bigend instructs the assembler to assemble code suitable for a big-endian ARM. The default is -littleend.

-littleend instructs the assembler to assemble code suitable for a little-endian ARM.

-checkreglist instructs the assembler to check RLIST, LDML, and STM register lists to ensure that all registers are provided in increasing register number order. A warning is given if registers are not listed in order.

-cpu cpu sets the target CPU. Some instructions produce either errors or warnings if assembled for the wrong target CPU (see also the -unsafe assembler option). Valid values for cpu are architecture names such as 3, 4T, or 5T, or part numbers such as ARM7TDMI®. See ARM Architecture Reference Manual for information about the architectures. The default is ARM7TDMI.
- depend dependfile

 instructs the assembler to save source file dependency lists to dependfile. These are suitable for use with make utilities.

- m

 instructs the assembler to write source file dependency lists to stdout.

- md

 instructs the assembler to write source file dependency lists to inputfile.d.

- errors errorfile

 instructs the assembler to output error messages to errorfile.

- fpu name

 this option selects the target floating-point unit (FPU) architecture. If you specify this option it overrides any implicit FPU set by the -cpu option. Floating-point instructions produce either errors or warnings if assembled for the wrong target FPU.

 The assembler sets a build attribute corresponding to name in the object file. The linker determines compatibility between object files, and selection of libraries, accordingly.

Valid options are:

 none Selects no floating-point option. This makes your assembled object file compatible with any other object file.

 vfp This is a synonym for -fpu vfpv1.

 vfpv1 Selects hardware vector floating-point unit conforming to architecture VFPv1.

 vfpv2 Selects hardware vector floating-point unit conforming to architecture VFPv2.

 fpa Selects hardware Floating Point Accelerator.

 softfpa Selects software floating-point library with mixed-endian doubles.

 softfp Selects software floating-point library (FPLib) with pure-endian doubles. This is the default if no -fpu option is specified.

 softvfp+vfp

 Selects hardware Vector Floating Point unit.

 To armasm, this is identical to -fpu vfpv1. See the C and C++ Compilers chapter in RealView Compilation Tools v2.0 Compiler and Libraries Guide for details of the effect on software library selection at link time.
softvfp+vfpv2

Selects hardware Vector Floating Point unit.

To armasm, this is identical to -fpu vfpv2. See the C and C++ Compilers chapter in RealView Compilation Tools v2.0 Compiler and Libraries Guide for details of the effect on software library selection at link time.

-g

instructs the assembler to generate DWARF2 debug tables. For backwards compatibility, the following command line option is permitted, but not required:

-dwarf2

-help

instructs the assembler to display a summary of the assembler command-line options.

-i dir [,dir]...

adds directories to the source file search path so that arguments to GET, INCLUDE, or INCBIN directives do not need to be fully qualified (see GET or INCLUDE on page 7-64).

-keep

instructs the assembler to keep local labels in the symbol table of the object file, for use by the debugger (see KEEP on page 7-67).

-list [listingfile] [options]

instructs the assembler to output a detailed listing of the assembly language produced by the assembler to listingfile. If - is given as listingfile, listing is sent to stdout. If no listingfile is given, listing is sent to inputfile.lst.

Use the following command-line options to control the behavior of -list:

-noterse

turns the terse flag off. When this option is on, lines skipped due to conditional assembly do not appear in the listing. If the terse option is off, these lines do appear in the listing. The default is on.

-width

sets the listing page width. The default is 79 characters.

-length

sets the listing page length. Length zero means an unpaged listing. The default is 66 lines.

-xref

instructs the assembler to list cross-referencing information on symbols, including where they were defined and where they were used, both inside and outside macros. The default is off.

-maxcache n

sets the maximum source cache size to n. The default is 8MB.
-memaccess attributes

Specifies memory access attributes of the target memory system. The default is to allow aligned loads and saves of bytes, halfwords and words. attributes modify the default. They can be any one of the following:

+L41 Allow unaligned LDRs.
-L22 Disallow halfword loads.
-S22 Disallow halfword stores.
-L22-S22 Disallow halfword loads and stores.

-nocache turns off source caching. By default the assembler caches source files on the first pass and reads them from memory on the second pass.

-noesc instructs the assembler to ignore C-style escaped special characters, such as \n and \t.

-noregs instructs the assembler not to predefine register names. See Predefined register and coprocessor names on page 3-9 for a list of predefined register names.

-nowarn turns off warning messages.

-o filename names the output object file. If this option is not specified, the assembler uses the second command-line argument that is not a valid command-line option as the name of the output file. If there is no such argument, the assembler creates an object filename of the form inputfilename.o.

-predefine "directive"

instructs the assembler to pre-execute one of the SET directives. You must enclose directive in quotes. See SETA, SETL, and SETS on page 7-7. The assembler executes a corresponding GBLL, GBLS, or GBLA directive to define the variable before setting its value. The variable name is case-sensitive.

Note

The command line interface of your system might require you to enter special character combinations, such as ", to include strings in directive. Alternatively, you can use -via file to include a -predefine argument. The command line interface does not alter arguments from -via files.
This option instructs the assembler to fault LDM and STM instructions if the maximum number of registers transferred exceeds:

- five, for all STM, and for LDMs that do not load the PC
- four, for LDMs that load the PC.

Avoiding large multiple register transfers can reduce interrupt latency on ARM systems that:

- do not have a cache or a write buffer (for example, a cacheless ARM7TDMI)
- use zero wait-state, 32-bit memory.

Note

Avoiding large multiple register transfers increases code size and decreases performance slightly.

Avoiding large multiple register transfers has no significant benefit for cached systems or processors with a write buffer.

Avoiding large multiple register transfers also has no benefit for systems without zero wait-state memory, or for systems with slow peripheral devices. Interrupt latency in such systems is determined by the number of cycles required for the slowest memory or peripheral access. This is typically much greater than the latency introduced by multiple register transfers.

-unsafe allows assembly of a file containing instructions that are not available on the specified architecture and processor. It changes corresponding error messages to warning messages. It also suppresses warnings about operator precedence (see *Binary operators* on page 3-28).

-via file instructs the assembler to open file and read in command-line arguments to the assembler. For more information see the *Via File Syntax* appendix in *RealView Compilation Tools v2.0 Compiler and Libraries Guide*.

inputfile specifies the input file for the assembler. Input files must be ARM or Thumb assembly language source files.
3.2 Format of source lines

The general form of source lines in an ARM assembly language module is:

{symbol} {instruction|directive|pseudo-instruction} {;comment}

All three sections of the source line are optional.

Instructions cannot start in the first column. They must be preceded by white space even if there is no preceding symbol.

You can write directives in all upper case, as in this manual. Alternatively, you can write directives in all lower case. You must not write a directive in mixed upper and lower case.

You can use blank lines to make your code more readable.

symbol is usually a label (see Labels on page 3-15). In instructions and pseudo-instructions it is always a label. In some directives it is a symbol for a variable or a constant. The description of the directive makes this clear in each case.

symbol must begin in the first column and cannot contain any whitespace character such as a space or a tab (see Symbol naming rules on page 3-12).
3.3 Predefined register and coprocessor names

All register and coprocessor names are case-sensitive.

3.3.1 Predeclared register names

The following register names are predeclared:
- r0-r15 and R0-R15
- a1-a4 (argument, result, or scratch registers, synonyms for r0 to r3)
- v1-v8 (variable registers, r4 to r11)
- sb and SB (static base, r9)
- s1 and SL (stack limit, r10)
- fp and FP (frame pointer, r11)
- ip and IP (intra-procedure-call scratch register, r12)
- sp and SP (stack pointer, r13)
- lr and LR (link register, r14)
- pc and PC (program counter, r15).

3.3.2 Predeclared program status register names

The following program status register names are predeclared:
- cpsr and CPSR (current program status register)
- spsr and SPSR (saved program status register).

3.3.3 Predeclared floating-point register names

The following floating-point register names are predeclared:
- f0-f7 and F0-F7 (FPA registers)
- s0-s31 and S0-S31 (VFP single-precision registers)
- d0-d15 and D0-D15 (VFP double-precision registers).

3.3.4 Predeclared coprocessor names

The following coprocessor names and coprocessor register names are predeclared:
- p0-p15 (coprocessors 0-15)
- c0-c15 (coprocessor registers 0-15).
3.4 Built-in variables

Table 3-1 lists the built-in variables defined by the ARM assembler.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PC) or .</td>
<td>Address of current instruction.</td>
</tr>
<tr>
<td>{VAR} or @</td>
<td>Current value of the storage area location counter.</td>
</tr>
<tr>
<td>(TRUE)</td>
<td>Logical constant true.</td>
</tr>
<tr>
<td>{FALSE}</td>
<td>Logical constant false.</td>
</tr>
<tr>
<td>{OPT}</td>
<td>Value of the currently-set listing option. The OPT directive can be used to save the current listing option, force a change in it, or restore its original value.</td>
</tr>
<tr>
<td>{CONFIG}</td>
<td>Has the value 32 if the assembler is assembling ARM code, or 16 if it is assembling Thumb code.</td>
</tr>
<tr>
<td>{ENDIAN}</td>
<td>Has the value big if the assembler is in big-endian mode, or little if it is in little-endian mode.</td>
</tr>
<tr>
<td>{CODESIZE}</td>
<td>Is a synonym for {CONFIG}.</td>
</tr>
<tr>
<td>{CPU}</td>
<td>Holds the name of the selected cpu. The default is ARM7TDMI. If an architecture was specified in the command line -cpu option, (CPU) holds the value "Generic ARM".</td>
</tr>
<tr>
<td>{FPU}</td>
<td>Holds the name of the selected fpu. The default is SoftVFP.</td>
</tr>
<tr>
<td>{ARCHITECTURE}</td>
<td>Holds the name of the selected ARM architecture.</td>
</tr>
<tr>
<td>{PCSTOREOFFSET}</td>
<td>Is the offset between the address of the STR pc, [...] or STM Rb, ..., pc instruction and the value of pc stored out. This varies depending on the CPU or architecture specified.</td>
</tr>
<tr>
<td>{ARMASM_VERSION}</td>
<td>Holds an integer that increases with each version. See also Determining the armasm version at assembly time on page 3-11.</td>
</tr>
<tr>
<td></td>
<td>ads$version</td>
</tr>
<tr>
<td>{INTER}</td>
<td>Has the value True if /inter is set. The default is False.</td>
</tr>
<tr>
<td>{ROPI}</td>
<td>Has the value True if /ropi is set. The default is False.</td>
</tr>
<tr>
<td>{RWPI}</td>
<td>Has the value True if /rwpi is set. The default is False.</td>
</tr>
<tr>
<td>{SWST}</td>
<td>Has the value True if /swst is set. The default is False.</td>
</tr>
<tr>
<td>{NOSWST}</td>
<td>Has the value True if /noswst is set. The default is False.</td>
</tr>
<tr>
<td>{AREANAME}</td>
<td>Holds the name of the current AREA.</td>
</tr>
</tbody>
</table>
Built-in variables cannot be set using the SETA, SETL, or SETS directives. They can be used in expressions or conditions, for example:

IF {ARCHITECTURE} = "4T"

|ads$version| must be all lower case. The other built-in variables can be upper-case, lower-case, or mixed.

3.4.1 Determining the armasm version at assembly time

You can use the built-in variable |ARMASM$VERSION| to distinguish between versions of armasm. However, previous (SDT) versions of armasm did not have this built-in variable.

If you have to build both RVCT and SDT versions of your code, you can test for the built-in variable |ads$version|. Use code similar to the following:

```assembly
IF :DEF: |ads$version|
    ; code for RVCT or ADS
ELSE
    ; code for SDT
ENDIF
```

<table>
<thead>
<tr>
<th>{COMMANDLINE}</th>
<th>Holds the contents of the command line.</th>
</tr>
</thead>
<tbody>
<tr>
<td>{LINENUM}</td>
<td>Holds an integer indicating the line number in the current source file.</td>
</tr>
<tr>
<td>{INPUTFILE}</td>
<td>Holds the name of the current source file.</td>
</tr>
</tbody>
</table>
3.5 Symbols

You can use symbols to represent variables, addresses, and numeric constants. Symbols representing addresses are also called *labels*. See:

- **Variables** on page 3-13
- **Numeric constants** on page 3-13
- **Labels** on page 3-15
- **Local labels** on page 3-16.

3.5.1 Symbol naming rules

The following general rules apply to symbol names:

- You can use uppercase letters, lowercase letters, numeric characters, or the underscore character in symbol names.

- Do not use numeric characters for the first character of symbol names, except in local labels (see *Local labels* on page 3-16).

- Symbol names are case-sensitive.

- All characters in the symbol name are significant.

- Symbol names must be unique within their scope.

- Symbols must not use built-in variable names or predefined symbol names (see *Predefined register and coprocessor names* on page 3-9 and *Built-in variables* on page 3-10).

- Symbols must not use the same name as instruction mnemonics or directives. If you use the same name as an instruction mnemonic or directive, use double bars to delimit the symbol name. For example:

 \[
 \texttt{||ASSERT||}
 \]

 The bars are not part of the symbol.

If you need to use a wider range of characters in symbols, for example, when working with compilers, use single bars to delimit the symbol name. For example:

\[
\texttt{|.text|}
\]

The bars are not part of the symbol. You cannot use bars, semicolons, or newlines within the bars.
3.5.2 Variables

The value of a variable can be changed as assembly proceeds. Variables are of three types:

- numeric
- logical
- string.

The type of a variable cannot be changed.

The range of possible values of a numeric variable is the same as the range of possible values of a numeric constant or numeric expression (see Numeric constants and Numeric expressions on page 3-20).

The possible values of a logical variable are \{TRUE\} or \{FALSE\} (see Logical expressions on page 3-23).

The range of possible values of a string variable is the same as the range of values of a string expression (see String expressions on page 3-19).

Use the GBLA, GBLL, GBLS, LCLA, LCLL, and LCLS directives to declare symbols representing variables, and assign values to them using the SETA, SETL, and SETS directives. See:

- GBLA, GBLL, and GBLS on page 7-4
- LCLA, LCLL, and LCLS on page 7-6
- SETA, SETL, and SETS on page 7-7.

3.5.3 Numeric constants

Numeric constants are 32-bit integers. You can set them using unsigned numbers in the range 0 to \(2^{32} - 1\), or signed numbers in the range \(-2^{31}\) to \(2^{31} - 1\). However, the assembler makes no distinction between \(-n\) and \(2^{32} - n\). Relational operators such as \(>=\) use the unsigned interpretation. This means that \(0 > -1\) is \{FALSE\}.

Use the EQU directive to define constants (see EQU on page 7-60). You cannot change the value of a numeric constant after you define it.

See also Numeric expressions on page 3-20 and Numeric literals on page 3-21.
3.5.4 Assembly time substitution of variables

You can use a string variable for a whole line of assembly language, or any part of a line. Use the variable with a $ prefix in the places where the value is to be substituted for the variable. The dollar character instructs the assembler to substitute the string into the source code line before checking the syntax of the line.

Numeric and logical variables can also be substituted. The current value of the variable is converted to a hexadecimal string (or T or F for logical variables) before substitution.

Use a dot to mark the end of the variable name if the following character would be permissible in a symbol name (see Symbol naming rules on page 3-12). You must set the contents of the variable before you can use it.

If you need a $ that you do not want to be substituted, use $$. This is converted to a single $.

You can include a variable with a $ prefix in a string. Substitution occurs in the same way as anywhere else.

Substitution does not occur within vertical bars, except that vertical bars within double quotes do not affect substitution.

Examples

; straightforward substitution
GBLS add4ff

; add4ff SETS "ADD r4,r4,#0xFF" ; set up add4ff
$add4ff.00 ; invoke add4ff
; this produces
ADD r4,r4,#0xFF00

; elaborate substitution
GBLS s1
GBLS s2
GBLS fixup
GBLA count
;
count SETA 14
s1 SETS "abcount" ; s1 now has value a$b000000E
s2 SETS "abc"
fixup SETS "|xy$s2.z|" ; fixup now has value |xyabcz|
|C$code| MOV r4,#16 ; but the label here is C$code
3.5.5 Labels

Labels are symbols representing the addresses in memory of instructions or data. They can be program-relative, register-relative, or absolute.

Program-relative labels

These represent the program counter, plus or minus a numeric constant. Use them as targets for branch instructions, or to access small items of data embedded in code sections. You can define program-relative labels using a label on an instruction or on one of the data definition directives. See:

- _DCB_ on page 7-18
- _DCD and DCDU_ on page 7-19
- _DCFD and DCFDU_ on page 7-21
- _DCFS and DCFSU_ on page 7-22
- _DCI_ on page 7-23
- _DCQ and DCQU_ on page 7-24
- _DCW and DCWU_ on page 7-25.

Register-relative labels

These represent a named register plus a numeric constant. They are most often used to access data in data sections. You can define them with a storage map. You can use the _EQU_ directive to define additional register-relative labels, based on labels defined in storage maps. See:

- _MAP_ on page 7-15
- _SPACE_ on page 7-17
- _DCDO_ on page 7-20
- _EQU_ on page 7-60.

Absolute addresses

These are numeric constants. They are integers in the range 0 to $2^{32} - 1$. They address the memory directly.
3.5.6 Local labels

A local label is a number in the range 0-99, optionally followed by a name. The same number can be used for more than one local label in an ELF section.

Local labels are typically used for loops and conditional code within a routine, or for small subroutines that are only used locally. They are particularly useful in macros (see MACRO and MEND on page 7-27).

Use the ROUT directive to limit the scope of local labels (see ROUT on page 7-71). A reference to a local label refers to a matching label within the same scope. If there is no matching label within the scope in either direction, the assembler generates an error message and the assembly fails.

You can use the same number for more than one local label even within the same scope. By default, the assembler links a local label reference to:

- the most recent local label of the same number, if there is one within the scope
- the next following local label of the same number, if there is not a preceding one within the scope.

Use the optional parameters to modify this search pattern if required.

Syntax

The syntax of a local label is:

\[n(routname) \]

The syntax of a reference to a local label is:

\[%\{{F|B}\}\{{A|T}\}n(routname) \]

where:

- \(n \) is the number of the local label.
- \(routname \) is the name of the current scope.
- \(\% \) introduces the reference.
- \(F \) instructs the assembler to search forwards only.
- \(B \) instructs the assembler to search backwards only.
- \(A \) instructs the assembler to search all macro levels.
- \(T \) instructs the assembler to look at this macro level only.

If neither \(F \) or \(B \) is specified, the assembler searches backwards first, then forwards.

If neither \(A \) or \(T \) is specified, the assembler searches all macros from the current level to the top level, but does not search lower level macros.
If `routname` is specified in either a label or a reference to a label, the assembler checks it against the name of the nearest preceding `ROUT` directive. If it does not match, the assembler generates an error message and the assembly fails.
3.6 Expressions, literals, and operators

This section contains the following subsections:
- String expressions on page 3-19
- String literals on page 3-19
- Numeric expressions on page 3-20
- Numeric literals on page 3-21
- Floating-point literals on page 3-22
- Register-relative and program-relative expressions on page 3-23
- Logical expressions on page 3-23
- Logical literals on page 3-23
- Operator precedence on page 3-24
- Unary operators on page 3-26
- Binary operators on page 3-28.
3.6.1 String expressions

String expressions consist of combinations of string literals, string variables, string manipulation operators, and parentheses. See:

- String literals
- Variables on page 3-13
- Unary operators on page 3-26
- String manipulation operators on page 3-28
- SETA, SETL, and SETS on page 7-7.

Characters that cannot be placed in string literals can be placed in string expressions using the :CHR: unary operator. Any ASCII character from 0 to 255 is allowed.

The value of a string expression cannot exceed 512 characters in length. It can be of zero length.

Example

```assembly
improb SETS "literal":CC:(strvar2:LEFT:4)
; sets the variable improb to the value "literal"
; with the left-most four characters of the
; contents of string variable strvar2 appended
```

3.6.2 String literals

String literals consist of a series of characters contained between double quote characters. The length of a string literal is restricted by the length of the input line (see Format of source lines on page 3-8).

To include a double quote character or a dollar character in a string, use two of the character.

C string escape sequences are also allowed, unless -noesc is specified (see Command syntax on page 3-2).

Examples

```assembly
abc SETS "this string contains only one " double quote"
def SETS "this string contains only one $$ dollar symbol"
```
3.6.3 Numeric expressions

Numeric expressions consist of combinations of numeric constants, numeric variables, ordinary numeric literals, binary operators, and parentheses. See:

- Numeric constants on page 3-13
- Variables on page 3-13
- Numeric literals on page 3-21
- Binary operators on page 3-28
- SETA, SETL, and SETS on page 7-7.

Numeric expressions can contain register-relative or program-relative expressions if the overall expression evaluates to a value that does not include a register or the program counter.

Numeric expressions evaluate to 32-bit integers. You can interpret them as unsigned numbers in the range 0 to $2^{32} - 1$, or signed numbers in the range -2^{31} to $2^{31} - 1$. However, the assembler makes no distinction between $-n$ and $2^{32} - n$. Relational operators such as \geq use the unsigned interpretation. This means that $0 > -1$ is FALSE.

Example

```
a   SETA 256*256 ; 256*256 is a numeric expression
MOV  r1,#(a*22) ; (a*22) is a numeric expression
```
3.6.4 Numeric literals

Numeric literals can take any of the following forms:

- decimal-digits
- 0xhexadecimal-digits
- &hexadecimal-digits
- n_base-n-digits
- 'character'

where

- decimal-digits is a sequence of characters using only the digits 0 to 9.
- hexadecimal-digits is a sequence of characters using only the digits 0 to 9 and the letters A to F or a to f.
- n_ is a single digit between 2 and 9 inclusive, followed by an underscore character.
- base-n-digits is a sequence of characters using only the digits 0 to \((n - 1) \)
- character is any single character except a single quote. Use \(\text{'} \) if you require a single quote. In this case the value of the numeric literal is the numeric code of the character.

You must not use any other characters. The sequence of characters must evaluate to an integer in the range 0 to \(2^{32} - 1 \) (except in DCQ and DCQU directives, where the range is 0 to \(2^{64} - 1 \)).

Examples

<table>
<thead>
<tr>
<th></th>
<th>SETA</th>
<th>34906</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>addr</td>
<td>DCD</td>
<td>0xA10E</td>
</tr>
<tr>
<td>LDR</td>
<td>r4,=&1000000F</td>
<td></td>
</tr>
<tr>
<td>DCD</td>
<td>2_11001010</td>
<td></td>
</tr>
<tr>
<td>c3</td>
<td>SETA</td>
<td>8_74007</td>
</tr>
<tr>
<td>DCQ</td>
<td>0x0123456789abcdef</td>
<td></td>
</tr>
<tr>
<td>LDR</td>
<td>r1,='A' ; pseudo-instruction loading 65 into r1</td>
<td></td>
</tr>
<tr>
<td>ADD</td>
<td>r3,r2,#"'" ; add 39 to contents of r2, result to r3</td>
<td></td>
</tr>
</tbody>
</table>
3.6.5 Floating-point literals

Floating-point literals can take any of the following forms:

{-}digitsE{-}digits
{-}{digits}.digits{E{-}digits}
0x{hexdigits}
{&hexdigits}

where

digits are sequences of characters using only the digits 0 to 9. You can write E in uppercase or lowercase. These forms correspond to normal floating-point notation.

hexdigits are sequences of characters using only the digits 0 to 9 and the letters A to F or a to f. These forms correspond to the internal representation of the numbers in the computer. Use these forms to enter infinities and NaNs, or if you want to be sure of the exact bit patterns you are using.

The range for single-precision floating point values is:
• maximum 3.40282347e+38
• minimum 1.17549435e–38.

The range for double-precision floating point values is:
• maximum 1.79769313486231571e+308
• minimum 2.22507385850720138e–308.

Examples

DCFD 1E308,-4E-100
DCFS 1.0
DCFD 3.725e15
LDFS 0x7FC00000 ; Quiet NaN
LDFD &FFFF000000000000 ; Minus infinity
3.6.6 Register-relative and program-relative expressions

A register-relative expression evaluates to a named register plus or minus a numeric constant (see MAP on page 7-15).

A program-relative expression evaluates to the program counter (pc), plus or minus a numeric constant. It is normally a label combined with a numeric expression.

Example

```assembly
LDR  r4,=data+4*n  ; n is an assembly-time variable
     ; code
MOV  pc,lr
data  DCD   value0
     ; n-1 DCD directives
     DCD   valuen        ; data+4*n points here
     ; more DCD directives
```

3.6.7 Logical expressions

Logical expressions consist of combinations of logical literals ({TRUE} or {FALSE}), logical variables, Boolean operators, relations, and parentheses (see Boolean operators on page 3-31).

Relations consist of combinations of variables, literals, constants, or expressions with appropriate relational operators (see Relational operators on page 3-30).

3.6.8 Logical literals

The logical literals are:
- {TRUE}
- {FALSE}.
3.6.9 Operator precedence

The assembler includes an extensive set of operators for use in expressions. Many of the operators resemble their counterparts in high-level languages such as C (see Unary operators on page 3-26 and Binary operators on page 3-28).

There is a strict order of precedence in their evaluation:
1. Expressions in parentheses are evaluated first.
2. Operators are applied in precedence order.
3. Adjacent unary operators are evaluated from right to left.
4. Binary operators of equal precedence are evaluated from left to right.

___ Note ___________

The order of precedence is not exactly the same as in C.

For example, \((1 + 2 :\text{SHR}; 3)\) evaluates as \((1 + (2 :\text{SHR}: 3))\) = 1 in `armasm`. The equivalent expression in C evaluates as \(((1 + 2) >> 3)\) = 0.

You are recommended to use brackets to make the precedence explicit.

Table 3-2 shows the order of precedence of operators in `armasm`, and a comparison with the order in C.

If your code contains an expression which would parse differently in C, `armasm` normally gives a warning:

A1466W: Operator precedence means that expression would evaluate differently in C

The warning is not given if you use the `-unsafe` command line option.

<table>
<thead>
<tr>
<th>armasm precedence</th>
<th>equivalent C operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>unary operators</td>
<td>unary operators</td>
</tr>
<tr>
<td>* / :\text{MOD}:</td>
<td>* / %</td>
</tr>
<tr>
<td>string manipulation</td>
<td>n/a</td>
</tr>
<tr>
<td>:\text{SHL}: :\text{SHR}: :\text{ROR}: :\text{ROL}:</td>
<td>\text{<<} >></td>
</tr>
</tbody>
</table>
The highest precedence operators are at the top of the list.

The highest precedence operators are evaluated first.

Operators of equal precedence are evaluated from left to right.
3.6.10 Unary operators

Unary operators have the highest precedence and are evaluated first. A unary operator precedes its operand. Adjacent operators are evaluated from right to left.

Table 3-4 lists the unary operators.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Usage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>?A</td>
<td>Number of bytes of executable code generated by line defining symbol A.</td>
</tr>
<tr>
<td>BASE</td>
<td>:BASE:A</td>
<td>If A is a pc-relative or register-relative expression, BASE returns the number of its register component. BASE is most useful in macros.</td>
</tr>
<tr>
<td>INDEX</td>
<td>:INDEX:A</td>
<td>If A is a register-relative expression, INDEX returns the offset from that base register. INDEX is most useful in macros.</td>
</tr>
<tr>
<td>+ and -</td>
<td>+A</td>
<td>Unary plus. Unary minus. + and – can act on numeric and program-relative expressions.</td>
</tr>
<tr>
<td>LEN</td>
<td>:LEN:A</td>
<td>Length of string A.</td>
</tr>
<tr>
<td>CHR</td>
<td>:CHR:A</td>
<td>One-character string, ASCII code A.</td>
</tr>
<tr>
<td>STR</td>
<td>:STR:A</td>
<td>Hexadecimal string of A.</td>
</tr>
<tr>
<td>NOT</td>
<td>:NOT:A</td>
<td>Bitwise complement of A.</td>
</tr>
<tr>
<td>LNOT</td>
<td>:LNOT:A</td>
<td>Logical complement of A.</td>
</tr>
<tr>
<td>DEF</td>
<td>:DEF:A</td>
<td>{TRUE} if A is defined, otherwise {FALSE}.</td>
</tr>
<tr>
<td>SB_OFFSET_11_0</td>
<td>:SB_OFFSET_11_0: label</td>
<td>Least-significant 12 bytes of (label – sb).</td>
</tr>
</tbody>
</table>
Example of use of :SB_OFFSET_19_12: and :SB_OFFSET_11_0

MyIndex EQU 0
 AREA area1, CODE
 LDR IP, [SB, #0]
 LDR IP, [IP, #MyIndex]
 ADD IP, IP, # :SB_OFFSET_19_12: label
 LDR PC, [IP, # :SB_OFFSET_11_0: label]

 AREA area2, DATA
 label
 IMPORT FunctionAddress
 DCD FunctionAddress
 END

These operators can only be used in ADD and LDR instructions. They can only be used in the way shown.
3.6.11 Binary operators

Binary operators are written between the pair of subexpressions they operate on.

Binary operators have lower precedence than unary operators. Binary operators appear in this section in order of precedence.

--- Note ---
The order of precedence is not the same as in C, see Operator precedence on page 3-24.

Multiplicative operators

Multiplicative operators have the highest precedence of all binary operators. They act only on numeric expressions.

Table 3-5 shows the multiplicative operators.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Usage</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>A*B</td>
<td>Multiply</td>
</tr>
<tr>
<td>/</td>
<td>A/B</td>
<td>Divide</td>
</tr>
<tr>
<td>MOD</td>
<td>A:MOD:B</td>
<td>A modulo B</td>
</tr>
</tbody>
</table>

String manipulation operators

Table 3-6 shows the string manipulation operators.

In the slicing operators LEFT and RIGHT:
- A must be a string
- B must be a numeric expression.

In CC, A and B must both be strings.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Usage</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFT</td>
<td>A:LEFT:B</td>
<td>The left-most B characters of A</td>
</tr>
<tr>
<td>RIGHT</td>
<td>A:RIGHT:B</td>
<td>The right-most B characters of A</td>
</tr>
<tr>
<td>CC</td>
<td>A:CC:B</td>
<td>B concatenated onto the end of A</td>
</tr>
</tbody>
</table>
Shift operators

Shift operators act on numeric expressions, shifting or rotating the first operand by the amount specified by the second.

Table 3-7 shows the shift operators.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Usage</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROL</td>
<td>A:ROL:B</td>
<td>Rotate A left by B bits</td>
</tr>
<tr>
<td>ROR</td>
<td>A:ROR:B</td>
<td>Rotate A right by B bits</td>
</tr>
<tr>
<td>SHL</td>
<td>A:SHL:B</td>
<td>Shift A left by B bits</td>
</tr>
<tr>
<td>SHR</td>
<td>A:SHR:B</td>
<td>Shift A right by B bits</td>
</tr>
</tbody>
</table>

Note

SHR is a logical shift and does not propagate the sign bit.

Addition, subtraction, and logical operators

Addition and subtraction operators act on numeric expressions.

Logical operators act on numeric expressions. The operation is performed *bitwise*, that is, independently on each bit of the operands to produce the result.

Table 3-8 shows addition, subtraction, and logical operators.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Usage</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>A+B</td>
<td>Add A to B</td>
</tr>
<tr>
<td>-</td>
<td>A-B</td>
<td>Subtract B from A</td>
</tr>
<tr>
<td>AND</td>
<td>A:AND:B</td>
<td>Bitwise AND of A and B</td>
</tr>
<tr>
<td>OR</td>
<td>A:OR:B</td>
<td>Bitwise OR of A and B</td>
</tr>
<tr>
<td>EOR</td>
<td>A:EOR:B</td>
<td>Bitwise Exclusive OR of A and B</td>
</tr>
</tbody>
</table>
Relational operators

Table 3-9 shows the relational operators. These act on two operands of the same type to produce a logical value.

The operands can be one of:
- numeric
- program-relative
- register-relative
- strings.

Strings are sorted using ASCII ordering. String A is less than string B if it is a leading substring of string B, or if the left-most character in which the two strings differ is less in string A than in string B.

Arithmetic values are unsigned, so the value of 0>-1 is {FALSE}.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Usage</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>A=B</td>
<td>A equal to B</td>
</tr>
<tr>
<td>></td>
<td>A>B</td>
<td>A greater than B</td>
</tr>
<tr>
<td>>=</td>
<td>A>=B</td>
<td>A greater than or equal to B</td>
</tr>
<tr>
<td><</td>
<td>A<B</td>
<td>A less than B</td>
</tr>
<tr>
<td><=</td>
<td>A<=B</td>
<td>A less than or equal to B</td>
</tr>
<tr>
<td>/=</td>
<td>A/=B</td>
<td>A not equal to B</td>
</tr>
<tr>
<td><></td>
<td>A<>B</td>
<td>A not equal to B</td>
</tr>
</tbody>
</table>
Boolean operators

These are the operators with the lowest precedence. They perform the standard logical operations on their operands.

In all three cases both A and B must be expressions that evaluate to either {TRUE} or {FALSE}.

Table 3-10 shows the Boolean operators.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Usage</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND</td>
<td>A:LAND:B</td>
<td>Logical AND of A and B</td>
</tr>
<tr>
<td>LOR</td>
<td>A:LOR:B</td>
<td>Logical OR of A and B</td>
</tr>
<tr>
<td>LEOR</td>
<td>A:LEOR:B</td>
<td>Logical Exclusive OR of A and B</td>
</tr>
</tbody>
</table>
Chapter 4
ARM Instruction Reference

This chapter describes the ARM instructions that are supported by the ARM assembler. It contains the following sections:

- Conditional execution on page 4-6
- ARM Memory access instructions on page 4-8
- ARM general data processing instructions on page 4-32
- ARM multiply instructions on page 4-51
- ARM saturating instructions on page 4-77
- ARM parallel instructions on page 4-82
- ARM packing and unpacking instructions on page 4-90
- ARM branch instructions on page 4-97
- Coprocessor instructions on page 4-103
- Miscellaneous ARM instructions on page 4-113
- ARM pseudo-instructions on page 4-122.

See to Table 4-1 on page 4-2 to locate individual instructions and pseudo-instructions.
Table 4-1 Location of ARM instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Brief description</th>
<th>Page</th>
<th>Architecturea</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC, ADD</td>
<td>Add with carry, Add</td>
<td>page 4-36</td>
<td>All</td>
</tr>
<tr>
<td>ADR pseudo-instruction</td>
<td>Load program-relative or register-relative address (short range)</td>
<td>page 4-123</td>
<td>All</td>
</tr>
<tr>
<td>ADRL pseudo-instruction</td>
<td>Load program-relative or register-relative address into a register (medium range)</td>
<td>page 4-124</td>
<td>All</td>
</tr>
<tr>
<td>AND</td>
<td>Logical AND</td>
<td>page 4-39</td>
<td>All</td>
</tr>
<tr>
<td>B</td>
<td>Branch</td>
<td>page 4-98</td>
<td>All</td>
</tr>
<tr>
<td>BIC</td>
<td>Bit clear</td>
<td>page 4-39</td>
<td>All</td>
</tr>
<tr>
<td>BKPT</td>
<td>Breakpoint</td>
<td>page 4-120</td>
<td>5</td>
</tr>
<tr>
<td>BL</td>
<td>Branch with link</td>
<td>page 4-98</td>
<td>All</td>
</tr>
<tr>
<td>BLX</td>
<td>Branch, link and exchange</td>
<td>page 4-100</td>
<td>STb</td>
</tr>
<tr>
<td>BX</td>
<td>Branch and exchange</td>
<td>page 4-99</td>
<td>4Tb</td>
</tr>
<tr>
<td>CDP, CDP2</td>
<td>Coprocessor data operation</td>
<td>page 4-104</td>
<td>2, 5</td>
</tr>
<tr>
<td>CLZ</td>
<td>Count leading zeroes</td>
<td>page 4-47</td>
<td>5</td>
</tr>
<tr>
<td>CMN, CMP</td>
<td>Compare negative, Compare</td>
<td>page 4-43</td>
<td>All</td>
</tr>
<tr>
<td>CPS</td>
<td>Change processor state</td>
<td>page 4-117</td>
<td>6</td>
</tr>
<tr>
<td>CPY</td>
<td>Copy</td>
<td>page 4-41</td>
<td>6</td>
</tr>
<tr>
<td>EOR</td>
<td>Exclusive OR</td>
<td>page 4-39</td>
<td>All</td>
</tr>
<tr>
<td>LDC, LDC2</td>
<td>Load coprocessor</td>
<td>page 4-109</td>
<td>2, 5</td>
</tr>
<tr>
<td>LDM</td>
<td>Load multiple registers</td>
<td>page 4-20</td>
<td>All</td>
</tr>
<tr>
<td>LDR</td>
<td>Load register</td>
<td>page 4-8</td>
<td>All</td>
</tr>
<tr>
<td>LDRR pseudo-instruction</td>
<td>Load register pseudo-instruction</td>
<td>page 4-122</td>
<td>All</td>
</tr>
<tr>
<td>LDREX</td>
<td>Load register exclusive</td>
<td>page 4-28</td>
<td>6</td>
</tr>
<tr>
<td>MAR</td>
<td>Move from registers to 40-bit accumulator</td>
<td>page 4-121</td>
<td>XScalec</td>
</tr>
<tr>
<td>MCR, MCR2, MCRR, MCRR2</td>
<td>Move from register(s) to coprocessor</td>
<td>page 4-105</td>
<td>2, 5, SE4, 6</td>
</tr>
<tr>
<td>MIA, MIAPH, MIAXy</td>
<td>Multiply with internal 40-bit accumulate</td>
<td>page 4-75</td>
<td>XScale</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Brief description</td>
<td>Page</td>
<td>Architecturea</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>MLA</td>
<td>Multiply accumulate</td>
<td>4-53</td>
<td>2</td>
</tr>
<tr>
<td>MOV</td>
<td>Move</td>
<td>4-41</td>
<td>All</td>
</tr>
<tr>
<td>MRA</td>
<td>Move from 40-bit accumulator to registers</td>
<td>4-121</td>
<td>XScale</td>
</tr>
<tr>
<td>MRC, MRC2</td>
<td>Move from coprocessor to register</td>
<td>4-107</td>
<td>2, 5</td>
</tr>
<tr>
<td>MRR, MRR2</td>
<td>Move from coprocessor to 2 registers</td>
<td>4-108</td>
<td>5EP, 6</td>
</tr>
<tr>
<td>MRS</td>
<td>Move from PSR to register</td>
<td>4-115</td>
<td>3</td>
</tr>
<tr>
<td>MSR</td>
<td>Move from register to PSR</td>
<td>4-116</td>
<td>3</td>
</tr>
<tr>
<td>MUL</td>
<td>Multiply</td>
<td>4-53</td>
<td>2</td>
</tr>
<tr>
<td>MVN</td>
<td>Move not</td>
<td>4-41</td>
<td>All</td>
</tr>
<tr>
<td>NOP</td>
<td>pseudo-instruction Generates the preferred no-operation code.</td>
<td>4-129</td>
<td>All</td>
</tr>
<tr>
<td>ORR</td>
<td>Logical OR</td>
<td>4-39</td>
<td>All</td>
</tr>
<tr>
<td>PKHBT, PKHTB</td>
<td>Pack halfwords</td>
<td>4-95</td>
<td>6</td>
</tr>
<tr>
<td>PLD</td>
<td>Cache preload</td>
<td>4-22</td>
<td>5EP</td>
</tr>
<tr>
<td>QADD, QDA0, QDSUB, QSUB</td>
<td>Saturating arithmetic</td>
<td>4-78</td>
<td>5EP</td>
</tr>
<tr>
<td>QADD8, QADD16, QADD16SUBX, QSUB8, QSUB16, QSUB16ADDX</td>
<td>Byte-wise and halfword-wise parallel signed saturating arithmetic</td>
<td>4-83</td>
<td>6</td>
</tr>
<tr>
<td>REV, REV16, REVSH</td>
<td>Reverse byte order</td>
<td>4-50</td>
<td>6</td>
</tr>
<tr>
<td>RFE</td>
<td>Return from exception</td>
<td>4-26</td>
<td>6</td>
</tr>
<tr>
<td>RSB, RSC, SBC</td>
<td>Reverse sub, Reverse sub with carry, Sub with carry</td>
<td>4-36</td>
<td>All</td>
</tr>
<tr>
<td>SADD8, SADD16, SADD16SUBX</td>
<td>Byte-wise and halfword-wise parallel signed arithmetic</td>
<td>4-83</td>
<td>6</td>
</tr>
<tr>
<td>SADD8T016, SADD8T032, SADD16T032</td>
<td>Sign extend and add</td>
<td>4-93</td>
<td>6</td>
</tr>
<tr>
<td>SEL</td>
<td>Select bytes according to CPSR GE flags</td>
<td>4-48</td>
<td>6</td>
</tr>
<tr>
<td>SETEND</td>
<td>Set endianness for memory accesses</td>
<td>4-119</td>
<td>6</td>
</tr>
<tr>
<td>SHADD8, SHADD16, SHADD16SUBX, SHSUB8, SHSUB16, SHSUB16ADDX</td>
<td>Byte-wise and halfword-wise parallel signed halving arithmetic</td>
<td>4-83</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 4-1 Location of ARM instructions (continued)

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Brief description</th>
<th>Page</th>
<th>Architecturea</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMLAD</td>
<td>Dual signed multiply-accumulate (32 <= 32 + 16 x 16 + 16 x 16)</td>
<td>page 4-68</td>
<td>6</td>
</tr>
<tr>
<td>SMLAL</td>
<td>Signed multiply-accumulate (64 <= 64 + 32 x 32)</td>
<td>page 4-55</td>
<td>Mf</td>
</tr>
<tr>
<td>SMLALD</td>
<td>Dual signed multiply-accumulate long (64 <= 64 + 16 x 16 + 16 x 16)</td>
<td>page 4-72</td>
<td>6</td>
</tr>
<tr>
<td>SMLALxy</td>
<td>Signed multiply-accumulate (64 <= 64 + 16 x 16)</td>
<td>page 4-63</td>
<td>5ExPe</td>
</tr>
<tr>
<td>SMLAxy</td>
<td>Signed multiply-accumulate (32 <= 32 + 16 x 16)</td>
<td>page 4-61</td>
<td>5ExPe</td>
</tr>
<tr>
<td>SMLaxy</td>
<td>Signed multiply-accumulate (32 <= 32 + 16 x 16)</td>
<td>page 4-58</td>
<td>5ExPe</td>
</tr>
<tr>
<td>SMLSD</td>
<td>Dual signed multiply-subtract-accumulate (32 <= 32 + 16 x 16 – 16 x 16)</td>
<td>page 4-68</td>
<td>6</td>
</tr>
<tr>
<td>SMLSLD</td>
<td>Dual signed multiply-subtract-accumulate long (64 <= 64 + 16 x 16 – 16 x 16)</td>
<td>page 4-72</td>
<td>6</td>
</tr>
<tr>
<td>SMULL</td>
<td>Signed multiply (64 <= 32 x 32)</td>
<td>page 4-55</td>
<td>Mf</td>
</tr>
<tr>
<td>SMULLxy</td>
<td>Signed multiply (32 <= 32 x 16)</td>
<td>page 4-60</td>
<td>5ExPe</td>
</tr>
<tr>
<td>SMULxy</td>
<td>Signed multiply (32 <= 16 x 16)</td>
<td>page 4-57</td>
<td>5ExPe</td>
</tr>
<tr>
<td>SMMOLA</td>
<td>Signed top word multiply-accumulate (32 <= 32 + TopWord(32 x 32))</td>
<td>page 4-70</td>
<td>6</td>
</tr>
<tr>
<td>SMMLS</td>
<td>Signed top word multiply-subtract (32 <= 32 – TopWord(32 x 32))</td>
<td>page 4-70</td>
<td>6</td>
</tr>
<tr>
<td>SMMUL</td>
<td>Signed top word multiply (32 <= TopWord(32 x 32))</td>
<td>page 4-67</td>
<td>6</td>
</tr>
<tr>
<td>SMUAD, SMUSD</td>
<td>Dual signed multiply, and add or subtract products</td>
<td>page 4-65</td>
<td>6</td>
</tr>
<tr>
<td>SRS</td>
<td>Store return state</td>
<td>page 4-24</td>
<td>6</td>
</tr>
<tr>
<td>SSAT</td>
<td>Signed saturate</td>
<td>page 4-80</td>
<td>6</td>
</tr>
<tr>
<td>SSAT16</td>
<td>Signed saturate, parallel halfwords</td>
<td>page 4-88</td>
<td>6</td>
</tr>
<tr>
<td>SSUB8, SSUB16, SSUBADDX</td>
<td>Byte-wise and halfword-wise parallel signed arithmetic</td>
<td>page 4-83</td>
<td>6</td>
</tr>
<tr>
<td>STC, STC2</td>
<td>Store coprocessor</td>
<td>page 4-109</td>
<td>2, 5ExPe</td>
</tr>
<tr>
<td>STM</td>
<td>Store multiple registers</td>
<td>page 4-20</td>
<td>All</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Brief description</td>
<td>Page</td>
<td>Architecturea</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>STR</td>
<td>Store register</td>
<td>page 4-8</td>
<td>All</td>
</tr>
<tr>
<td>STREX</td>
<td>Store register exclusive</td>
<td>page 4-28</td>
<td>6</td>
</tr>
<tr>
<td>SUB</td>
<td>Subtract</td>
<td>page 4-36</td>
<td>All</td>
</tr>
<tr>
<td>SUNPK</td>
<td>Signed unpack</td>
<td>page 4-91</td>
<td>6</td>
</tr>
<tr>
<td>SwI</td>
<td>Software interrupt</td>
<td>page 4-114</td>
<td>All</td>
</tr>
<tr>
<td>SwP</td>
<td>Swap registers and memory</td>
<td>page 4-31</td>
<td>3</td>
</tr>
<tr>
<td>TEQ, TST</td>
<td>Test equivalence, Test</td>
<td>page 4-45</td>
<td>3</td>
</tr>
<tr>
<td>UA0D08, UA0D16, UA0D0SUBX</td>
<td>Byte-wise and halfword-wide parallel unsigned arithmetic</td>
<td>page 4-83</td>
<td>6</td>
</tr>
<tr>
<td>UA0D08TO16, UA0D0TO32, UA0D16TO32</td>
<td>Zero extend and add</td>
<td>page 4-93</td>
<td>6</td>
</tr>
<tr>
<td>UHADD08, UHADD16, UHADDSUBX, UHSUB08, UHSUB16, UHSUBA0DX</td>
<td>Byte-wise and halfword-wide parallel unsigned halving arithmetic</td>
<td>page 4-83</td>
<td>6</td>
</tr>
<tr>
<td>UM0AAL</td>
<td>Unsigned multiply accumulate accumulate long (64 <= 32 + 32 + 32 x 32)</td>
<td>page 4-74</td>
<td>6</td>
</tr>
<tr>
<td>UMLAL, UM0ULL</td>
<td>Unsigned multiply-accumulate, multiply (64 <= 32 x 32 + 64), (64 <= 32 x 32)</td>
<td>page 4-55</td>
<td>M5</td>
</tr>
<tr>
<td>UQADD08, UQADD16, UQADDSUBX, UQSUB08, UQSUB16, UQSUBA0DX</td>
<td>Byte-wise and halfword-wide parallel unsigned saturating arithmetic</td>
<td>page 4-83</td>
<td>6</td>
</tr>
<tr>
<td>US0A8</td>
<td>Unsigned sum of absolute differences</td>
<td>page 4-86</td>
<td>6</td>
</tr>
<tr>
<td>USAD08</td>
<td>Accumulate unsigned sum of absolute differences</td>
<td>page 4-86</td>
<td>6</td>
</tr>
<tr>
<td>USAT</td>
<td>Unsigned saturate</td>
<td>page 4-80</td>
<td>6</td>
</tr>
<tr>
<td>US4T16</td>
<td>Unsigned saturate, parallel halfwords</td>
<td>page 4-88</td>
<td>6</td>
</tr>
<tr>
<td>USUB08, USUB16, USUBA0DX</td>
<td>Byte-wise and halfword-wide parallel unsigned arithmetic</td>
<td>page 4-83</td>
<td>6</td>
</tr>
<tr>
<td>UN0PK</td>
<td>Unsigned unpack</td>
<td>page 4-91</td>
<td>6</td>
</tr>
</tbody>
</table>

a. n : available in architecture version n and above
b. nT : available in T variants of architecture version n and above
c. XScale: XScale coprocessor instructions
d. 5E : available in architecture version 5E, except ExP variants, and version 6 and above
e. 5ExP : available in architecture version 5E, including ExP variants, and version 6 and above
f. M : available in architecture version 3M, and 4 and above, except xM versions
4.1 Conditional execution

Almost all ARM instructions can include an optional condition code. This is shown in syntax descriptions as \(\{ \text{cond} \} \). An instruction with a condition code is only executed if the condition code flags in the CPSR meet the specified condition. The condition codes that you can use are shown in Table 4-2.

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Flags</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>Z set</td>
<td>Equal</td>
</tr>
<tr>
<td>NE</td>
<td>Z clear</td>
<td>Not equal</td>
</tr>
<tr>
<td>CS/HS</td>
<td>C set</td>
<td>Higher or same (unsigned >=)</td>
</tr>
<tr>
<td>CC/LO</td>
<td>C clear</td>
<td>Lower (unsigned <)</td>
</tr>
<tr>
<td>MI</td>
<td>N set</td>
<td>Negative</td>
</tr>
<tr>
<td>PL</td>
<td>N clear</td>
<td>Positive or zero</td>
</tr>
<tr>
<td>VS</td>
<td>V set</td>
<td>Overflow</td>
</tr>
<tr>
<td>VC</td>
<td>V clear</td>
<td>No overflow</td>
</tr>
<tr>
<td>HI</td>
<td>C set and Z clear</td>
<td>Higher (unsigned <=)</td>
</tr>
<tr>
<td>LS</td>
<td>C clear or Z set</td>
<td>Lower or same (unsigned <=)</td>
</tr>
<tr>
<td>GE</td>
<td>N and V the same</td>
<td>Signed >=</td>
</tr>
<tr>
<td>LT</td>
<td>N and V different</td>
<td>Signed <</td>
</tr>
<tr>
<td>GT</td>
<td>Z clear, and N and V the same</td>
<td>Signed ></td>
</tr>
<tr>
<td>LE</td>
<td>Z set, or N and V different</td>
<td>Signed <=</td>
</tr>
<tr>
<td>AL</td>
<td>Any</td>
<td>Always (usually omitted)</td>
</tr>
</tbody>
</table>

Almost all ARM data processing instructions can optionally update the condition code flags according to the result. To make an instruction update the flags, include the S suffix as shown in the syntax description for the instruction.

Some instructions (CMP, CMN, TST and TEQ) do not require the S suffix. Their only function is to update the flags. They always update the flags.

Flags are preserved until updated. A conditional instruction which is not executed has no effect on the flags.
Some instructions update a subset of the flags. The other flags are unchanged by these instructions. Details are specified in the descriptions of the instructions.

You can execute an instruction conditionally, based upon the flags set in another instruction, either:
- immediately after the instruction which updated the flags
- after any number of intervening instructions that have not updated the flags.

For more information, see Conditional execution on page 2-22.

4.1.1 The Q flag

The Q flag only exists in ARM architecture v5TE, and v6 and above. It is used to detect saturation in special saturating arithmetic instructions (see QADD, QSUB, QDADD, and QDSUB on page 4-78), or overflow in certain multiply instructions (see SMLAxy on page 4-58 and SMLAWy on page 4-61).

The Q flag is a sticky flag. Although these instructions can set the flag, they cannot clear it. You can execute a series of such instructions, and then test the flag to find out whether saturation or overflow occurred at any point in the series, without needing to check the flag after each instruction.

To clear the Q flag, use an MSR instruction (see MSR on page 4-116).

The state of the Q flag cannot be tested directly by the condition codes. To read the state of the Q flag, use an MRS instruction (see MRS on page 4-115).
4.2 ARM Memory access instructions

This section contains the following subsections:

- **LDR and STR, words and unsigned bytes** on page 4-9
 Load register and store register, 32-bit word or 8-bit unsigned byte.

- **LDR and STR, halfwords and signed bytes** on page 4-14
 Load register, signed 8-bit bytes and signed and unsigned 16-bit halfwords.
 Store register, 16-bit halfwords.

- **LDR and STR, doublewords** on page 4-17
 Load two consecutive registers and store two consecutive registers.

- **LDM and STM** on page 4-20
 Load and store multiple registers.

- **PLD** on page 4-22
 Cache preload.

- **SRS** on page 4-24
 Store return state.

- **RFE** on page 4-26
 Return from exception.

- **LDREX and STREX** on page 4-28
 Load and store register exclusive.

- **SWP and SWPB** on page 4-31
 Swap data between registers and memory.

--- Note ---

There is also an LDR pseudo-instruction (see *LDR ARM pseudo-instruction* on page 4-126). This pseudo-instruction either assembles to an LDR instruction, or to a MOV or MVN instruction.

4.2.1 LDR and STR, words and unsigned bytes

Load register and store register, 32-bit word or 8-bit unsigned byte. Byte loads are zero-extended to 32 bits.

--- Note ---
Also, see ARM pseudo-instructions on page 4-122.

Syntax

Both LDR and STR have four possible forms:

- zero offset
- pre-indexed offset
- program-relative
- post-indexed offset.

The syntax of the four forms, in the same order, are:

- \(\text{op}\{\text{cond}\}\{\text{B}\}{\{\text{T}\}} \text{ Rd, } [\text{Rn}] \)
- \(\text{op}\{\text{cond}\}\{\text{B}\} \text{ Rd, } [\text{Rn}, \text{ FlexOffset}]\{!\} \)
- \(\text{op}\{\text{cond}\}\{\text{B}\} \text{ Rd, } \text{ label} \)
- \(\text{op}\{\text{cond}\}\{\text{B}\}{\{\text{T}\}} \text{ Rd, } [\text{Rn}], \text{ FlexOffset} \)

where:

- \(\text{op} \) is either LDR (Load Register) or STR (Store Register).
- \(\text{cond} \) is an optional condition code (see Conditional execution on page 4-6).
- \(\text{B} \) is an optional suffix. If \(\text{B} \) is present, the least significant byte of \(\text{Rd} \) is transferred. If \(\text{op} \) is LDR, the other bytes of \(\text{Rd} \) are cleared. Otherwise, a 32-bit word is transferred.
- \(\text{T} \) is an optional suffix. If \(\text{T} \) is present, the memory system treats the access as though the processor was in User mode, even if it is in a privileged mode (see Processor mode on page 2-4). \(\text{T} \) has no effect in User mode. You cannot use \(\text{T} \) with a pre-indexed offset.
- \(\text{Rd} \) is the ARM register to load or save.
- \(\text{Rn} \) is the register on which the memory address is based.

\(\text{Rn} \) must not be the same as \(\text{Rd} \), if the instruction:
- is pre-indexed with writeback (the \(\! \) suffix)
Zero offset

The value in \(Rn \) is used as the address for the transfer.

Pre-indexed offset

The offset is applied to the value in \(Rn \) before the data transfer takes place. The result is used as the memory address for the transfer. If the \(!\) suffix is used, the result is written back into \(Rn \). \(Rn \) must not be r15 if the \(!\) suffix is used.

Program-relative

This is an alternative version of the pre-indexed form. The assembler calculates the offset from the PC for you, and generates a pre-indexed instruction with the PC as \(Rn \).

You cannot use the \(!\) suffix.

Post-indexed offset

The value in \(Rn \) is used as the memory address for the transfer. The offset is applied to the value in \(Rn \) after the data transfer takes place. The result is written back into \(Rn \). \(Rn \) must not be r15.
Flexible offset syntax

Both pre-indexed and post-indexed offsets can be either of the following:

#expr

{ - } Rm{ , shift }

where:

- is an optional minus sign. If - is present, the offset is subtracted from Rn. Otherwise, the offset is added to Rn.

expr is an expression evaluating to an integer in the range –4095 to +4095. This is often a numeric constant (see examples below).

Rm is a register containing a value to be used as the offset. Rm must not be r15.

shift is an optional shift to be applied to Rm. It can be any one of:

ASR #n arithmetic shift right n bits. 1 ≤ n ≤ 32.
LSL #n logical shift left n bits. 0 ≤ n ≤ 31.
LSR #n logical shift right n bits. 1 ≤ n ≤ 32.
ROR #n rotate right n bits. 1 ≤ n ≤ 31.
RRX rotate right one bit, with extend.
Address alignment for word transfers

In most circumstances, you must ensure that addresses for 32-bit transfers are 32-bit word-aligned.

If your system has a system coprocessor (cp15), you can enable alignment checking. Non word-aligned 32-bit transfers cause an alignment exception if alignment checking is enabled.

If your system does not have a system coprocessor (cp15), or alignment checking is disabled:

- For **STR**, the specified address is rounded down to a multiple of four.
- For **LDR**:
 1. The specified address is rounded down to a multiple of four.
 2. Four bytes of data are loaded from the resulting address.
 3. The loaded data is rotated right by one, two or three bytes according to bits [1:0] of the address.

For a little-endian memory system, this causes the addressed byte to occupy the least significant byte of the register.

For a big-endian memory system, it causes the addressed byte to occupy:

- bits[31:24] if bit[0] of the address is 0
- bits[15:8] if bit[0] of the address is 1.

Loading to r15

A load to r15 (the program counter) causes a branch to the instruction at the address loaded.

Bits[1:0] of the value loaded:

- are ignored in architecture v3 and below
- must be zero in architecture v4.

In architecture v5 and above:

- bits[1:0] of a value loaded to r15 must not have the value 0b10
- if bit[0] of a value loaded to r15 is set, the processor changes to Thumb state.

You cannot use the B or T suffixes when loading to r15.
Saving from r15

In general, avoid saving from r15 if possible.

If you do save from r15, the value saved is the address of the current instruction, plus an implementation-defined constant. The constant is always the same for a particular processor.

If your assembled code might be used on different processors, you can find out what the constant is at runtime using code like the following:

```
SUB R1, PC, #4 ; R1 = address of following STR instruction
STR PC, [R0] ; Store address of STR instruction + offset,
LDR R0, [R0] ; then reload it
SUB R0, R0, R1 ; Calculate the offset as the difference
```

If your code is to be assembled for a particular processor, the value of the constant is available in armasm as {PCSTOREOFFSET}.

Architectures

These instructions are available in all versions of the ARM architecture.

In T variants of architecture v5 and above, a load to r15 causes a change to executing Thumb instructions if bit[0] of the value loaded is set.

Examples

```
LDR     r8,[r10]            ; loads r8 from the address in r10.
LDRNE   r2,[r5,#960]!       ; (conditionally) loads r2 from a word
                           ; 960 bytes above the address in r5, and
                           ; increments r5 by 960.
STR     r2,[r9,#consta-struc]   ; consta-struc is an expression evaluating
                           ; to a constant in the range 0-4095.
STRB    r0,[r3,-r8,ASR #2]  ; stores the least significant byte from
                           ; r0 to a byte at an address equal to
                           ; contents(r3) minus contents(r8)/4.
                           ; r3 and r8 are not altered.
STR     r5,[r7],#-8         ; stores a word from r5 to the address
                           ; in r7, and then decrements r7 by 8.
LDR     r0,localdata        ; loads a word located at label localdata
```

4.2.2 LDR and STR, halfwords and signed bytes

Load register, signed 8-bit bytes and signed and unsigned 16-bit halfwords.

Store register, 16-bit halfwords.

Signed loads are sign-extended to 32 bits. Unsigned halfword loads are zero-extended to 32 bits.

Syntax

These instructions have four possible forms:

- zero offset
- pre-indexed offset
- program-relative
- post-indexed offset.

The syntax of the four forms, in the same order, are:

\[
\text{op} \{\text{cond}\} \text{type} \ Rd, [Rn]
\]

\[
\text{op} \{\text{cond}\} \text{type} \ Rd, [Rn, Offset]!1
\]

\[
\text{op} \{\text{cond}\} \text{type} \ Rd, label
\]

\[
\text{op} \{\text{cond}\} \text{type} \ Rd, [Rn], Offset
\]

where:

- \(op\) is either LDR or STR.
- \(cond\) is an optional condition code (see Conditional execution on page 4-6).
- \(type\) must be one of:
 - \(SH\) for Signed Halfword (LDR only)
 - \(H\) for unsigned Halfword
 - \(SB\) for Signed Byte (LDR only).
- \(Rd\) is the ARM register to load or save.
- \(Rn\) is the register on which the memory address is based.

\(Rn\) must not be the same as \(Rd\), if the instruction is either:
- pre-indexed with writeback
- post-indexed.
label is a program-relative expression. See Register-relative and program-relative expressions on page 3-23 for more information. **label** must be within ±255 bytes of the current instruction.

Offset is an offset applied to the value in **Rn** (see Offset syntax).

! is an optional suffix. If ! is present, the address including the offset is written back into **Rn**. You cannot use the ! suffix if **Rn** is r15.

Zero offset

The value in **Rn** is used as the address for the transfer.

Pre-indexed offset

The offset is applied to the value in **Rn** before the transfer takes place. The result is used as the memory address for the transfer. If the ! suffix is used, the result is written back into **Rn**.

Program-relative

This is an alternative version of the pre-indexed form. The assembler calculates the offset from the PC for you, and generates a pre-indexed instruction with the PC as **Rn**.

You cannot use the ! suffix.

Post-indexed offset

The value in **Rn** is used as the memory address for the transfer. The offset is applied to the value in **Rn** after the transfer takes place. The result is written back into **Rn**.

Offset syntax

Both pre-indexed and post-indexed offsets can be either of the following:

- **#expr**
- `{ - }{Rm}

where:

- **-** is an optional minus sign. If - is present, the offset is subtracted from **Rn**. Otherwise, the offset is added to **Rn**.

- **expr** is an expression evaluating to an integer in the range −255 to +255. This is often a numeric constant (see examples below).
Rm is a register containing a value to be used as the offset.

The offset syntax is the same for LDR and STR, doublewords on page 4-17.

Address alignment for halfword transfers

The address must be even for halfword transfers.

If your system has a system coprocessor (cp15), you can enable alignment checking. Non halfword-aligned 16-bit transfers cause an alignment exception if alignment checking is enabled.

If your system does not have a system coprocessor (cp15), or alignment checking is disabled:

• a non halfword-aligned 16-bit load corrupts Rd
• a non halfword-aligned 16-bit save corrupts two bytes at [address] and [address–1].

Loading to r15

You cannot load halfwords or bytes to r15.

Architectures

These instructions are available in architecture v4 and above.

Examples

LDREQSH r11,[r6] ; (conditionally) loads r11 with a 16-bit halfword from the address in r6. Sign extends to 32 bits.

LDRH r1,[r0,#22] ; load r1 with a 16 bit halfword from 22 bytes above the address in r0. Zero extend to 32 bits.

STRH r4,[r0,r1]! ; store the least significant halfword from r4 to two bytes at an address equal to contents(r0) plus contents(r1). Write address back into r0.

LDRSB r6,constf ; load a byte located at label constf. Sign extend.

Incorrect example

LDRSB r1,[r6],r3,LSL#4 ; This format is only available for word and unsigned byte transfers.
4.2.3 LDR and STR, doublewords

Load two consecutive registers and store two consecutive registers, 64-bit doubleword.

Syntax

These instructions have four possible forms:

- zero offset
- pre-indexed offset
- program-relative
- post-indexed offset.

The syntax of the four forms are, in the same order:

\[\text{op} \{\text{cond}\} \text{D Rd, [Rn]} \]
\[\text{op} \{\text{cond}\} \text{D Rd, [Rn, Offset]} \{!\} \]
\[\text{op} \{\text{cond}\} \text{D Rd, label} \]
\[\text{op} \{\text{cond}\} \text{D Rd, [Rn], Offset} \]

where:

- \text{op} is either LDR or STR.
- \text{cond} is an optional condition code (see Conditional execution on page 4-6).
- \text{Rd} is one of the ARM registers to load or save. The other one is \text{R}(d+1). \text{Rd} must be an even numbered register, and not \text{r}14.
- \text{Rn} is the register on which the memory address is based. \text{Rn} must not be the same as \text{Rd} or \text{R}(d+1), unless the instruction is either:
 - zero offset
 - pre-indexed without writeback.
- \text{Offset} is an offset applied to the value in \text{Rn} (see Offset syntax on page 4-18).
- \text{label} is a program-relative expression. See Register-relative and program-relative expressions on page 3-23 for more information. \text{label} must be within ±252 bytes of the current instruction.
- ! is an optional suffix. If ! is present, the final address including the offset is written back into \text{Rn}.
Zero offset
The value in \(Rn \) is used as the address for the transfer.

Pre-indexed offset
The offset is applied to the value in \(Rn \) before the transfers take place. The result is used as the memory address for the transfers. If the ! suffix is used, the address is written back into \(Rn \).

Program-relative
This is an alternative version of the pre-indexed form. The assembler calculates the offset from the PC for you, and generates a pre-indexed instruction with the PC as \(Rn \).

You cannot use the ! suffix.

Post-indexed offset
The value in \(Rn \) is used as the memory address for the transfer. The offset is applied to the value in \(Rn \) after the transfer takes place. The result is written back into \(Rn \).

Offset syntax
Both pre-indexed and post-indexed offsets can be either of the following:

- \(\#expr \)
- \(\{-\}Rm \)

where:
- \(- \) is an optional minus sign. If - is present, the offset is subtracted from \(Rn \). Otherwise, the offset is added to \(Rn \).
- \(expr \) is an expression evaluating to an integer in the range -255 to +255. This is often a numeric constant (see examples below).
- \(Rm \) is a register containing a value to be used as the offset. For loads, \(Rm \) must not be the same as \(Rd \) or \(R(d+1) \).

This is the same offset syntax as for \textit{LDR} and \textit{STR}, halfwords and signed bytes on page 4-14.

Address alignment
The address must be a multiple of eight for doubleword transfers.
If your system has a system coprocessor, you can enable alignment checking. Non doubleword-aligned 64-bit transfers cause an alignment exception if alignment checking is enabled.

Architectures

These instructions are available in architecture v6 and above, and E variants of architecture v5.

Examples

```
LDRD    r6,[r11]
LDRMID  r4,[r7],r2
STRD    r4,[r9,#24]
STRD    r0,[r9,-r2]!
LDEQD   r8,abc4
```

Incorrect examples

```
LDRD    r1,[r6] ; Rd must be even.
STRD    r14,[r9,#36] ; Rd must not be r14.
STRD    r2,[r3],r6 ; Rn must not be Rd or R(d+1).
```
4.2.4 LDM and STM

Load and store multiple registers. Any combination of registers r0 to r15 can be transferred.

Syntax

\[\text{op}\{\text{cond}\}\text{addr_mode}\ Rn!\},\ \text{reglist}\{^\}\]

where:

- \(\text{op} \) is either LDM or STM.
- \(\text{cond} \) is an optional condition code (see Conditional execution on page 4-6).
- \(\text{addr_mode} \) is any one of the following:
 - IA: increment address after each transfer
 - IB: increment address before each transfer
 - DA: decrement address after each transfer
 - DB: decrement address before each transfer
 - FD: full descending stack
 - ED: empty descending stack
 - FA: full ascending stack
 - EA: empty ascending stack.
- \(Rn \) is the base register, the ARM register containing the initial address for the transfer. \(Rn \) must not be r15.
- ! is an optional suffix. If ! is present, the final address is written back into \(Rn \).
- \(\text{reglist} \) is a list of registers to be loaded or stored, enclosed in braces. It can contain register ranges. It must be comma separated if it contains more than one register or register range (see Examples on page 4-21).
- ^ is an optional suffix. You must not use it in User mode or System mode. It has the following purposes:
 - If op is LDM and reglist contains the pc (r15), in addition to the normal multiple register transfer, the SPSR is copied into the CPSR. This is for returning from exception handlers. Use this only from exception modes.
 - Otherwise, data is transferred into or out of the User mode registers instead of the current mode registers.
Non word-aligned addresses

These instructions ignore bits [1:0] of the address. (On a system with a system coprocessor, if alignment checking is enabled, nonzero values in these bits cause an alignment exception.)

Loading to r15

A load to r15 (the program counter) causes a branch to the instruction at the address loaded. In T variants of architecture v5 and above, a load to r15 causes a change to executing Thumb instructions if bit 0 of the value loaded is set.

Loading or storing the base register, with writeback

If \(Rn \) is in \(\text{reglist} \), and writeback is specified with the \(! \) suffix:

- if \(\text{op} \) is STM and \(Rn \) is the lowest-numbered register in \(\text{reglist} \), the initial value of \(Rn \) is stored
- otherwise, the loaded or stored value of \(Rn \) is unpredictable.

Architectures

These instructions are available in all versions of the ARM architecture.

In T variants of architecture v5 and above, a load to r15 causes a change to executing Thumb instructions if bit 0 of the value loaded is set.

Examples

- \(\text{LDMIA} \ r8,\{r0,r2,r9\} \)
- \(\text{STMDB} \ r1!,\{r3-r6,r11,r12\} \)
- \(\text{STMFD} \ r13!,\{r0,r4-r7,LR\} \); Push registers including the stack pointer
- \(\text{LDMFD} \ r13!,\{r0,r4-r7,PC\} \); Pop the same registers and return from subroutine

Incorrect examples

- \(\text{STMIA} \ r5!,\{r5,r4,r9\} \); value stored for \(R5 \) unpredictable
- \(\text{LDMDA} \ r2,\{} \); must be at least one register in list
4.2.5 PLD

Cache preload.

Syntax

PLD [Rn{, FlexOffset}]

where:

Rn is the register on which the memory address is based.

FlexOffset is an optional flexible offset applied to the value in Rn. FlexOffset can be either of the following:

#expr

{-}Rm{, shift}

where:

- is an optional minus sign. If - is present, the offset is subtracted from Rn. Otherwise, the offset is added to Rn.

expr is an expression evaluating to an integer in the range –4095 to +4095. This is often a numeric constant.

Rm is a register containing a value to be used as the offset.

shift is an optional shift to be applied to Rm. It can be any one of:

ASR #n arithmetic shift right n bits. 1 \leq n \leq 32.

LSL #n logical shift left n bits. 0 \leq n \leq 31.

LSR #n logical shift right n bits. 1 \leq n \leq 32.

ROR #n rotate right n bits. 1 \leq n \leq 31.

RRX rotate right one bit, with extend.

This is the same offset syntax as for LDR and STR, words and unsigned bytes on page 4-9.

Usage

Use PLD to hint to the memory system that there is likely to be a load from the specified address within the next few instructions. If possible, the memory system uses this to speed up later memory accesses, otherwise PLD has no effect.
Alignment

There are no alignment restrictions on the address. If a system control coprocessor (cp15) is present then it will not generate an alignment exception for any PLD instruction.

Architectures

PLD is available in architecture v6 and above, and E variants of architecture v5.

Examples

- PLD [r2]
- PLD [r15,#280]
- PLD [r9,#-2481]
- PLD [r0,#av*4]; av * 4 must evaluate, at assembly time, to
 an integer in the range -4095 to +4095
- PLD [r0,r2]
- PLD [r5,r8,LSL #2]
4.2.6 SRS

Store return state.

Syntax

\[
\text{SRS} \text{addr_mode} \#\text{mode}[]
\]

where:

- \textit{addr_mode} is any one of the following:
 - IA: increment address after each transfer
 - IB: increment address before each transfer
 - DA: decrement address after each transfer
 - DB: decrement address before each transfer
 - FD: full descending stack
 - ED: empty descending stack
 - FA: full ascending stack
 - EA: empty ascending stack.

- \textit{mode} specifies the number of the mode whose banked r13 is used as the base register, see \textit{Processor mode} on page 2-4.

- [] is an optional suffix. If [] is present, the final address is written back into the banked r13 used as the base register.

Operation

SRS stores the r14 and the SPSR of the current mode, at the address contained in r13 of the mode specified by \textit{mode}, and the following address. Optionally updates r13 of the mode specified by \textit{mode}. This is compatible with the normal use of the STM instruction for stack accesses, see \textit{LDM and STM} on page 4-20.

You can use SRS to store return state for an exception handler on a different stack from the one automatically selected.

Architectures

SRS is available in architecture v6 and above.

Example

\[
\begin{align*}
\text{R13_usr} & \text{ EQU 16} \\
\text{SRSFD} & \#\text{R13_usr}
\end{align*}
\]
Incorrect examples

SRSFD #32! ; there is no mode 32
SRSEQFD #R13_usr ; SRS is always unconditional
4.2.7 RFE

Return from exception.

Syntax

RFE addr_mode Rn{!}

where:

addr_mode is any one of the following:
IA increment address after each transfer
IB increment address before each transfer
DA decrement address after each transfer
DB decrement address before each transfer
FD full descending stack
ED empty descending stack
FA full ascending stack
EA empty ascending stack.

Rn specifies the base register. Do not use r15 for Rn.

! is an optional suffix. If ! is present, the final address is written back into Rn.

Operation

Loads the PC and the CPSR from the address contained in Rn, and the following address. Optionally updates Rn.

You can use RFE to return from an exception if you previously saved the return state using the SRS instruction (see SRS on page 4-24).

Architectures

RFE is available in architecture v6 and above.

Example

RFEFD r13!
Incorrect examples

RFENEFD r13! ; RFE is always unconditional
RFEFD r15 ; do not use r15
4.2.8 LDREX and STREX

Load register exclusive and store register exclusive.

Syntax

LDREX{cond} Rd, [Rn]
STREX{cond} Rd, Rm, [Rn]

where:

cond is an optional condition code (see Conditional execution on page 4-6).
Rd is the destination register. After the instruction, this will contain:
- for LDREX, the word loaded from memory
- for STREX, either:
 0 if the instruction succeeds
 1 if the instruction is locked out.
Rd must not be r15.
Rm is the source register containing the word to store to memory. Rm must be distinct from Rd, and must not be r15.
Rn is the register containing the memory address. Rn must not be r15, and for STREX it must be distinct from Rd.

LDREX

LDREX loads a word from memory.

- If the physical address has the Shared TLB attribute, LDREX tags the physical address as exclusive access for the current processor, and clears any exclusive access tag for this processor for any other physical address.
- Otherwise, it tags the fact that the executing processor has an outstanding tagged physical address.
STREX

STREX performs a conditional store to memory. The conditions are as follows:

- If the physical address does not have the Shared TLB attribute, and the executing processor has an outstanding tagged physical address, the store takes place and the tag is cleared.
- If the physical address does not have the Shared TLB attribute, and the executing processor does not have an outstanding tagged physical address, the store does not take place.
- If the physical address has the Shared TLB attribute, and the physical address is tagged as exclusive access for the executing processor, the store takes place and the tag is cleared.
- If the physical address has the Shared TLB attribute, and the physical address is not tagged as exclusive access for the executing processor, the store does not take place.

Usage

Use LDREX and STREX to implement interprocess communication in multiple-processor and shared-memory systems.

For reasons of performance, keep the number of instructions between corresponding LDREX and STREX instruction to a minimum.

Note

The address used in an STREX instruction must be the same as the address in the most recently executed LDREX instruction. The result of executing an STREX instruction to a different address is UNPREDICTABLE.

Architectures

These instructions are available in architecture v6 and above.
Example

```
MOV r1, #0x1                ; load the 'lock taken' value

try
    LDREX r0, [LockAddr]        ; load the lock value
    CMP r0, #0                  ; is the lock free?
    STREXEQ r0, r1, [LockAddr]  ; try and claim the lock
    CMPEQ r0, #0                ; did this succeed?
    BNE try                     ; no – try again
    ....                        ; yes – we have the lock
```

Incorrect examples

```
LDREX   r0, [r2,#96]!   ; no offset allowed
STREX   r11, r10, [r15] ; use of r15 not allowed
LDREXGT r6, r4, [r10]   ; LDREX has only two registers in its syntax
STREX   r3, r3, [r7]    ; Rd must be distinct from Rn (and from Rm)
```
4.2.9 SWP and SWPB

Swap data between registers and memory.

You can use SWP to implement semaphores. See also LDREX and STREX on page 4-28 for instructions to implement more sophisticated semaphores in architecture v6 and above.

Syntax

\[\text{SWP}\{\text{cond}\}\{\text{B}\} \ R_d, \ R_m, \ [\ R_n] \]

where:

- \text{cond} is an optional condition code (see Conditional execution on page 4-6).
- \text{B} is an optional suffix. If \text{B} is present, a byte is swapped. Otherwise, a 32-bit word is swapped.
- \text{Rd} is an ARM register. Data from memory is loaded into \text{Rd}.
- \text{Rm} is an ARM register. The contents of \text{Rm} is saved to memory. \text{Rm} can be the same register as \text{Rd}. In this case, the contents of the register is swapped with the contents of the memory location.
- \text{Rn} is an ARM register. The contents of \text{Rn} specify the address in memory with which data is to be swapped. \text{Rn} must be a different register from both \text{Rd} and \text{Rm}.

Non word-aligned addresses

Non word-aligned addresses are handled in exactly the same way as an LDR and an STR instruction (see Address alignment for word transfers on page 4-12).

Architectures

SWP is available in architecture versions 2a and 3 and above.
4.3 ARM general data processing instructions

This section contains the following subsections:

- **Flexible second operand** on page 4-33
- **ADD, SUB, RSB, ADC, SBC, and RSC** on page 4-36
 Add, subtract, and reverse subtract, each with or without carry.
- **AND, ORR, EOR, and BIC** on page 4-39
 Logical AND, OR, Exclusive OR and Bit Clear.
- **MOV, CPY and MVN** on page 4-41
 Move and Move Not.
- **CMP and CMN** on page 4-43
 Compare and Compare Negative.
- **TST and TEQ** on page 4-45
 Test and Test Equivalence.
- **CLZ** on page 4-47
 Count Leading Zeroes.
- **SEL** on page 4-48
 Select bytes from each operand according to the state of the CPSR GE flags.
- **REV, REV16, and REVSH** on page 4-50
 Reverse byte order in a word or halfword. Reverse bytes in a halfword and sign extend.
4.3.1 Flexible second operand

Most ARM general data processing instructions have a flexible second operand. This is shown as Operand2 in the descriptions of the syntax of each instruction.

Syntax

Operand2 has the following possible forms:

```markdown
#immed_8r  
Rm[, shift]
```

where:

- `immed_8r` is an expression evaluating to a numeric constant. The constant must correspond to an 8-bit pattern rotated by an even number of bits within a 32-bit word (but see Instruction substitution on page 4-35).
- `Rm` is the ARM register holding the data for the second operand. The bit pattern in the register can be shifted or rotated in various ways.
- `shift` is an optional shift to be applied to `Rm`. It can be any one of:
 - **ASR** `#n` arithmetic shift right `n` bits. `1 ≤ n ≤ 32`
 - **LSL** `#n` logical shift left `n` bits. `0 ≤ n ≤ 31`
 - **LSR** `#n` logical shift right `n` bits. `1 ≤ n ≤ 32`
 - **ROR** `#n` rotate right `n` bits. `1 ≤ n ≤ 31`
 - **RRX** rotate right one bit, with extend.

type Rs where:

- `type` is one of ASR, LSL, LSR, ROR.
- `Rs` is an ARM register supplying the shift amount. Only the least significant byte is used.

Note

The result of the shift operation is used as Operand2 in the instruction, but `Rm` itself is not altered.

ASR

Arithmetic shift right by `n` bits divides the value contained in `Rm` by 2^n, if the contents are regarded as a two’s complement signed integer. The original bit[31] is copied into the left-hand `n` bits of the register.
LSR and LSL

Logical shift right by \(n \) bits divides the value contained in \(Rm \) by \(2^n \), if the contents are regarded as an unsigned integer. The left-hand \(n \) bits of the register are set to 0.

Logical shift left by \(n \) bits multiplies the value contained in \(Rm \) by \(2^n \), if the contents are regarded as an unsigned integer. Overflow may occur without warning. The right-hand \(n \) bits of the register are set to 0.

ROR

Rotate right by \(n \) bits moves the right-hand \(n \) bits of the register into the left-hand \(n \) bits of the result. At the same time, all other bits are moved right by \(n \) bits (see Figure 4-1).

RRX

Rotate right with extend shifts the contents of \(Rm \) right by one bit. The carry flag is copied into bit[31] of \(Rm \) (see Figure 4-2).

The old value of bit[0] of \(Rm \) is shifted out to the carry flag if the S suffix is specified (see The carry flag on page 4-35).
The carry flag

The carry flag is updated to the last bit shifted out of \(Rm \), if the instruction is any one of the following:

- MOV, MVN, AND, ORR, EOR or BIC, if you use the S suffix
- TEQ or TST, for which no S suffix is required.

Instruction substitution

Certain pairs of instructions (ADD and SUB, ADC and SBC, AND and BIC, MOV and MVN, CMP and CMN) are equivalent except for the negation or logical inversion of immed_8r.

If a value of immed_8r cannot be expressed as a rotated 8-bit pattern, but its logical inverse or negation could be, the assembler substitutes the other instruction of the pair and inverts or negates immed_8r.

Be aware of this when comparing disassembly listings with source code.

Examples

```
ADD     r3,r7,#1020     ; immed_8r. 1020 is 0xFF rotated right by 30 bits.
AND     r0,r5,r2        ; r2 contains the data for Operand2.
SUB     r11,r12,r3,ASR #5 ; Operand2 is the contents of r3 divided by 32.
MOVS    r4,r4,LSR #32   ; Updates the C flag to r4 bit 31. Clears r4 to 0.
```

Incorrect examples

```
ADD     r3,r7,#1023     ; 1023 (0x3FF) is not a rotated 8-bit pattern.
SUB     r11,r12,r3,LSL #32 ; #32 is out of range for LSL.
MOVS    r4,r4,RRX #3    ; Do not specify a shift amount for RRX. RRX is always a one-bit shift.
```
4.3.2 ADD, SUB, RSB, ADC, SBC, and RSC

Add, subtract, and reverse subtract, each with or without carry.

See also Parallel add and subtract on page 4-83.

Syntax

\[\text{op}\{\text{cond}\}\{\text{S}\} \text{ Rd, Rn, Operand2} \]

where:

- \(\text{op} \) is one of ADD, SUB, RSB, ADC, SBC, or RSC.
- \(\text{cond} \) is an optional condition code (see Conditional execution on page 4-6).
- \(\text{S} \) is an optional suffix. If \(\text{S} \) is specified, the condition code flags are updated on the result of the operation (see Conditional execution on page 4-6).
- \(\text{Rd} \) is the destination register.
- \(\text{Rn} \) is the register holding the first operand.
- \(\text{Operand2} \) is a flexible second operand. See Flexible second operand on page 4-33 for details of the options.

Usage

The ADD instruction adds the values in \(\text{Rn} \) and \(\text{Operand2} \).

The SUB instruction subtracts the value of \(\text{Operand2} \) from the value in \(\text{Rn} \).

The RSB (Reverse Subtract) instruction subtracts the value in \(\text{Rn} \) from the value of \(\text{Operand2} \). This is useful because of the wide range of options for \(\text{Operand2} \).

You can use ADC, SBC, and RSC to synthesize multiword arithmetic (see Multiword arithmetic examples on page 4-38).

The ADC (ADD with Carry) instruction adds the values in \(\text{Rn} \) and \(\text{Operand2} \), together with the carry flag.

The SBC (SUBtract with Carry) instruction subtracts the value of \(\text{Operand2} \) from the value in \(\text{Rn} \). If the carry flag is clear, the result is reduced by one.

The RSC (Reverse Subtract with Carry) instruction subtracts the value in \(\text{Rn} \) from the value of \(\text{Operand2} \). If the carry flag is clear, the result is reduced by one.
In certain circumstances, the assembler can substitute one instruction for another. Be aware of this when reading disassembly listings. See Instruction substitution on page 4-35 for details.

Condition flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

Use of r15

If you use r15 as Rn, the value used is the address of the instruction plus 8.

If you use r15 as Rd:

- Execution branches to the address corresponding to the result.
- If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use this to return from exceptions (see the Handling Processor Exceptions chapter in RealView Compilation Tools v2.0 Developer Guide).

--- Caution ---

Do not use the S suffix when using r15 as Rd in User mode or System mode. The effect of such an instruction is unpredictable, but the assembler cannot warn you at assembly time.

You cannot use r15 for Rd or any operand in any data processing instruction that has a register-controlled shift (see Flexible second operand on page 4-33).

Architectures

These instructions are available in all versions of the ARM architecture.

Examples

```
ADD     r2,r1,r3
SUBS    r8,r6,#240       ; sets the flags on the result
RSB     r4,r4,#1280      ; subtracts contents of r4 from 1280
ADCHI   r11,r0,r3       ; only executed if C flag set and Z
                     ; flag clear
RSCLES  r0,r5,r0,LSL r4 ; conditional, flags set
```

Incorrect example

```
RSCLES  r0,r15,r0,LSL r4 ; r15 not allowed with register
                     ; controlled shift
```
Multiword arithmetic examples

These two instructions add a 64-bit integer contained in r2 and r3 to another 64-bit integer contained in r0 and r1, and place the result in r4 and r5.

- ADDS r4,r0,r2 ; adding the least significant words
- ADC r5,r1,r3 ; adding the most significant words

These instructions subtract one 96-bit integer from another:

- SUBS r3,r6,r9
- SBCS r4,r7,r10
- SBC r5,r8,r11

For clarity, the above examples use consecutive registers for multiword values. There is no requirement to do this. The following, for example, is perfectly valid:

- SUBS r6,r6,r9
- SBCS r9,r2,r1
- SBC r2,r8,r11
4.3.3 AND, ORR, EOR, and BIC

Logical AND, OR, Exclusive OR and Bit Clear.

Syntax

\[op\{cond\}\{S\} \] Rd, Rn, Operand2

where:

- \(op \) is one of AND, ORR, EOR, or BIC.
- \(cond \) is an optional condition code (see Conditional execution on page 4-6).
- \(S \) is an optional suffix. If \(S \) is specified, the condition code flags are updated on the result of the operation (see Conditional execution on page 4-6).
- \(Rd \) is the destination register.
- \(Rn \) is the register holding the first operand.
- \(Operand2 \) is a flexible second operand. See Flexible second operand on page 4-33 for details of the options.

Usage

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in \(Rn \) and \(Operand2 \).

The BIC (BiT Clear) instruction performs an AND operation on the bits in \(Rn \) with the complements of the corresponding bits in the value of \(Operand2 \).

In certain circumstances, the assembler can substitute BIC for AND, or AND for BIC. Be aware of this when reading disassembly listings. See Instruction substitution on page 4-35 for details.

Condition flags

If \(S \) is specified, these instructions:

- update the N and Z flags according to the result
- can update the C flag during the calculation of \(Operand2 \) (see Flexible second operand on page 4-33)
- do not affect the V flag.
Use of r15

If you use r15 as \(Rn \), the value used is the address of the instruction plus 8.

If you use r15 as \(Rd \):

- Execution branches to the address corresponding to the result.
- If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use this to return from exceptions (see the Handling Processor Exceptions chapter in RealView Compilation Tools v2.0 Developer Guide).

Caution

Do not use the S suffix when using r15 as \(Rd \) in User mode or System mode. The effect of such an instruction is unpredictable, but the assembler cannot warn you at assembly time.

You cannot use r15 for \(Rd \) or any operand in any data processing instruction that has a register-controlled shift (see Flexible second operand on page 4-33).

Architectures

These instructions are available in all versions of the ARM architecture.

Examples

```
AND     r9,r2,#0xFF00
ORREQ   r2,r0,r5
EORS    r0,r0,r3,ROR r6
BICNES  r8,r10,r0,RRX
```

Incorrect example

```
EORS    r0,r15,r3,ROR r6 ; r15 not allowed with register
       ; controlled shift
```
4.3.4 MOV, CPY and MVN

Move, Copy and Move Not.

Syntax

\[
\text{MOV} \{\text{cond}\}\{S\} \ Rd, \ \text{Operand2} \\
\text{CPY} \{\text{cond}\} \ Rd, \ Rm \\
\text{MVN} \{\text{cond}\}\{S\} \ Rd, \ \text{Operand2}
\]

where:

- \textbf{cond} is an optional condition code (see \textit{Conditional execution} on page 4-6).
- \textbf{S} is an optional suffix. If \textbf{S} is specified, the condition code flags are updated on the result of the operation (see \textit{Conditional execution} on page 4-6).
- \textbf{Rd} is the destination register.
- \textbf{Operand2} is a flexible second operand. See \textit{Flexible second operand} on page 4-33 for details of the options.
- \textbf{Rm} is the source register.

Usage

The \textbf{MOV} instruction copies the value of \textit{Operand2} into \textit{Rd}.

The \textbf{MVN} instruction takes the value of \textit{Operand2}, performs a bitwise logical NOT operation on the value, and places the result into \textit{Rd}.

In certain circumstances, the assembler can substitute \textbf{MVN} for \textbf{MOV}, or \textbf{MOV} for \textbf{MVN}. Be aware of this when reading disassembly listings. See \textit{Instruction substitution} on page 4-35 for details.

The \textbf{CPY} instruction is a synonym for \textbf{MOV} without the \textit{S} suffix, and with \textit{Operand2} an unshifted register. It copies the unshifted value of \textit{Rm} into \textit{Rd}.
Condition flags

If S is specified, these instructions:

- update the N and Z flags according to the result
- can update the C flag during the calculation of Operand2 (see Flexible second operand on page 4-33)
- do not affect the V flag.

You cannot use the S suffix with CPY, and the flags are not updated.

Use of $r15$

If you use $r15$ as Rn, the value used is the address of the instruction plus 8.

If you use $r15$ as Rd:

- Execution branches to the address corresponding to the result.
- If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You can use this to return from exceptions (see the Handling Processor Exceptions chapter in RealView Compilation Tools v2.0 Developer Guide).

Caution

Do not use the S suffix when using $r15$ as Rd in User mode or System mode. The effect of such an instruction is unpredictable, but the assembler cannot warn you at assembly time.

You cannot use $r15$ for Rd or any operand in any data processing instruction that has a register-controlled shift (see Flexible second operand on page 4-33).

Architectures

MOV and MVN are available in all versions of the ARM architecture.

CPY is available in ARM architecture versions v6 and above.

Example

```
MVNNNE r11, #0xF000000B
```

Incorrect examples

```
MVN r15, r3, ASR r0 ; r15 not allowed with register controlled shift
CPYS r3, r8       ; S suffix not allowed with CPY
```
4.3.5 CMP and CMN

Compare and Compare Negative.

Syntax

\[\text{CMP} \{ \text{cond} \} \ Rn, \ \text{Operand2} \]
\[\text{CMN} \{ \text{cond} \} \ Rn, \ \text{Operand2} \]

where:

- \(\text{cond} \) is an optional condition code (see Conditional execution on page 4-6).
- \(Rn \) is the ARM register holding the first operand.
- \(\text{Operand2} \) is a flexible second operand. See Flexible second operand on page 4-33 for details of the options.

Usage

These instructions compare the value in a register with \(\text{Operand2} \). They update the condition flags on the result, but do not place the result in any register.

The \(\text{CMP} \) instruction subtracts the value of \(\text{Operand2} \) from the value in \(Rn \). This is the same as a \(\text{SUBS} \) instruction, except that the result is discarded.

The \(\text{CMN} \) instruction adds the value of \(\text{Operand2} \) to the value in \(Rn \). This is the same as an \(\text{ADDS} \) instruction, except that the result is discarded.

In certain circumstances, the assembler can substitute \(\text{CMN} \) for \(\text{CMP} \), or \(\text{CMP} \) for \(\text{CMN} \). Be aware of this when reading disassembly listings. See Instruction substitution on page 4-35 for details.

Condition flags

These instructions update the N, Z, C and V flags according to the result.

Use of r15

If you use r15 as \(Rn \), the value used is the address of the instruction plus 8.

You cannot use r15 for any operand in any data processing instruction that has a register-controlled shift (see Flexible second operand on page 4-33).
Architectures

These instructions are available in all versions of the ARM architecture.

Examples

CMP r2, r9
CMN r0, #6400
CMPGT r13, r7, LSL #2

Incorrect example

CMP r2, r15, ASR r0 ; r15 not allowed with register
 ; controlled shift
4.3.6 TST and TEQ

Test and Test Equivalence.

Syntax

TST\{cond\} Rn, Operand2
TEQ\{cond\} Rn, Operand2

where:

\textit{cond} is an optional condition code (see Conditional execution on page 4-6).
\textit{Rn} is the ARM register holding the first operand.
\textit{Operand2} is a flexible second operand. See Flexible second operand on page 4-33 for details of the options.

Usage

These instructions test the value in a register against \textit{Operand2}. They update the condition flags on the result, but do not place the result in any register.

The TST instruction performs a bitwise AND operation on the value in \textit{Rn} and the value of \textit{Operand2}. This is the same as a \texttt{ANDS} instruction, except that the result is discarded.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in \textit{Rn} and the value of \textit{Operand2}. This is the same as a \texttt{EORS} instruction, except that the result is discarded.

Condition flags

These instructions:

- update the N and Z flags according to the result
- can update the C flag during the calculation of \textit{Operand2} (see Flexible second operand on page 4-33)
- do not affect the V flag.

Use of r15

If you use r15 as \textit{Rn}, the value used is the address of the instruction plus 8.

You cannot use r15 for any operand in any data processing instruction that has a register-controlled shift (see Flexible second operand on page 4-33).
Architectures

These instructions are available in all versions of the ARM architecture.

Examples

TST r0,#0x3F8
TEQEQ r10,r9
TSTNE r1,r5,ASR r1

Incorrect example

TEQ r15,r1,ROR r0 ; r15 not allowed with register
 ; controlled shift
4.3.7 CLZ

Count Leading Zeroes.

Syntax

\[\text{CLZ}\{ cond\} \text{ Rd, Rm} \]

where:

- \(cond\) is an optional condition code (see Conditional execution on page 4-6).
- \(Rd\) is the destination register. \(Rd\) must not be r15.
- \(Rm\) is the operand register. \(Rm\) must not be r15.

Usage

The CLZ instruction counts the number of leading zeroes in the value in \(Rm\) and returns the result in \(Rd\). The result value is 32 if no bits are set in the source register, and zero if bit 31 is set.

Condition flags

This instruction does not affect the flags.

Architectures

CLZ is available in architecture versions 5 and above.

Examples

\[
\begin{align*}
\text{CLZ} & \quad r4, r9 \\
\text{CLZNE} & \quad r2, r3
\end{align*}
\]
4.3.8 SEL

Select bytes from each operand according to the state of the CPSR GE flags.

Syntax

SEL{cond} Rd, Rn, Rm

where:

- *cond* is an optional condition code (see Conditional execution on page 4-6).
- *Rd* is the destination register.
- *Rn* is the register containing the first operand.
- *Rm* is the register containing the second operand.

Do not use r15 for *Rd*, *Rn*, or *Rm*.

Usage

Use the SEL instruction after one of the signed parallel instructions, see Parallel add and subtract on page 4-83. You can use this to select maximum or minimum values in multiple byte or halfword data.

Operation

The SEL instruction selects bytes from *Rn* or *Rm* according to the CPSR GE flags:

- if GE[0] is set, Rd[7:0] come from Rn[7:0], otherwise from Rm[7:0]
- if GE[1] is set, Rd[15:8] come from Rn[15:8], otherwise from Rm[15:8]
- if GE[3] is set, Rd[31:24] come from Rn[31:24], otherwise from Rm[31:24]

Condition flags

This instruction does not affect the flags.

Architectures

SEL is available in architecture v6 and above.
Examples

SEL r0, r4, r5
SELLT r4, r0, r4
4.3.9 REV, REV16, and REVSH

Reverse byte order in a word or halfword. Reverse bytes in a halfword and sign extend.

Syntax

\[op\{cond\} \text{Rd}, \text{Rm} \]

where:

- \(op \) is any one of the following:
 - **REV**: Reverses byte order in a word.
 - **REV16**: Reverses byte order in each halfword of \(Rm \).
 - **REVSH**: Reverses byte order in the bottom halfword of \(Rm \), and sign extends to 32 bits.

- \(cond \) is an optional condition code (see *Conditional execution* on page 4-6).

- \(Rd \) is the destination register.

- \(Rm \) is the register containing the second operand.

Do not use r15 for \(Rd \) or \(Rm \).

Condition flags

This instruction does not affect the flags.

Architectures

These instructions are available in architecture v6 and above.

Examples

- `REV r3, r7`
- `REV16 r0, r0`
- `REVSH r0, r5` ; Reverse Signed Halfword
- `REVHS r3, r7` ; Reverse with Higher or Same condition
4.4 ARM multiply instructions

This section contains the following subsections:

- **MUL and MLA** on page 4-53
 Multiply and multiply-accumulate (32-bit by 32-bit, bottom 32-bit result).

- **UMULL, UMLAL, SMULL and SMLAL** on page 4-55
 Unsigned and signed long multiply and multiply accumulate (32-bit by 32-bit, 64-bit result or 64-bit accumulator).

- **SMULxy** on page 4-57
 Signed multiply (16-bit by 16-bit, 32-bit result).

- **SMLAxy** on page 4-58
 Signed multiply-accumulate (16-bit by 16-bit, 32-bit accumulate).

- **SMULWy** on page 4-60
 Signed multiply (32-bit by 16-bit, top 32-bit result).

- **SMLAWy** on page 4-61
 Signed multiply-accumulate (32-bit by 16-bit, top 32-bit accumulate).

- **SMLALxy** on page 4-63
 Signed multiply-accumulate (16-bit by 16-bit, 64-bit accumulate).

- **SMUAD and SMUSD** on page 4-65
 Dual 16-bit signed multiply with addition or subtraction of products.

- **SMMUL** on page 4-67
 32-bit by 32-bit signed multiply, top 32-bit result.

- **SMLAD and SMLSD** on page 4-68
 Dual 16-bit signed multiply, 32-bit accumulation of sum or difference of 32-bit products.

- **SMMLA and SMMLS** on page 4-70
 32-bit by 32-bit signed multiply, 32-bit accumulation of top 32 bits of product.
 32-bit by 32-bit signed multiply, subtract top 32 bits of product from 32-bit value.

- **SMLALD and SMLSLD** on page 4-72
 Dual 16-bit signed multiply, 64-bit accumulation of sum or difference of 32-bit products.
- **UMAAL on page 4-74**
 Unsigned multiply accumulate accumulate long.

- **MIA, MIAPH, and MIAxy on page 4-75**
 XScale coprocessor 0 instructions.
 Multiply with internal accumulate (32-bit by 32-bit, 40-bit accumulate).
 Multiply with internal accumulate, packed halfwords (16-bit by 16-bit twice, 40-bit accumulate).
 Multiply with internal accumulate (16-bit by 16-bit, 40-bit accumulate).
4.4.1 MUL and MLA

Multiply and multiply-accumulate (32-bit by 32-bit, bottom 32-bit result).

Syntax

\[
\begin{align*}
\text{MUL}\{\text{cond}\}\{S\} & \ Rd, \ Rm, \ Rs \\
\text{MLA}\{\text{cond}\}\{S\} & \ Rd, \ Rm, \ Rs, \ Rn
\end{align*}
\]

where:

- \(\text{cond}\) is an optional condition code (see Conditional execution on page 4-6).
- \(S\) is an optional suffix. If \(S\) is specified, the condition code flags are updated on the result of the operation (see Conditional execution on page 4-6).
- \(Rd\) is the destination register.
- \(Rm, Rs, Rn\) are registers holding the operands.
- Do not use r15 for \(Rd, Rm, Rs,\) or \(Rn\).
- \(Rd\) cannot be the same as \(Rm\).

Usage

The MUL instruction multiplies the values from \(Rm\) and \(Rs\), and places the least significant 32 bits of the result in \(Rd\).

The MLA instruction multiplies the values from \(Rm\) and \(Rs\), adds the value from \(Rn\), and places the least significant 32 bits of the result in \(Rd\).

Condition flags

If \(S\) is specified, these instructions:
- update the N and Z flags according to the result
- do not affect the V flag
- corrupt the C flag in architecture v4 and earlier
- do not affect the C flag in architecture v5 and later.

Architectures

These instructions are available in architecture v2 and above.
Examples

MUL r10, r2, r5
MLA r10, r2, r1, r5
MULS r0, r2, r2
MULLT r2, r3, r3
MLAVC5 r8, r6, r3, r8

Incorrect examples

MUL r15, r0, r3 ; use of r15 not allowed
MLA r1, r1, r6 ; Rd cannot be the same as Rm
4.4.2 UMULL, UMLAL, SMULL and SMLAL

Unsigned and signed long multiply and multiply accumulate (32-bit by 32-bit, 64-bit accumulate or result).

Syntax

```
Op{cond}{S} RdLo, RdHi, Rm, Rs
```

where:

- **Op** is one of UMULL, UMLAL, SMULL, or SMLAL.
- **cond** is an optional condition code (see *Conditional execution* on page 4-6).
- **S** is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation (see *Conditional execution* on page 4-6).
- **RdLo, RdHi** are the destination registers. For UMLAL and SMLAL they also hold the accumulating value.
- **Rm, Rs** are ARM registers holding the operands.

Do not use r15 for RdHi, RdLo, Rm, or Rs.

RdLo, RdHi, and Rm must all be different registers.

Usage

The UMULL instruction interprets the values from Rm and Rs as unsigned integers. It multiplies these integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rm and Rs as unsigned integers. It multiplies these integers, and adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.

The SMULL instruction interprets the values from Rm and Rs as two’s complement signed integers. It multiplies these integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rm and Rs as two’s complement signed integers. It multiplies these integers, and adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo.
Condition flags

If S is specified, these instructions:
- update the N and Z flags according to the result
- corrupt the C and V flags in architecture v4 and earlier
- do not affect the C or V flags in architecture v5 and later.

Architectures

These instructions are available in architecture v3M, and architecture v4 and above except xM variants.

Examples

```plaintext
UMULL       r0,r4,r5,r6
UMLALS      r4,r5,r3,r8
SMLALLES    r8,r9,r7,r6
SMULLNE     r0,r1,r9,r0 ; Rs can be the same as other
              ; registers
```

Incorrect examples

```plaintext
UMULL       r1,r15,r10,r2 ; use of r15 not allowed
SMULLLE     r0,r1,r0,r5 ; RdLo, RdHi and Rm must all be
              ; different registers
```
4.4.3 SMULxy

Signed multiply (16-bit by 16-bit, 32-bit result).

Syntax

SMUL<x><y>{cond} Rd, Rm, Rs

where:

\(<x>\) is either B or T. B means use the bottom end (bits [15:0]) of \(Rm\), T means use the top end (bits [31:16]) of \(Rm\).

\(<y>\) is either B or T. B means use the bottom end (bits [15:0]) of \(Rs\), T means use the top end (bits [31:16]) of \(Rs\).

cond is an optional condition code (see Conditional execution on page 4-6).

Rd is the destination register.

Rm, Rs are the registers holding the values to be multiplied.

Do not use r15 for Rd, Rm, or Rs.

Any combination of Rd, Rm, and Rs can use the same registers.

Usage

SMULxy multiplies the 16-bit signed integers from the selected halves of \(Rm\) and \(Rs\), and places the 32-bit result in \(Rd\).

Condition flags

SMULxy does not affect any flags.

Architectures

SMULxy is available in architecture v6 and above, and E variants of architecture v5.

Example

SMULTBEQ r8, r7, r9

Incorrect examples

SMULTBT r15, r2, r0 ; use of r15 not allowed
SMULTTS r0, r6, r2 ; use of S suffix not allowed
4.4.4 SMLAxy

Signed multiply-accumulate (16-bit by 16-bit, 32-bit accumulate).

Syntax

SMLA<x<y>{cond} Rd, Rm, Rs, Rn

where:

<x> is either B or T. B means use the bottom end (bits [15:0]) of Rm, T means use the top end (bits [31:16]) of Rm.

<y> is either B or T. B means use the bottom end (bits [15:0]) of Rs, T means use the top end (bits [31:16]) of Rs.

cond is an optional condition code (see *Conditional execution* on page 4-6).

Rd is the destination register.

Rm, Rs are the registers holding the values to be multiplied.

Rn is the register holding the value to be added.

Do not use r15 for Rd, Rm, Rs, or Rn.

Any combination of Rd, Rm, Rs, and Rn can use the same registers.

Usage

The SMLAxy instruction multiplies the 16-bit signed integers from the selected halves of Rm and Rs, adds the 32-bit result to the 32-bit value in Rn, and places the result in Rd.

Condition flags

SMLAxy does not affect the N, Z, C, or V flags.

If overflow occurs in the accumulation, SMLAxy sets the Q flag. To read the state of the Q flag, use an MRS instruction (see *MRS* on page 4-115).

--- **Note** ---

SMLAxy never clears the Q flag. To clear the Q flag, use an MSR instruction (see *MSR* on page 4-116).
Architectures

SML\textit{axy} is available in architecture v6 and above, and E variants of architecture v5.

Examples

\begin{verbatim}
SMLATT r8,r1,r0,r8
SMLABBNE r0,r2,r1,r10
SMLABT r0,r0,r3,r5
\end{verbatim}

Incorrect examples

\begin{verbatim}
SMLATB r0,r7,r8,r15 ; use of r15 not allowed
SMLATTTS r0,r6,r2 ; use of S suffix not allowed
\end{verbatim}
4.4.5 SMULWy

Signed multiply (32-bit by 16-bit, top 32-bit result).

Syntax

\texttt{SMULW\{y\}\{cond\} \textit{Rd}, \textit{Rm}, \textit{Rs}}

where:

\begin{itemize}
 \item \textit{<y>} is either B or T. B means use the bottom end (bits [15:0]) of \textit{Rs}, T means use the top end (bits [31:16]) of \textit{Rs}.
 \item \textit{cond} is an optional condition code (see \textit{Conditional execution} on page 4-6).
 \item \textit{Rd} is the destination register.
 \item \textit{Rm}, \textit{Rs} are the registers holding the operands.
\end{itemize}

Do not use r15 for \textit{Rd}, \textit{Rm}, or \textit{Rs}.

Any combination of \textit{Rd}, \textit{Rm}, and \textit{Rs} can use the same registers.

Usage

\texttt{SMULWy} multiplies the signed integer from the selected half of \textit{Rs} by the signed integer from \textit{Rm}, and places the upper 32-bits of the 48-bit result in \textit{Rd}.

Condition flags

\texttt{SMULWy} does not affect any flags.

Architectures

\texttt{SMULWy} is available in architecture v6 and above, and E variants of architecture v5.

Examples

\begin{itemize}
 \item \texttt{SMULWB} \texttt{r2,r4,r7}
 \item \texttt{SMULWTYS} \texttt{r0,r0,r9}
\end{itemize}

Incorrect examples

\begin{itemize}
 \item \texttt{SMULWT} \texttt{r15,r9,r3} ; use of r15 not allowed
 \item \texttt{SMULWBS} \texttt{r0,r4,r5} ; use of S suffix not allowed
\end{itemize}
4.4.6 SMLAWy

Signed multiply-accumulate (32-bit by 16-bit, top 32-bit accumulate).

Syntax

SMLAW<y>{cond} Rd, Rm, Rs, Rn

where:

<y> is either B or T. B means use the bottom end (bits [15:0]) of Rs, T means use the top end (bits [31:16]) of Rs.

cond is an optional condition code (see *Conditional execution* on page 4-6).

Rd is the destination register.

Rm, Rs are the registers holding the values to be multiplied.

Rn is the register holding the value to be added.

Do not use r15 for Rd, Rm, Rs, or Rn.

Any combination of Rd, Rm, Rs, and Rn can use the same registers.

Usage

SMLAWy multiplies the signed integer from the selected half of Rs by the signed integer from Rm, adds the 32-bit result to the 32-bit value in Rn, and places the result in Rd.

Condition flags

SMLAWy does not affect the N, Z, C or V flags.

If overflow occurs in the accumulation, SMLAWy sets the Q flag. To read the state of the Q flag, use an MRS instruction (see *MRS* on page 4-115).

Note

SMLAWy never clears the Q flag. To clear the Q flag, use an MSR instruction (see *MSR* on page 4-116).

Architectures

SMLAWy is available in architecture v6 and above, and E variants of architecture v5.
Examples

SMLAWB r2, r4, r7, r1
SMLAWTVS r0, r0, r9, r2

Incorrect examples

SMLAWT r15, r9, r3, r1 ; use of r15 not allowed
SMLAWBS r0, r4, r5, r1 ; use of S suffix not allowed
4.4.7 **SMLALxy**

Signed multiply-accumulate (16-bit by 16-bit, 64-bit accumulate).

Syntax

SMLAL<x><y>{cond} RdLo, RdHi, Rm, Rs

where:

<x> is either B or T. B means use the bottom end (bits [15:0]) of Rm, T means use the top end (bits [31:16]) of Rm.

<y> is either B or T. B means use the bottom end (bits [15:0]) of Rs, T means use the top end (bits [31:16]) of Rs.

cond is an optional condition code (see Conditional execution on page 4-6).

RdHi, RdLo are the destination registers. They also hold the accumulate value.

Rm, Rs are the registers holding the values to be multiplied.

Do not use r15 for RdHi, RdLo, Rm, or Rs.

Any combination of RdHi, RdLo, Rm, or Rs can use the same registers.

Usage

SMLALxy multiplies the signed integer from the selected half of Rs by the signed integer from the selected half of Rm, and adds the 32-bit result to the 64-bit value in RdHi and RdLo.

Condition flags

SMLALxy does not affect any flags.

--- Note ---

SMLALxy cannot raise an exception. If overflow occurs on this instruction, the result wraps round without any warning.

Architectures

SMLALxy is available in architecture v6 and above, and E variants of architecture v5.
Examples

SMLALTB r2,r3,r7,r1
SMLALBTVS r0,r1,r9,r2

Incorrect examples

SMLALTT r8,r9,r3,r15 ; use of r15 not allowed
SMLALBBS r0,r1,r5,r2 ; use of S suffix not allowed
4.4.8 SMUAD and SMUSD

Dual 16-bit signed multiply with addition or subtraction of products.

Syntax

\[
op \{X\} \{cond\} \ R_d, R_m, R_s\]

where:
- \(op \) is one of SMUAD, SMUSD.
- \(cond \) is an optional condition code (see Conditional execution on page 4-6).
- \(R_d \) is the destination register.
- \(R_m \) is the register holding the first operand.
- \(R_s \) is the register holding the second operand.

Do not use r15 for any of \(R_d, R_m, \) or \(R_s \).

Operation

SMUAD

multiplies the bottom halfword of \(R_m \) with the bottom halfword of the second operand, and the top halfword of \(R_m \) with the top halfword of the second operand. It then adds the products and stores the sum in \(R_d \).

SMUSD

multiplies the bottom halfword of \(R_m \) with the bottom halfword of the second operand, and the top halfword of \(R_m \) with the top halfword of the second operand. It then subtracts the second product from the first, and stores the difference in \(R_d \).

Condition flags

These instructions do not affect any flags.

Architectures

These instructions are available in architecture v6 and above.
Examples

SMUAD r2, r3, r2
SMUSDXNE r0, r1, r2
4.4.9 SMMUL

32-bit by 32-bit signed multiply, producing only the most significant 32-bits of the result.

Syntax

SMMUL{R}{cond} Rd, Rm, Rs

where:

R is an optional parameter. If R is present, the result is rounded, otherwise it is truncated.

cond is an optional condition code (see Conditional execution on page 4-6).

Rd is the destination register.

Rm is the register holding the first operand.

Rs is the register holding the second operand.

Do not use r15 for any of Rd, Rm, or Rs.

Operation

SMMUL multiplies the values from Rm and Rs, and stores the most significant 32 bits of the 64-bit result to Rd.

If the optional R parameter is specified, 0x80000000 is added before extracting the most significant 32 bits. This has the effect of rounding the result.

Condition flags

SMMUL does not affect any flags.

Architectures

SMMUL is available in architecture v6 and above.

Examples

SMMULGE r6, r4, r3
SMMULR r2, r2, r2
4.4.10 SMLAD and SMLSD

Dual 16-bit signed multiply with addition or subtraction of products and 32-bit accumulation.

Syntax

\[\text{op}(X\{\text{cond}\}; \text{Rd}, \text{Rm}, \text{Rs}, \text{Rn}) \]

where:

- **op** is one of:
 - SMLAD: Dual multiply, accumulate sum of products.
 - SMLSD: Dual multiply, accumulate difference of products.
- **cond** is an optional condition code (see Conditional execution on page 4-6).
- **X** is an optional parameter. If X is present, the most and least significant halfwords of the second operand are exchanged before the multiplications occur.
- \(\text{Rd} \) is the destination register.
- \(\text{Rm} \) is the register holding the first operand.
- \(\text{Rs} \) is the register holding the second operand.
- \(\text{Rn} \) is the register holding the accumulate operand.

Do not use r15 for any of \(\text{Rd}, \text{Rm}, \text{Rs}, \) or \(\text{Rn}. \)

Operation

SMLAD multiplies the bottom halfword of \(\text{Rm} \) with the bottom halfword of the second operand, and the top halfword of \(\text{Rm} \) with the top halfword of the second operand. It then adds both products to the value in \(\text{Rn} \) and stores the sum to \(\text{Rd}. \)

SMLSD multiplies the bottom halfword of \(\text{Rm} \) with the bottom halfword of the second operand, and the top halfword of \(\text{Rm} \) with the top halfword of the second operand. It then subtracts the second product from the first, adds the difference to the value in \(\text{Rn} \), and stores the result to \(\text{Rd}. \)

Condition flags

These instructions do not affect any flags.
Architectures

These instructions are available in architecture v6 and above.

Examples

SMLSD r1, r2, r0, r7
SMLSDX r11, r10, r2, r3
SMLADLT r1, r2, r4, r1
4.4.11 SMMLA and SMMLS

32-bit by 32-bit signed multiply, top 32-bit result, with 32-bit accumulation.
32-bit by 32-bit signed multiply, top 32-bit result, subtract from 32-bit value.

Syntax

\[\text{op}(R)\{\text{cond}\} \text{ Rd}, \text{ Rm}, \text{ Rs}, \text{ Rn} \]

where:

- **op** is one of:
 - **SMMLA** Multiply, accumulate, and truncate or round.
 - **SMMLS** Multiply, subtract from \(\text{Rn} \), and truncate or round.

- **R** is an optional parameter. If \(R \) is present, the result is rounded, otherwise it is truncated.

- **cond** is an optional condition code (see *Conditional execution* on page 4-6).

- **Rd** is the destination register.

- **Rm** is the register holding the first operand.

- **Rs** is the register holding the second operand.

- **Rn** is the register holding the accumulate operand.

Do not use \(r15 \) for any of \(\text{Rd}, \text{Rm}, \text{Rs}, \text{Rn} \).

Operation

- **SMMLA** multiplies the values from \(\text{Rm} \) and \(\text{Rs} \), adds the value in \(\text{Rn} \) to the most significant 32 bits of the product, and stores the result in \(\text{Rd} \).

- **SMMLS** multiplies the values from \(\text{Rm} \) and \(\text{Rs} \), subtracts the product from the value in \(\text{Rn} \) shifted left by 32 bits, and stores the most significant 32 bits of the result in \(\text{Rd} \).

If the optional \(R \) parameter is specified, \(0x80000000 \) is added before extracting the most significant 32 bits. This has the effect of rounding the result.

Condition flags

These instructions do not affect any flags.
Architectures

These instructions are available in architecture v6 and above.

Examples

SMMLAREQ r0, r3, r7, r5
SMMLS r2, r1, r5, r3
4.4.12 SMLALD and SMLSLD

Dual 16-bit signed multiply with addition or subtraction of products and 64-bit accumulation.

Syntax

\[
\text{op}(X)\{\text{cond}\} \ Rd_{\text{Lo}}, \ Rd_{\text{Hi}}, \ Rm, \ Rs
\]

where:

- \text{op} is one of:
 - SMLALD Dual multiply, accumulate sum of products.
 - SMLSLD Dual multiply, accumulate difference of products.
- \text{X} is an optional parameter. If \text{X} is present, the most and least significant halfwords of the second operand are exchanged before the multiplications occur.
- \text{cond} is an optional condition code (see \textit{Conditional execution} on page 4-6).
- \text{RdLo}, \text{RdHi} are the destination registers for the 64-bit result. They also hold the 64-bit accumulate operand.
- \text{Rm} is the register holding the first operand.
- \text{Rs} is the register holding the second operand.

Do not use r15 for any of \text{RdLo}, \text{RdHi}, \text{Rm}, or \text{Rs}.

Operation

SMLALD multiplies the bottom halfword of \text{Rm} with the bottom halfword of the second operand, and the top halfword of \text{Rm} with the top halfword of the second operand. It then adds both products to the value in \text{RdLo}, \text{RdHi} and stores the sum to \text{RdLo}, \text{RdHi}.

SMLSLD multiplies the bottom halfword of \text{Rm} with the bottom halfword of the second operand, and the top halfword of \text{Rm} with the top halfword of the second operand. It then subtracts the second product from the first, adds the difference to the value in \text{RdLo}, \text{RdHi}, and stores the result to \text{RdLo}, \text{RdHi}.

Condition flags

These instructions do not affect any flags.
Architectures

These instructions are available in architecture v6 and above.

Examples

- SMLALD r10, r11, r5, r1
- SMLSLD r3, r0, r5, r1
4.4.13 UMAAL

Unsigned multiply accumulate accumulate long.

Syntax

UMAAL\{cond\} RdLo, RdHi, Rm, Rs

where:

cond is an optional condition code (see *Conditional execution* on page 4-6).

RdLo and *RdHi* are the destination registers for the 64-bit result. They also hold the two 32-bit accumulate operands.

Rm is the register holding the first multiply operand.

Rs is the register holding the second multiply operand.

Do not use r15 for any of *RdLo*, *RdHi*, *Rm*, or *Rs*.

Operation

The UMAAL instruction multiplies the 32-bit values in *Rm* and *Rs*, adds the two 32-bit values in *RdHi* and *RdLo*, and stores the 64-bit result to *RdLo*, *RdHi*.

Condition flags

UMAAL does not affect any flags.

Architectures

UMAAL is available in architecture v6 and above.

Examples

- UMAAL r8, r9, r2, r3
- UMAALGE r2, r0, r5, r3
4.4.14 MIA, MIAPH, and MIAxy

XScale coprocessor 0 instructions.

Multiply with internal accumulate (32-bit by 32-bit, 40-bit accumulate).

Multiply with internal accumulate, packed halfwords (16-bit by 16-bit twice, 40-bit accumulate).

Multiply with internal accumulate (16-bit by 16-bit, 40-bit accumulate).

Syntax

MIA{cond} Acc, Rm, Rs
MIAPH{cond} Acc, Rm, Rs
MIA<x><y>{cond} Acc, Rm, Rs

where:

cond is an optional condition code (see Conditional execution on page 4-6).

Acc is the internal accumulator. The standard name is accx, where x is an integer in the range 0-n. The value of n depends on the processor. It is 0 in current processors.

Rm, Rs are the ARM registers holding the values to be multiplied.

<x> is either B or T. B means use the bottom end (bits [15:0]) of Rm, T means use the top end (bits [31:16]) of Rm.

<y> is either B or T. B means use the bottom end (bits [15:0]) of Rs, T means use the top end (bits [31:16]) of Rs.

Do not use r15 for either Rm or Rs.

Usage

The MIA instruction multiplies the signed integers from Rs and Rm, and adds the result to the 40-bit value in Acc.

The MIAPH instruction multiplies the signed integers from the lower halves of Rs and Rm, multiplies the signed integers from the upper halves of Rs and Rm, and adds the two 32-bit results to the 40-bit value in Acc.

The MIAxy instruction multiplies the signed integer from the selected half of Rs by the signed integer from the selected half of Rm, and adds the 32-bit result to the 40-bit value in Acc.
Condition flags

These instructions do not affect any flags.

--- Note ---

These instructions cannot raise an exception. If overflow occurs on these instructions, the result wraps round without any warning.

Architectures

These instructions are only available in XScale processors.

Examples

MIA acc0, r5, r0
MIALE acc0, r1, r9
MIAPH acc0, r0, r7
MIAPHNE acc0, r11, r10
MIABB acc0, r8, r9
MIABT acc0, r8, r8
MIATB acc0, r5, r3
MIATT acc0, r0, r6
MIABTGT acc0, r2, r5
4.5 ARM saturating instructions

This section contains the following subsections:
- What saturating means
- QADD, QSUB, QDADD, and QDSUB on page 4-78
- SSAT and USAT on page 4-80.

Some of the parallel instructions are also saturating, see ARM parallel instructions on page 4-82.

4.5.1 What saturating means

These operations are saturating (SAT). This means that, for some value of 2^n that depends on the instruction:

- for a signed saturating operation, if the full result would be less than -2^n, the result returned is -2^n
- for an unsigned saturating operation, if the full result would be negative, the result returned is zero
- if the full result would be greater than $2^n - 1$, the result returned is $2^n - 1$.

When any of these things occur, it is called saturation. Some instructions set the Q flag when saturation occurs.

Note

Saturating instructions do not clear the Q flag when saturation does not occur. To clear the Q flag, use an MSR instruction (see MSR on page 4-116).

The Q flag can also be set by two other instructions (see SMLAxy on page 4-58 and SMLAWy on page 4-61), but these instructions do not saturate.
4.5.2 QADD, QSUB, QDADD, and QDSUB

Signed add, subtract, double and add, double and subtract, saturating the result to the signed range \(-2^{31} \leq x \leq 2^{31} - 1\).

See also Parallel add and subtract on page 4-83.

Syntax

\[\text{op}\{\text{cond}\} \text{Rd}, \text{Rm}, \text{Rn} \]

where:

- \text{op} is one of QADD, QSUB, QDADD, or QDSUB.
- \text{cond} is an optional condition code (see Conditional execution on page 4-6).
- \text{Rd} is the destination register.
- \text{Rm}, \text{Rn} are the registers holding the operands.

Do not use r15 for \text{Rd}, \text{Rm}, or \text{Rn}.

Usage

The QADD instruction adds the values in \text{Rm} and \text{Rn}.

The QSUB instruction subtracts the value in \text{Rn} from the value in \text{Rm}.

The QDADD instruction calculates \(\text{SAT}(\text{Rm} + \text{SAT}(\text{Rn} \times 2))\). Saturation can occur on the doubling operation, on the addition, or on both. If saturation occurs on the doubling but not on the addition, the Q flag is set but the final result is unsaturated.

The QDSUB instruction calculates \(\text{SAT}(\text{Rm} - \text{SAT}(\text{Rn} \times 2))\). Saturation can occur on the doubling operation, on the subtraction, or on both. If saturation occurs on the doubling but not on the subtraction, the Q flag is set but the final result is unsaturated.

\textbf{Note}

All values are treated as two’s complement signed integers by these instructions.

See also Parallel add and subtract on page 4-83 for similar parallel instructions, available in architecture v6 and above only.
Condition flags

If saturation occurs, these instructions set the Q flag. To read the state of the Q flag, use an MRS instruction (see MRS on page 4-115).

No other flags are affected.

Architectures

These instructions are available in architecture v6 and above, and E variants of architecture v5.

Examples

QADD r0, r1, r9
QDUBLT r9, r0, r1

Incorrect examples

QSUBS r3, r4, r2 ; use of S suffix not allowed
QADD r11, r15, r0 ; use of r15 not allowed
4.5.3 SSAT and USAT

Signed saturate and unsigned saturate to any bit position, with optional shift before saturating.

See also **SSAT16 and USAT16** on page 4-88.

Syntax

```
op{cond} Rd, #sat_imm, Rm{, shift}
```

where:

- *op* is either **SSAT** or **USAT**.
- *cond* is an optional condition code (see **Conditional execution** on page 4-6).
- *Rd* is the destination register.
- *sat_imm* specifies the bit position to saturate to, and is in the range 0 to 31.
- *Rm* is the ARM registers holding the operand.
- *shift* is one of:
 - LSL #n where *n* is in the range 0 to 31
 - ASR #n where *n* is in the range 1 to 32.

Do not use r15 for *Rd* or *Rm*.

Operation

The SSAT instruction applies the specified shift, then saturates to the signed range

$$-2^{sat_imm-1} \leq x \leq 2^{sat_imm-1} - 1$$

The USAT instruction applies the specified shift, then saturates to the unsigned range

$$0 \leq x \leq 2^{sat_imm} - 1$$

Condition flags

If saturation occurs, these instructions set the **Q** flag. To read the state of the **Q** flag, use an **MRS** instruction (see **MRS** on page 4-115).

Architectures

These instructions are available in architecture v6 and above.
Examples

SSAT r7, #16, r7, LSL #4
USATNE r0, #7, r5

Incorrect example

USATGT r0, #7, r15, ASR #16 ; use of r15 not allowed
4.6 ARM parallel instructions

This section contains the following subsections:

- **Parallel add and subtract** on page 4-83
 Various byte-wise and halfword-wise additions and subtractions.

- **USAD8 and USADA8** on page 4-86
 Unsigned sum of absolute differences, and accumulate unsigned sum of absolute differences.

- **SSAT16 and USAT16** on page 4-88
 Parallel halfword saturating instructions.

There are also some parallel unpacking instructions, see **SUNPK and UUNPK** on page 4-91.
4.6.1 Parallel add and subtract

Various byte-wise and halfword-wise additions and subtractions.

Syntax

\(<prefix>op\{cond\} Rd, Rn, Rm\)

where:

- `<prefix>` is one of:
 - S Signed arithmetic modulo \(2^8\) or \(2^{16}\). Sets CPSR GE flags.
 - Q Signed saturating arithmetic.
 - SH Signed arithmetic, halving the results.
 - U Unsigned arithmetic modulo \(2^8\) or \(2^{16}\). Sets CPSR GE flags.
 - UQ Unsigned saturating arithmetic.
 - UH Unsigned arithmetic, halving the results.

- `op` is one of:
 - ADD8 Byte-wise addition
 - ADD16 Halfword-wise addition.
 - SUB8 Byte-wise subtraction.
 - SUB16 Halfword-wise subtraction.
 - ADDSUBX Exchange halfwords of Rm, then add top halfwords and subtract bottom halfwords.
 - SUBADDX Exchange halfwords of Rm, then subtract top halfwords and add bottom halfwords.

- `cond` is an optional condition code (see *Conditional execution* on page 4-6).

- `Rd` is the destination register. Do not use r15 for Rd.

- `Rm, Rn` are the ARM registers holding the operands. Do not use r15 for Rm or Rn.

Operation

These instructions perform arithmetic operations separately on the bytes or halfwords of the operands. They perform two or four additions or subtractions, or one addition and one subtraction.
You can choose various kinds of arithmetic:

- Signed or unsigned arithmetic modulo \(2^8\) or \(2^{16}\). This sets the CPSR GE flags, see the Condition flags section below.

- Signed saturating arithmetic to one of the signed ranges \(-2^{15} \leq x \leq 2^{15} - 1\) or \(-2^{7} \leq x \leq 2^{7} - 1\). The Q flag is not affected even if these operations saturate.

- Unsigned saturating arithmetic to one of the unsigned ranges \(0 \leq x \leq 2^{16} - 1\) or \(0 \leq x \leq 2^{8} - 1\). The Q flag is not affected even if these operations saturate.

- Signed or unsigned arithmetic, halving the results. This cannot cause overflow.

Condition flags

These instructions do not affect the N, Z, C, V, or Q flags.

The Q, S, U, UQ and UH prefix variants of these instructions do not affect any flags.

The S and U prefix variants of these instructions set the GE flags in the CPSR as follows:

- For byte-wise operations, the GE flags are used in the same way as the C (Carry) flag for 32-bit SUB and ADD instructions:
 - GE[0] for bits[7:0] of the result

- For halfword-wise operations, the GE flags are used in the same way as the C (Carry) flag for normal word-wise SUB and ADD instructions:
 - GE[1:0] for bits[15:0] of the result

You can use these flags to control a following SEL instruction, see SEL on page 4-48.

Note

For halfword-wise operations, GE[1:0] are set or cleared together, and GE[3:2] are set or cleared together.

Architectures

These instructions are available in architecture v6 and above.
Examples

SHADD8 r4, r3, r9
USUBADDXNE r0, r0, r2

Incorrect examples

QHADD r2, r9, r3 ; No such instruction, should be QHADD8 or QHADD16
UQSUB16NE r1, r15, r0 ; Use of r15 not allowed
SUBADDX r10, r8, r5 ; Must have a prefix.
4.6.2 **USAD8 and USADA8**

Unsigned sum of absolute differences, and accumulate unsigned sum of absolute differences.

Syntax

\[
\text{USAD8}\{\text{cond}\} \ R d, \ R m, \ R s \\
\text{USADA8}\{\text{cond}\} \ R d, \ R m, \ R s, \ R n
\]

where:

- \(\text{cond}\) is an optional condition code (see *Conditional execution* on page 4-6).
- \(Rd\) is the destination register.
- \(Rm\) is the register holding the first operand.
- \(Rs\) is the register holding the second operand.
- \(Rn\) is the register holding the accumulate operand.

Do not use r15 for \(Rd\), \(Rm\), \(Rs\), or \(Rn\).

Operation

The USAD8 instruction finds the four differences between the unsigned values in corresponding bytes of \(Rm\) and \(Rs\). It adds the absolute values of the four differences, and saves the result to \(Rd\).

The USADA8 instruction adds the absolute values of the four differences to the value in \(Rn\), and saves the result to \(Rd\).

Condition flags

These instructions do not set any flags.

Architectures

These instructions are available in architecture v6 and above.

Examples

USAD8 r2, r4, r6
USADA8 r0, r3, r5, r2
USADA8VS r0, r4, r0, r1
Incorrect examples

USADA8 r2, r4, r6 ; USADA8 needs four registers
USAD8CC r0, r3, r15 ; use of r15 not allowed
USADA16 r0, r4, r0, r1 ; no such instruction
4.6.3 SSAT16 and USAT16

Parallel halfword saturating instructions.

Syntax

\[op\{cond\} \ Rd, \ #sat_imm, \ Rm \]

where:

- **op** is one of:
 - **SSAT16** Signed saturation.
 - **USAT16** Unsigned saturation.
- **cond** is an optional condition code (see Conditional execution on page 4-6).
- **Rd** is the destination register.
- **sat_imm** specifies the bit position to saturate to, and is in the range 1 to 16 for **SSAT16**, or 0 to 15 for **USAT16**.
- **Rm** is the register holding the operand.

Do not use r15 for **Rd** or **Rm**.

Operation

Halfword-wise signed and unsigned saturation to any bit position.

The **SSAT16** instruction saturates each halfword to the signed range
\[-2^{sat_imm - 1} \leq x \leq 2^{sat_imm - 1} - 1 \].

The **USAT16** instruction saturates each halfword to the unsigned range
\[0 \leq x \leq 2^{sat_imm} - 1 \].

Condition flags

If saturation occurs on either halfword, these instructions set the Q flag. To read the state of the Q flag, use an **MRS** instruction (see **MRS** on page 4-115).

Architectures

These instructions are available in architecture v6 and above.
Examples

SSAT16 r7, #12, r7
USAT16 r0, #7, r5

Incorrect examples

SSAT16 r1, #16, r2, LSL #4 ; shifts not allowed with halfword saturations
USAT16 r0, #11, r15 ; use of r15 not allowed
4.7 ARM packing and unpacking instructions

This section contains the following subsections:

- *SUNPK and UUNPK* on page 4-91
 Signed or unsigned unpacking instructions.
- *SADD_TO_ and UADD_TO_* on page 4-93
 Sign extend or zero extend and add.
- *PKHBT and PKHTB* on page 4-95
 Halfword packing instructions.
4.7.1 SUNPK and UUNPK

Signed and unsigned data unpacking instructions.

These instructions do any one of the following:
- sign or zero extend an 8-bit value to 32 bits
- sign or zero extend a 16-bit value to 32 bits
- sign or zero extend two 8-bit values to two 16-bit values.

There are synonyms for a subset of these instructions, matching the equivalent Thumb instructions. See SEXT and UEXT ARM pseudo-instructions on page 4-128 for details.

Syntax

\[\text{op<extend>{cond} Rd, Rm}, \text{rotation} \]

where:

- \(\text{op} \) is one of:
 - SUNPK sign extend.
 - UUNPK zero extend.
- \(\text{<extend>} \) is one of:
 - 8TO16 extend two 8-bit values to two 16-bit values.
 - 8TO32 extend an 8-bit value to a 32-bit value.
 - 16TO32 extend a 16-bit value to a 32-bit value.
- \(\text{cond} \) is an optional condition code (see Conditional execution on page 4-6).
- \(\text{Rd} \) is the destination register. Must not be r15.
- \(\text{Rm} \) is the register holding the operand. Must not be r15.
- \(\text{rotation} \) is one of:
 - ROR #8 the value in \(\text{Rm} \) is rotated right 8 bits.
 - ROR #16 the value in \(\text{Rm} \) is rotated right 16 bits.
 - ROR #24 the value in \(\text{Rm} \) is rotated right 24 bits.
 - If \(\text{rotation} \) is omitted, no rotation is performed.
Operation

These instructions do the following:

1. Rotate the value from \(Rm \) right by 0, 8, 16 or 24 bits.
2. Do one of the following to the value obtained:
 - extract bits[7:0], and sign or zero extend to form bits[31:0] of the result
 - extract bits[15:0], and sign or zero extend to form bits[31:0] of the result.
 - extract bits[23:16] and bits[7:0], and sign or zero extend them to form bits[31:16] and bits[15:0] of the result respectively

Condition flags

These instructions do not affect any flags.

Architectures

These instructions are available in architecture v6 and above.

Examples

- SUNPK16T032 \(r3, r9 \)
- UUNPK8T016EQ \(r0, r0, ROR \#24 \)

Incorrect examples

- UUNPK8T032 \(r0, r15 \) ; use of r15 not allowed
- SUNPK16T032 \(r9, r3, ROR \#12 \) ; rotation must be by 0, 8, 16, or 24.
4.7.2 **SADD_TO_ and UADD_TO_**

Sign extend or zero extend and add.

These instructions do any one of the following:
- sign or zero extend an 8-bit value to 32 bits, and add a 32-bit value
- sign or zero extend a 16-bit value to 32 bits, and add a 32-bit value
- sign or zero extend two 8-bit values to two 16-bit values, and add two 16-bit values.

Syntax

\[op<extend>{cond} Rd, Rn, Rm[, rotation] \]

where:
- **op** is one of:
 - SADD sign extend and add.
 - UADD zero extend and add.
- **<extend>** is one of:
 - 8TO16 extends two 8-bit values to two 16-bit values.
 - 8TO32 extends an 8-bit value to a 32-bit value.
 - 16TO32 extends a 16-bit value to a 32-bit value.
- **cond** is an optional condition code (see *Conditional execution* on page 4-6).
- **Rd** is the destination register. Must not be r15.
- **Rn** is the register holding the first operand. Must not be r15.
- **Rm** is the register holding the second operand. Must not be r15.
- **rotation** is one of:
 - ROR \#8 the value from \(Rm \) is rotated right 8 bits.
 - ROR \#16 the value from \(Rm \) is rotated right 16 bits.
 - ROR \#24 the value from \(Rm \) is rotated right 24 bits.

If **rotation** is omitted, no rotation is performed.
Operation

These instructions do the following:

1. Rotate the value from \(Rm \) right by 0, 8, 16 or 24 bits.
2. Do one of the following to the value obtained:
 - extract bits[7:0], sign or zero extend to 32 bits, and add the value from \(Rn \).
 - extract bits[15:0], sign or zero extend to 32 bits, and add the value from \(Rn \).
 - extract bits[23:16] and bits[7:0], sign or zero extend them to 16 bits, then add them to bits[31:16] and bits[15:0] respectively of \(Rn \) to form bits[31:16] and bits[15:0] of the result.

Condition flags

These instructions do not affect any flags.

Architectures

These instructions are available in architecture v6 and above.

Examples

SADD16TO32 \(\ r3, r9, r4 \)
UADD8TO16EQ \(\ r0, r0, r4, \text{ROR} \ #16 \)

Incorrect examples

UADD8TO32 \(\ r0, r2, r15 \) ; use of r15 not allowed
SADD16TO32 \(\ r9, r3, r2, \text{ROR} \ #12 \) ; rotation must be by 0, 8, 16, or 24.
4.7.3 PKHBT and PKHTB

Halfword packing instructions.

Combine a halfword from one register with a halfword from another register. One of the operands can be shifted before extraction of the halfword.

Syntax

\[\text{op}(\text{cond}) \text{ Rd, Rn, Rm}, \text{ shift} \]

where:

- \text{op} is one of:
 - \text{PKHBT} combines bits[15:0] of \text{Rn} with bits[31:16] of the shifted value from \text{Rm}.
 - \text{PKHTB} combines bits[31:16] of \text{Rn} with bits[15:0] of the shifted value from \text{Rm}.

- \text{cond} is an optional condition code (see *Conditional execution* on page 4-6).

- \text{Rd} is the destination register.

- \text{Rn} is the register holding the first operand.

- \text{Rm} is the register holding the second operand.

- \text{shift} is one of:
 - \text{LSL} \#n where \(n \) is in the range 0 to 31. Only available for \text{PKHBT}.
 - \text{ASR} \#n where \(n \) is in the range 1 to 32. Only available for \text{PKHTB}.

Do not use r15 for \text{Rd}, \text{Rm}, or \text{Rn}.

Condition flags

These instructions do not affect any flags.

Architectures

These instructions are available in architecture v6 and above.
Examples

PKHBT r0, r3, r5 ; combine the bottom halfword of r3 with the top halfword of r5
PKHBT r0, r3, r5, LSL #16; combine the bottom halfword of r3 with the bottom halfword of r5
PKHTB r0, r3, r5, ASR #16 ; combine the top halfword of r3 with the top halfword of r5

You can also scale the second operand by using different values of shift.

Incorrect examples

PKHBT r4, r15, r1 ; use of r15 not allowed
PKHBTEQ r4, r5, r1, ASR #8 ; ASR not allowed with PKHTB
4.8 ARM branch instructions

This section contains the following subsections:

- **B and BL** on page 4-98
 Branch, and Branch with Link.

- **BX** on page 4-99
 Branch and exchange instruction set.

- **BLX** on page 4-100
 Branch with Link and exchange instruction set.

- **BXJ** on page 4-102
 Branch and change instruction set to Java.
4.8.1 B and BL

Branch, and Branch with Link.

Syntax

\[B\{\text{cond}\} \text{ label} \]
\[BL\{\text{cond}\} \text{ label} \]

where:

- \text{cond} is an optional condition code (see Conditional execution on page 4-6).
- \text{label} is a program-relative expression. See Register-relative and program-relative expressions on page 3-23 for more information.

Usage

The \texttt{B} instruction causes a branch to \texttt{label}.

The \texttt{BL} instruction copies the address of the next instruction into r14 (lr, the link register), and causes a branch to \texttt{label}.

Machine-level \texttt{B} and \texttt{BL} instructions have a range of \(\pm 32\text{Mb} \) from the address of the current instruction. However, you can use these instructions even if \texttt{label} is out of range. Often you do not know where \texttt{label} is placed by the linker. When necessary, the ARM linker adds code to allow longer branches (see The ARM linker chapter in RealView Compilation Tools v2.0 Linker and Utilities Guide). The added code is called a \textit{veneer}.

Architectures

These instructions are available in all versions of the ARM architecture.

Examples

\begin{verbatim}
B loopA
BLE ng+8
BL subC
BLLT rtX
\end{verbatim}
4.8.2 BX

Branch, and optionally exchange instruction set.

Syntax

BX{cond} Rm

where:

cond is an optional condition code (see Conditional execution on page 4-6).
Rm is an ARM register containing the address to branch to.
Bit 0 of Rm is not used as part of the address.
If bit 0 of Rm is set, the instruction sets the T flag in the CPSR, and the code at the destination is interpreted as Thumb code.
If bit 0 of Rm is clear, bit 1 must not be set.

Usage

The BX instruction causes a branch to the address held in Rm, and changes instruction set to Thumb if bit 0 of Rm is set.

 Architectures

This instruction is available in all T variants of the ARM architecture, and architecture v5 and above.

Examples

 BX r7
 BXVS r0
4.8.3 BLX

Branch with Link, and optionally exchange instruction set. This instruction has the following alternative forms:

- an unconditional branch with link to a program-relative address
- a conditional branch with link to an absolute address held in a register.

Syntax

BLX\{cond\} Rm

BLX label

where:

cond is an optional condition code (see *Conditional execution* on page 4-6).

Rm is an ARM register containing the address to branch to.

Bit 0 of Rm is not used as part of the address.

If bit 0 of Rm is set, the instruction sets the T flag in the CPSR, and the code at the destination is interpreted as Thumb code.

If bit 0 of Rm is clear, bit 1 must not be set.

label is a program-relative expression. See *Register-relative and program-relative expressions* on page 3-23 for more information.

Note

BLX label cannot be conditional. BLX label always causes a change to Thumb state.

Usage

The BLX instruction:

- copies the address of the next instruction into r14 (lr, the link register)
- causes a branch to label, or to the address held in Rm
- changes instruction set to Thumb if either:
 - bit 0 of Rm is set
 - the BLX label form is used.

The machine-level BLX label instruction cannot branch to an address outside ±32Mb of the current instruction. When necessary, the ARM linker adds code to allow longer branches (see *The ARM linker* chapter in *RealView Compilation Tools v2.0 Linker and Utilities Guide*). The added code is called a *veneer*.
Architectures

This instruction is available in all T variants of architecture v5 and above.

Examples

BLX r2
BLXNE r0
BLX thumbsub

Incorrect example

BLXMI thumbsub ; BLX label cannot be conditional
4.8.4 BXJ

Change instruction set to Java, or operate in the same way as the equivalent BX instruction if Java state is not available.

Syntax

BXJ{cond} Rm

where:

cond is an optional condition code (see Conditional execution on page 4-6).

Rm is an ARM register containing the address to branch to if Java state is not available. Do not use r15 for Rm.

If Java state is not available:

- Bit 0 of Rm is not used as part of the address.
- If bit 0 of Rm is set, the instruction sets the T flag in the CPSR, and the code at the destination is interpreted as Thumb code.
- If bit 0 of Rm is clear, bit 1 must not be set.

Usage

The BXJ instruction causes a change to Java state if possible. Otherwise, it causes a branch to the address held in Rm, and changes instruction set to Thumb if bit 0 of Rm is set.

Architectures

This instruction is available in all J variants of the ARM architecture, and architecture v6 and above.

Examples

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Rm</th>
</tr>
</thead>
<tbody>
<tr>
<td>BXJ</td>
<td>r7</td>
</tr>
<tr>
<td>BXJGE</td>
<td>r0</td>
</tr>
</tbody>
</table>
4.9 Coprocessor instructions

This section does not describe Vector Floating-point instructions (see Chapter 6 Vector Floating-point Programming).

It contains the following sections:

- **CDP, CDP2** on page 4-104
 Coprocessor data operations

- **MCR, MCR2, MCRR, and MCRR2** on page 4-105
 Move to coprocessor from ARM registers, possibly with coprocessor operations

- **MRC, MRC2** on page 4-107
 Move to ARM register from coprocessor, possibly with coprocessor operations

- **MRRC and MRRC2** on page 4-108
 Move to two ARM registers from coprocessor, possibly with coprocessor operations

- **LDC, STC** on page 4-109
 Transfer data between memory and coprocessor.
4.9.1 CDP, CDP2

Coprocessor data operations.

Syntax

CDP\{cond\} coproc, opcode1, CRd, CRn, CRm\{, opcode2\}

CDP2 coproc, opcode1, CRd, CRn, CRm\{, opcode2\}

where:

- cond is an optional condition code (see *Conditional execution* on page 4-6).
- coproc is the name of the coprocessor the instruction is for. The standard name is \(pn\), where \(n\) is an integer in the range 0-15.
- opcode1 is a coprocessor-specific opcode.
- \(CRd\), \(CRn\), \(CRm\) are coprocessor registers.
- opcode2 is an optional coprocessor-specific opcode.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

--- Note ---

CDP2 is always unconditional.

Architectures

CDP is available in architecture versions 2 and above.

CDP2 is available in architecture versions 5 and above.
4.9.2 MCR, MCR2, MCRR, and MCRR2

Move to coprocessor from ARM registers. Depending on the coprocessor, you might be able to specify various operations in addition.

Syntax

MCR{cond} coproc, opcode1, Rd, CRn, CRm[, opcode2]

MCR2 coproc, opcode1, Rd, CRn, CRm

MCRR{cond} coproc, opcode1, Rd, Rn, CRm

MCRR2 coproc, opcode1, Rd, Rn, CRm

where:

- **cond** is an optional condition code (see *Conditional execution* on page 4-6).
- **coproc** is the name of the coprocessor the instruction is for. The standard name is pn, where n is an integer in the range 0-15.
- **opcode1** is a coprocessor-specific opcode.
- **Rd, Rn** are ARM source registers. Do not use r15 for Rd or Rn.
- **CRn, CRm** are coprocessor registers.
- **opcode2** is an optional coprocessor-specific opcode.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

--- **Note** ---

MCR2 and MCRR2 are always unconditional.

Architectures

- **MCR** is available in architecture versions 2 and above.
- **MCR2** is available in architecture versions 5 and above.
- **MCRR** is available in architecture v6 and above, and E variants of architecture v5 excluding xP variants.
MCRR2 is available in architecture v6 and above.
4.9.3 MRC, MRC2

Move to ARM register from coprocessor. Depending on the coprocessor, you might be able to specify various operations in addition.

Syntax

\[
\text{MRC} \{\text{cond}\} \coproc, \ \text{opcode1}, \ Rd, \ \text{CRn}, \ \text{CRm}\{, \ \text{opcode2}\} \\
\text{MRC2} \ \coproc, \ \text{opcode1}, \ Rd, \ \text{CRn}, \ \text{CRm}\{, \ \text{opcode2}\}
\]

where:

- \text{cond} is an optional condition code (see \textit{Conditional execution} on page 4-6).
- \text{coproc} is the name of the coprocessor the instruction is for. The standard name is \(p_n\), where \(n\) is an integer in the range 0-15.
- \text{opcode1} is a coprocessor-specific opcode.
- \text{Rd} is the ARM destination register. If \(Rd\) is \(r15\), only the flags field is affected.
- \text{CRn}, \ \text{CRm} are coprocessor registers.
- \text{opcode2} is an optional coprocessor-specific opcode.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

--- Note ---

\text{MRC2} is always unconditional.

Architectures

\text{MRC} is available in architecture versions 2 and above.

\text{MRC2} is available in architecture versions 5 and above.
4.9.4 MRRC and MRRC2

Move to two ARM registers from coprocessor. Depending on the coprocessor, you might be able to specify various operations in addition.

Syntax

```
MRRC{cond} coproc, opcode, Rd, Rn, CRm
MRRC2 coproc, opcode, Rd, Rn, CRm
```

where:

- `cond` is an optional condition code (see *Conditional execution* on page 4-6).
- `coproc` is the name of the coprocessor the instruction is for. The standard name is `pn`, where `n` is an integer in the range 0-15.
- `opcode` is a coprocessor-specific opcode.
- `Rd, Rn` are ARM destination registers. Do not use `r15` for `Rd` or `Rn`.
- `CRm` is the coprocessor source register.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor documentation for details.

Note

MRRC2 is always unconditional.

Architectures

MRRC is available in architecture v6 and above, and E variants of architecture v5 excluding xP variants.

MRRC2 is available in architecture v6 and above.
4.9.5 LDC, STC

Transfer data between memory and coprocessor.

Syntax

These instructions have three possible forms:
- zero offset
- pre-indexed offset
- post-indexed offset.

The syntax of the three forms, in the same order, are:

\[
\text{op}\{\text{cond}\}\{\text{L}\} \coproc, \ CRd, [\text{Rn}]
\]

\[
\text{op}\{\text{cond}\}\{\text{L}\} \coproc, \ CRd, \ [\text{Rn}, \#(-)\text{offset}]\{!\}
\]

\[
\text{op}\{\text{cond}\}\{\text{L}\} \coproc, \ CRd, \ [\text{Rn}], \#(-)\text{offset}
\]

where:

- \text{op} is either LDC or STC.
- \text{cond} is an optional condition code (see Conditional execution on page 4-6).
- \text{L} is an optional suffix specifying a long transfer.
- \text{coproc} is the name of the coprocessor the instruction is for. The standard name is \text{pn}, where \text{n} is an integer in the range 0-15.
- \text{CRd} is the coprocessor register to load or save.
- \text{Rn} is the register on which the memory address is based. If r15 is specified, the value used is the address of the current instruction plus eight.
- \text{-} is an optional minus sign. If - is present, the offset is subtracted from \text{Rn}. Otherwise, the offset is added to \text{Rn}.
- \text{offset} is an expression evaluating to a multiple of 4, in the range 0-1020.
- \text{!} is an optional suffix. If ! is present, the address including the offset is written back into \text{Rn}.

Usage

The use of this instruction depends on the coprocessor. See the coprocessor documentation for details.
Architectures

LDC and STC are available in architecture versions 2 and above.
4.9.6 LDC2, STC2

Transfer data between memory and coprocessor, alternative instructions.

Syntax

These instructions have three possible forms:

- zero offset
- pre-indexed offset
- post-indexed offset.

The syntax of the three forms, in the same order, are:

\[
\begin{align*}
\text{op coproc, CRd, } \lfloor Rn \rfloor \\
\text{op coproc, CRd, } \lfloor Rn, \#\{-\text{offset}\}\rfloor ! \\
\text{op coproc, CRd, } \lfloor Rn \rfloor, \#\{-\text{offset}\}
\end{align*}
\]

where:

- \text{op} is either LDC2 or STC2.
- \text{coproc} is the name of the coprocessor the instruction is for. The standard name is \text{p}n, where \text{n} is an integer in the range 0-15.
- \text{CRd} is the coprocessor register to load or save.
- \text{Rn} is the register on which the memory address is based. If r15 is specified, the value used is the address of the current instruction plus eight.
- \text{-} is an optional minus sign. If - is present, the offset is subtracted from \text{Rn}. Otherwise, the offset is added to \text{Rn}.
- \text{offset} is an expression evaluating to a multiple of 4, in the range 0-1020.
- \text{!} is an optional suffix. If ! is present, the address including the offset is written back into \text{Rn}.

Usage

The use of this instruction depends on the coprocessor. See the coprocessor documentation for details.

--- Note ---

LDC2 and STC2 are always unconditional.
Architectures

LDC2 and STC2 are available in architecture versions 5 and above.
4.10 Miscellaneous ARM instructions

This section contains the following subsections:

- **SWI** on page 4-114
 Software interrupt.

- **MRS** on page 4-115
 Move the contents of the CPSR or SPSR to a general-purpose register.

- **MSR** on page 4-116
 Load specified fields of the CPSR or SPSR with an immediate constant, or from
 the contents of a general-purpose register.

- **CPS** on page 4-117
 Change processor state.

- **SETEND** on page 4-119
 Set the endianness bit in the CPSR.

- **BKPT** on page 4-120
 Breakpoint.

- **MAR, MRA** on page 4-121
 XScale coprocessor 0 instructions.
 Transfer between two general-purpose registers and a 40-bit internal accumulator.
4.10.1 SWI

Software interrupt.

Syntax

SWI\{cond\} immed_24

where:

cond is an optional condition code (see Conditional execution on page 4-6).

immed_24 is an expression evaluating to an integer in the range 0-2^{24}-1 (a 24-bit integer).

Usage

The SWI instruction causes a SWI exception. This means that the processor mode changes to Supervisor, the CPSR is saved to the Supervisor mode SPSR, and execution branches to the SWI vector (see the Handling Processor Exceptions chapter in RealView Compilation Tools v2.0 Developer Guide).

Condition flags

This instruction does not affect the flags.

Architectures

This instruction is available in all versions of the ARM architecture.

Example

SWI 0x123456
4.10.2 MRS

Move the contents of the CPSR or SPSR to a general-purpose register.

Syntax

MRS\{cond\} Rd, psr

where:
- \textit{cond} is an optional condition code (see \textit{Conditional execution} on page 4-6).
- \textit{Rd} is the destination register. \textit{Rd} must not be r15.
- \textit{psr} is either CPSR or SPSR.

Usage

Use \texttt{MRS} in combination with \texttt{MSR} as part of a read-modify-write sequence for updating a PSR, for example to change processor mode, or to clear the Q flag.

\begin{quote}
\textbf{Caution}

You must not attempt to access the SPSR when the processor is in User or System mode. This is your responsibility. The assembler cannot warn you about this because it does not know in what processor mode the code will be executed.
\end{quote}

Condition flags

This instruction does not affect the flags.

Architectures

\texttt{MRS} is available in architecture versions 3 and above.

Example

\begin{verbatim}
MRS r3, SPSR
\end{verbatim}
4.10.3 MSR

Load specified fields of the CPSR or SPSR with an immediate constant, or from the contents of a general-purpose register.

Syntax

MSR{cond} <psr>_<fields>, #immed_8r
MSR{cond} <psr>_<fields>, Rm

where:

cond is an optional condition code (see Conditional execution on page 4-6).
<psr> is either CPSR or SPSR.
<fields> specifies the field or fields to be moved. <fields> can be one or more of:
c control field mask byte, PSR[7:0]
x extension field mask byte, PSR[15:8]
s status field mask byte, PSR[23:16]
f flags field mask byte, PSR[31:24].
immed_8r is an expression evaluating to a numeric constant. The constant must correspond to an 8-bit pattern rotated by an even number of bits within a 32-bit word.
Rm is the source register.

Usage

See MRS on page 4-115.

Condition flags

This instruction updates the flags explicitly if the f field is specified.

Architectures

MSR is available in architecture versions 3 and above.

Example

MSR CPSR_f, r5
4.10.4 CPS

Change processor state.

--- Note ---
CPS has no effect in User mode.
CPS cannot be conditional.

Syntax

CPS\textit{effect} \textit{iflags}\{, \#\textit{mode}\}
CPS \#\textit{mode}

where:

\textit{effect} is one of the following:
\begin{itemize}
 \item \textit{IE} Interrupt enable.
 \item \textit{ID} Interrupt disable.
\end{itemize}

\textit{iflags} is a sequence of one or more of the following:
\begin{itemize}
 \item \textit{a} Enables or disables imprecise aborts.
 \item \textit{i} Enables or disables IRQ interrupts.
 \item \textit{f} Enables or disables FIQ interrupts.
\end{itemize}

\textit{mode} specifies the number of the mode to change to.

Operation

CPS makes the changes specified, without affecting any other bits in the CPSR.

Condition flags

CPS does not affect any condition flags.

Architectures

CPS is available in architecture v6 and above.
Examples

CPSIE if ; enable interrupts and fast interrupts
CPSID A ; disable imprecise aborts
CPSID ai, #17 ; disable imprecise aborts and interrupts, and enter FIQ mode
CPS #16 ; enter User mode

Incorrect example

CPSEQ #19 ; CPS cannot be conditional
4.10.5 SETEND

Set the endianness bit in the CPSR.

--- Note ---

SETEND cannot be conditional.

Syntax

SETEND specifier

where:

specifier is one of the following:

BE Big endian.
LE Little endian.

Usage

Use SETEND to access data of different endianness, for example to access several big-endian DMA-formatted data fields by an otherwise little-endian application.

Architectures

SETEND is available in architecture v6 and above.

Example

```
SETEND BE          ; Set the CPSR E bit for big-endian accesses
LDR r0, [r2, #header]
LDR r1, [r2, #CRC32]
SETEND LE          ; Set the CPSR E bit for little-endian accesses for the
; rest of the application
```
4.10.6 BKPT

Breakpoint.

Syntax

BKPT *immed_16*

where:

immed_16 is an expression evaluating to an integer in the range 0-65535 (a 16-bit integer). *immed_16* is ignored by ARM hardware, but can be used by a debugger to store additional information about the breakpoint.

Usage

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system state when the instruction at a particular address is reached.

Architectures

BKPT is available in architecture versions 5 and above.

Examples

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BKPT</td>
<td>0xF02C</td>
</tr>
<tr>
<td>BKPT</td>
<td>640</td>
</tr>
</tbody>
</table>
4.10.7 MAR, MRA

XScale coprocessor 0 instructions.
Transfer between two general-purpose registers and a 40-bit internal accumulator.

Syntax

\[
\text{MAR}\{\text{cond}\} \ Acc, \ RdLo, \ RdHi \\
\text{MRA}\{\text{cond}\} \ RdLo, \ RdHi, \ Acc
\]

where:

\(\text{cond}\) is an optional condition code (see Conditional execution on page 4-6).

\(\text{Acc}\) is the internal accumulator. The standard name is \text{acc}x, where \(x\) is an integer in the range 0-\(n\). The value of \(n\) depends on the processor. It is 0 for current processors.

\(\text{RdLo, RdHi}\) are general-purpose registers.

Usage

The \text{MAR} instruction copies the contents of \(\text{RdLo}\) to bits[31:0] of \(\text{Acc}\), and the least significant byte of \(\text{RdHi}\) to bits[39:32] of \(\text{Acc}\).

The \text{MRA} instruction:
- copies bits[31:0] of \(\text{Acc}\) to \(\text{RdLo}\)
- copies bits[39:32] of \(\text{Acc}\) to \(\text{RdHi}\)
- sign extends the value by copying bit[39] of \(\text{Acc}\) to bits[31:8] of \(\text{RdHi}\).

Architectures

These instructions are only available in XScale processors.

Examples

\[
\begin{align*}
\text{MAR} & \quad \text{acc}0, \text{r}0, \text{r}1 \\
\text{MRA} & \quad \text{r}4, \text{r}5, \text{acc}0 \\
\text{MARNE} & \quad \text{acc}0, \text{r}9, \text{r}2 \\
\text{MRAGT} & \quad \text{r}4, \text{r}8, \text{acc}0
\end{align*}
\]
4.11 ARM pseudo-instructions

The ARM assembler supports a number of pseudo-instructions that are translated into the appropriate combination of ARM or Thumb instructions at assembly time.

The pseudo-instructions available in ARM state are described in the following sections:

- **ADR ARM pseudo-instruction** on page 4-123
 Load a program-relative or register-relative address (short range)

- **ADRL ARM pseudo-instruction** on page 4-124
 Load a program-relative or register-relative address into a register (medium range)

- **LDR ARM pseudo-instruction** on page 4-126
 Load a register with a 32-bit constant value or an address (unlimited range)

- **SEXT and UEXT ARM pseudo-instructions** on page 4-128
 Sign extend or zero extend byte or halfword to word.

- **NOP ARM pseudo-instruction** on page 4-129
 Generate the preferred ARM no-operation code.
4.11.1 ADR ARM pseudo-instruction

Load a program-relative or register-relative address into a register.

Syntax

ADR{cond}; register, expr

where:

cond is an optional condition code.

register is the register to load.

expr is a program-relative or register-relative expression that evaluates to:

• a non word-aligned address within ±255 bytes
• a word-aligned address within ±1020 bytes.

More distant addresses can be used if the alignment is 16 bytes or more.

The address can be either before or after the address of the instruction or the base register (see Register-relative and program-relative expressions on page 3-23).

Note

For program-relative expressions, the given range is relative to a point two words after the address of the current instruction.

Usage

ADR always assembles to one instruction. The assembler attempts to produce a single ADD or SUB instruction to load the address. If the address cannot be constructed in a single instruction, an error is generated and the assembly fails.

ADR produces position-independent code, because the address is program-relative or register-relative.

Use the ADRL pseudo-instruction to assemble a wider range of effective addresses.

If expr is program-relative, it must evaluate to an address in the same assembler area as the ADR pseudo-instruction, see AREA on page 7-54.

Example

start MOV r0,#10
ADR r4,start ; => SUB r4,pc,#0xc
4.11.2 ADRL ARM pseudo-instruction

Load a program-relative or register-relative address into a register. It is similar to the ADR pseudo-instruction. ADRL can load a wider range of addresses than ADR because it generates two data processing instructions.

_____ Note _______
ADRL is not available when assembling Thumb instructions. Use it only in ARM code.

Syntax

ADR{cond}L register,expr

where:

cond is an optional condition code.

register is the register to load.

expr is a program-relative or register-relative expression that evaluates to:

• a non word-aligned address within 64KB
• a word-aligned address within 256KB.

More distant addresses can be used if the alignment is 16 bytes or more. The address can be either before or after the address of the instruction or the base register (see Register-relative and program-relative expressions on page 3-23).

_____ Note _______
For program-relative expressions, the given range is relative to a point two words after the address of the current instruction.

Usage

ADRL always assembles to two instructions. Even if the address can be reached in a single instruction, a second, redundant instruction is produced.

If the assembler cannot construct the address in two instructions, it generates an error message and the assembly fails. See LDR ARM pseudo-instruction on page 4-126 for information on loading a wider range of addresses (see also Loading constants into registers on page 2-27).

ADRL produces position-independent code, because the address is program-relative or register-relative.
If `expr` is program-relative, it must evaluate to an address in the same assembler area as the `ADRL` pseudo-instruction, see `AREA` on page 7-54. Otherwise, it might be out of range after linking.

Example

```
start   MOV     r0,#10
       ADRL    r4,start + 60000     ; => ADD r4,pc,#0xe800
              ; ADD r4,r4,#0x254
```
4.11.3 LDR ARM pseudo-instruction

Load a register with either:
• a 32-bit constant value
• an address.

——Note——
This section describes the LDR pseudo-instruction only. See ARM Memory access instructions on page 4-8 for information on the LDR instruction.

Also, see Loading with LDR Rd, =const on page 2-29, for information on loading constants with the LDR pseudo-instruction.

Syntax

LDR{cond} register,=[expr | label-expr]

where:
cond is an optional condition code.

register is the register to be loaded.

expr evaluates to a numeric constant:
• the assembler generates a MOV or MVN instruction, if the value of expr is within range
• if the value of expr is not within range of a MOV or MVN instruction, the assembler places the constant in a literal pool and generates a program-relative LDR instruction that reads the constant from the literal pool.

label-expr is a program-relative or external expression. The assembler places the value of label-expr in a literal pool and generates a program-relative LDR instruction that loads the value from the literal pool.

If label-expr is an external expression, or is not contained in the current section, the assembler places a linker relocation directive in the object file. The linker generates the address at link time.
Usage

The main purposes of the LDR pseudo-instruction are:

- To generate literal constants when an immediate value cannot be moved into a register because it is out of range of the MOV and MVN instructions
- To load a program-relative or external address into a register. The address remains valid regardless of where the linker places the ELF section containing the LDR.

Note
An address loaded in this way is fixed at link time, so the code is not position-independent.

The offset from the PC to the value in the literal pool must be less than 4KB. You are responsible for ensuring that there is a literal pool within range. See LTORG on page 7-14 for more information.

See *Loading constants into registers* on page 2-27 for a more detailed explanation of how to use LDR, and for more information on MOV and MVN.

Example

```
LDR  r3,=0xff0    ; loads 0xff0 into r3
     ; => MOV r3,#0xff0
LDR  r1,=0xfff    ; loads 0xfff into r1
     ; => LDR r1,[pc,offset_to_litpool]
     ;     ... 
     ;     litpool DCD 0xfff
LDR  r2,=place    ; loads the address of 
     ; place into r2
     ; => LDR r2,[pc,offset_to_litpool]
     ;     ... 
     ;     litpool DCD place
```
4.11.4 SEXT and UEXT ARM pseudo-instructions

SEXT and UEXT are synonyms for SUNPK and UUNPK, with no rotation, and the 8T016 extension not allowed. See SUNPK and UUNPK on page 4-91 for more details.

They are ARM equivalents of the Thumb SEXT and UEXT instructions, but can be conditional.

Syntax

\[\text{op<extend>{cond} Rd, Rm} \]

where:

- **op** is one of:
 - SEXT sign extend.
 - UEXT zero extend.
- **<extend>** is one of:
 - 8 extend an 8-bit value to a 32-bit value.
 - 16 extend a 16-bit value to a 32-bit value.
- **cond** is an optional condition code (see Conditional execution on page 4-6).
- **Rd** is the destination register. Must not be r15.
- **Rm** is the register holding the operand. Must not be r15.

Flags

All flags are unaltered by SEXT and UEXT.
4.11.5 NOP ARM pseudo-instruction

NOP generates the preferred ARM no-operation code.

The following instruction might be used, but this is not guaranteed:

MOV r0, r0

Syntax

NOP

Usage

NOP cannot be used conditionally. Not executing a no-operation is the same as executing it, so conditional execution is not required.

ALU status flags are unaltered by NOP.
Chapter 5
Thumb Instruction Reference

This chapter describes the Thumb instructions that are provided by the ARM assembler and the inline assemblers in the ARM C and C++ compilers. It contains the following sections:

- **Thumb memory access instructions** on page 5-4
- **Thumb arithmetic instructions** on page 5-15
- **Thumb general data processing instructions** on page 5-22
- **Thumb branch instructions** on page 5-34
- **Thumb miscellaneous instructions** on page 5-41
- **Thumb pseudo-instructions** on page 5-46.

See Table 5-1 on page 5-2 to locate individual directives or pseudo-instructions.
<table>
<thead>
<tr>
<th>Instruction mnemonic</th>
<th>Brief description</th>
<th>Page</th>
<th>Architecturea</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Add with carry</td>
<td>page 5-21</td>
<td>4T</td>
</tr>
<tr>
<td>ADD</td>
<td>Add</td>
<td>page 5-15</td>
<td>4T</td>
</tr>
<tr>
<td>ADR</td>
<td>Load address (pseudo-instruction)</td>
<td>page 5-47</td>
<td>-</td>
</tr>
<tr>
<td>AND</td>
<td>Logical AND</td>
<td>page 5-23</td>
<td>4T</td>
</tr>
<tr>
<td>ASR</td>
<td>Arithmetic shift right</td>
<td>page 5-24</td>
<td>4T</td>
</tr>
<tr>
<td>B</td>
<td>Branch</td>
<td>page 5-35</td>
<td>4T</td>
</tr>
<tr>
<td>BIC</td>
<td>Bit clear</td>
<td>page 5-23</td>
<td>4T</td>
</tr>
<tr>
<td>BKPT</td>
<td>Breakpoint</td>
<td>page 5-45</td>
<td>5T</td>
</tr>
<tr>
<td>BL</td>
<td>Branch with link</td>
<td>page 5-37</td>
<td>4T</td>
</tr>
<tr>
<td>BLX</td>
<td>Branch with link and exchange instruction sets</td>
<td>page 5-39</td>
<td>5T</td>
</tr>
<tr>
<td>BX</td>
<td>Branch and exchange instruction sets</td>
<td>page 5-38</td>
<td>4T</td>
</tr>
<tr>
<td>CMN, CMP</td>
<td>Compare negative, Compare</td>
<td>page 5-26</td>
<td>4T</td>
</tr>
<tr>
<td>CPS</td>
<td>Change processor state</td>
<td>page 5-43</td>
<td>6T</td>
</tr>
<tr>
<td>CPY</td>
<td>Copy</td>
<td>page 5-28</td>
<td>6T</td>
</tr>
<tr>
<td>EOR</td>
<td>Logical exclusive OR</td>
<td>page 5-23</td>
<td>4T</td>
</tr>
<tr>
<td>LDMIA</td>
<td>Load multiple registers, increment after</td>
<td>page 5-13</td>
<td>4T</td>
</tr>
<tr>
<td>LDR</td>
<td>Load register, immediate offset</td>
<td>page 5-5</td>
<td>4T</td>
</tr>
<tr>
<td>LDR</td>
<td>Load register, register offset</td>
<td>page 5-7</td>
<td>4T</td>
</tr>
<tr>
<td>LDR</td>
<td>Load register, pc or sp relative</td>
<td>page 5-9</td>
<td>4T</td>
</tr>
<tr>
<td>LDR</td>
<td>Load register (pseudo-instruction)</td>
<td>page 5-48</td>
<td>-</td>
</tr>
<tr>
<td>LSL, LSR</td>
<td>Logical shift left, Logical shift right</td>
<td>page 5-24</td>
<td>4T</td>
</tr>
<tr>
<td>MOV</td>
<td>Move</td>
<td>page 5-30</td>
<td>4T</td>
</tr>
<tr>
<td>MUL</td>
<td>Multiply</td>
<td>page 5-21</td>
<td>4T</td>
</tr>
<tr>
<td>MVN, NEG</td>
<td>Move NOT, Negate</td>
<td>page 5-30</td>
<td>4T</td>
</tr>
<tr>
<td>NOP</td>
<td>No operation (pseudo-instruction)</td>
<td>page 5-50</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 5-1 Location of Thumb instructions and pseudo-instructions (continued)

<table>
<thead>
<tr>
<th>Instruction mnemonic</th>
<th>Brief description</th>
<th>Page</th>
<th>Architecture^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>Logical OR</td>
<td>page 5-23</td>
<td>4T</td>
</tr>
<tr>
<td>POP, PUSH</td>
<td>Pop registers from stack, Push registers onto stack</td>
<td>page 5-11</td>
<td>4T</td>
</tr>
<tr>
<td>REV, REV16, REVSH</td>
<td>Reverse byte order</td>
<td>page 5-32</td>
<td>6T</td>
</tr>
<tr>
<td>ROR</td>
<td>Rotate right</td>
<td>page 5-24</td>
<td>4T</td>
</tr>
<tr>
<td>SBC</td>
<td>Subtract with carry</td>
<td>page 5-21</td>
<td>4T</td>
</tr>
<tr>
<td>SETEND</td>
<td>Set endianness for data accesses</td>
<td>page 5-44</td>
<td>6T</td>
</tr>
<tr>
<td>SEXT</td>
<td>Sign extend</td>
<td>page 5-33</td>
<td>6T</td>
</tr>
<tr>
<td>STMIA</td>
<td>Store multiple registers, increment after</td>
<td>page 5-13</td>
<td>4T</td>
</tr>
<tr>
<td>STR</td>
<td>Store register, immediate offset</td>
<td>page 5-5</td>
<td>4T</td>
</tr>
<tr>
<td>STR</td>
<td>Store register, register offset</td>
<td>page 5-7</td>
<td>4T</td>
</tr>
<tr>
<td>STR</td>
<td>Store register, pc or sp relative</td>
<td>page 5-9</td>
<td>4T</td>
</tr>
<tr>
<td>SUB</td>
<td>Subtract</td>
<td>page 5-15</td>
<td>4T</td>
</tr>
<tr>
<td>SWI</td>
<td>Software interrupt</td>
<td>page 5-42</td>
<td>4T</td>
</tr>
<tr>
<td>TST</td>
<td>Test bits</td>
<td>page 5-31</td>
<td>4T</td>
</tr>
<tr>
<td>UEXT</td>
<td>Zero extend</td>
<td>page 5-33</td>
<td>6T</td>
</tr>
</tbody>
</table>

^a. ^n^T^ : available in ^T^ variants of ARM architecture version ^n^ and above
5.1 Thumb memory access instructions

This section contains the following subsections:

- **LDR and STR, immediate offset** on page 5-5
 Load Register and Store Register. Address in memory specified as an immediate offset from a value in a register.

- **LDR and STR, register offset** on page 5-7
 Load Register and Store Register. Address in memory specified as a register-based offset from a value in a register.

- **LDR and STR, pc or sp relative** on page 5-9
 Load Register and Store Register. Address in memory specified as an immediate offset from a value in the pc or the sp.

- **PUSH and POP** on page 5-11
 Push low registers, and optionally the LR, onto the stack. Pop low registers, and optionally the pc, off the stack.

- **LDMIA and STMIA** on page 5-13
 Load and store multiple registers.
5.1.1 LDR and STR, immediate offset

Load Register and Store Register. Address in memory specified as an immediate offset from a value in a register.

Syntax

\[
\begin{align*}
op \, Rd, \,[Rn, \#immed_5x4] \\
opH \, Rd, \,[Rn, \#immed_5x2] \\
opB \, Rd, \,[Rn, \#immed_5x1]
\end{align*}
\]

where:

\[\begin{align*}
op & \text{ is either:} \\
LDR & \text{ Load register} \\
STR & \text{ Store register.}
\end{align*}\]

\[H\] is a parameter specifying an unsigned halfword transfer.

\[B\] is a parameter specifying an unsigned byte transfer.

\[Rd\] is the register to be loaded or stored. \(Rd\) must be in the range \(r0\)–\(r7\).

\[Rn\] is the register containing the base address. \(Rn\) must be in the range \(r0\)–\(r7\).

\[immed_5xN\] is the offset. It is an expression evaluating (at assembly time) to a multiple of \(N\) in the range 0-31\(N\).

Usage

STR instructions store a word, halfword, or byte to memory.

LDR instructions load a word, halfword, or byte from memory.

The address is found by adding the offset to the base address from \(Rn\).

Immediate offset halfword and byte loads are unsigned. The data is loaded into the least significant word or byte of \(Rd\), and the rest of \(Rd\) is filled with zeroes.
Address alignment for word and halfword transfers

The address must be divisible by 4 for word transfers, and by 2 for halfword transfers.

If your system has a system coprocessor (cp15), you can enable alignment checking. Non-aligned transfers cause an alignment exception if alignment checking is enabled.

If your system does not have a system coprocessor (cp15), or alignment checking is disabled:

- A non-aligned load corruptions \(Rd \).
- A non-aligned save corrupts two or four bytes in memory. The corrupted location in memory is \([\text{address AND NOT } 0x1]\) for halfword saves, and \([\text{address AND NOT } 0x3]\) for word saves.

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

\[
\begin{align*}
\text{LDR} &\quad r3, [r5, #0] \\
\text{STRB} &\quad r0, [r3, #31] \\
\text{STRH} &\quad r7, [r3, #16] \\
\text{LDRB} &\quad r2, [r4, \#\text{label} - \{PC\}] \\
\end{align*}
\]

Incorrect examples

\[
\begin{align*}
\text{LDR} &\quad r13, [r5, #40] \quad \text{; high registers not allowed} \\
\text{STRB} &\quad r0, [r3, #32] \quad \text{; 32 is out of range for byte transfers} \\
\text{STRH} &\quad r7, [r3, #15] \quad \text{; offsets for halfword transfers must be even} \\
\text{LDRH} &\quad r6, [r0, #6] \quad \text{; negative offsets not supported} \\
\end{align*}
\]
5.1.2 LDR and STR, register offset

Load Register and Store Register. Address in memory specified as a register-based offset from a value in a register.

Syntax

\[\text{op } Rd, [Rn, Rm] \]

where:

\(\text{op} \) is one of the following:

- LDR Load register, four-byte word
- STR Store register, four-byte word
- LDRH Load register, two-byte unsigned halfword
- LDRSH Load register, two-byte signed halfword
- STRH Store register, two-byte halfword
- LDRB Load register, unsigned byte
- LDRSB Load register, signed byte
- STRB Store register, byte.

--- Note ---

There is no distinction between signed and unsigned store instructions.

* \(Rd \) is the register to be loaded or stored. \(Rd \) must be in the range \(r0-r7 \).

* \(Rn \) is the register containing the base address. \(Rn \) must be in the range \(r0-r7 \).

* \(Rm \) is the register containing the offset. \(Rm \) must be in the range \(r0-r7 \).

Usage

STR instructions store a word, halfword, or byte from \(Rd \) to memory.

LDR instructions load a word, halfword, or byte from memory to \(Rd \).

The address is found by adding the offset to the base address from \(Rn \).

Register offset halfword and byte loads can be signed or unsigned. The data is loaded into the least significant word or byte of \(Rd \), and the rest of \(Rd \) is filled with zeroes for an unsigned load, or with copies of the sign bit for a signed load.
Address alignment for word and halfword transfers

The address must be divisible by 4 for word transfers, and by 2 for halfword transfers.

If your system has a system coprocessor (cp15), you can enable alignment checking. Non-aligned transfers cause an alignment exception if alignment checking is enabled.

If your system does not have a system coprocessor (cp15), or alignment checking is disabled:

- A non-aligned load corrupts Rd.
- A non-aligned save corrupts memory. The corrupted location in memory is the halfword at [address AND NOT 0x1] for halfword saves, and the word at [address AND NOT b11] for word saves.

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

LDR r2,[r1,r5]
LDRSH r0,[r0,r6]
STRB r1,[r7,r0]

Incorrect examples

LDR r13,[r5,r3] ; high registers not allowed
STRSH r7,[r3,r1] ; no signed store instruction
5.1.3 LDR and STR, pc or sp relative

Load Register and Store Register. Address in memory specified as an immediate offset from a value in the pc or the sp.

--- Note ---

There is no pc-relative STR instruction.

Syntax

LDR Rd, [pc, #immed_8x4]
LDR Rd, label
LDR Rd, [sp, #immed_8x4]
STR Rd, [sp, #immed_8x4]

where:

\(\text{Rd} \) is the register to be loaded or stored. \(\text{Rd} \) must be in the range r0 to r7.

\(\text{immed}_8\times4 \) is the offset. It is an expression evaluating (at assembly time) to a multiple of 4 in the range 0 to 1020.

\(\text{label} \) is a program-relative expression. See Register-relative and program-relative expressions on page 3-23 for more information. \(\text{label} \) must be after the current instruction, and within 1KB of it.

Usage

STR instructions store a word to memory.
LDR instructions load a word from memory.

The address is found by adding the offset to the base address from pc or sp. Bit[1] of the pc is ignored. This ensures that the address is word-aligned.

Address alignment for word and halfword transfers

The address must be a multiple of 4.

If your system has a system coprocessor (cp15), you can enable alignment checking. Non-aligned transfers cause an alignment exception if alignment checking is enabled.
If your system does not have a system coprocessor (cp15), or alignment checking is disabled:

- A non-aligned load corrupts Rd.
- A non-aligned save corrupts four bytes in memory. The corrupted location in memory is \(\text{address AND NOT b11} \).

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

```
LDR r2,[pc,#1016]
LDR r5,localdata
LDR r0,[sp,#920]
STR r1,[sp,#20]
```

Incorrect examples

```
LDR r13,[pc,#8] ; Rd must be in range r0-r7
STR r7,[pc,#64] ; there is no pc-relative STR instruction
STRH r0,[sp,#16] ; there are no pc- or sp-relative halfword or byte transfers
LDR r2,[pc,#81] ; immediate must be a multiple of four
LDR r1,[pc,#-24] ; immediate must not be negative
STR r1,[sp,#1024] ; maximum immediate value is 1020
```
5.1.4 PUSH and POP

Push low registers, and optionally the lr, onto the stack.
Pop low registers, and optionally the pc, off the stack.

Syntax

PUSH {reglist}
POP {reglist}
PUSH {reglist, lr}
POP {reglist, pc}

where:

reglist is a comma-separated list of low registers or low-register ranges.

Note

The braces in the syntax description are part of the instruction format. They do not indicate that the register list is optional.
There must be at least one register in the list.

Usage

Thumb stacks are full, descending stacks. The stack grows downwards, and the sp points to the last entry on the stack.

Registers are stored on the stack in numerical order, with the lowest numbered register at the lowest address.
POP {reglist, pc}

This instruction causes a branch to the address popped off the stack into the pc. This is usually a return from a subroutine, where the lr was pushed onto the stack at the start of the subroutine.

In ARM architecture version 5T and above:

- if bits[1:0] of the value loaded to the pc are b00, the processor changes to ARM state
- bits[1:0] must not have the value b10.

In ARM architecture version 4T and earlier, bits[1:0] of the value loaded to the pc are ignored, so POP cannot be used to change state.

Condition flags

These instructions do not affect the flags.

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

- **PUSH**
 `{r0, r3, r5}`
 `{r1, r4-r7}`; pushes r1, r4, r5, r6, and r7
 `{r0, LR}`
- **POP**
 `{r2, r5}`
 `{r0-r7, pc}`; pop and return from subroutine

Incorrect examples

- **PUSH**
 `{r3, r5-r8}`; high registers not allowed
 `{}`; must be at least one register in list
 `{r1-r4, pc}`; cannot push the pc
 `{r1-r4, LR}`; cannot pop the LR
5.1.5 **LDMIA and STMIA**

Load and store multiple registers.

Syntax

\[\text{op} \ Rn!, \{\text{reglist}\} \]

where:

- \(\text{op} \) is either:
 - LDMIA: Load multiple, increment after
 - STMIA: Store multiple, increment after.
- \(Rn \) is the register containing the base address. \(Rn \) must be in the range r0-r7.
- \(\text{reglist} \) is a comma-separated list of low registers or low-register ranges.

Note

The braces in the syntax description are part of the instruction format. They do not indicate that the register list is optional. There must be at least one register in the list.

Usage

Registers are loaded stored and in numerical order, with the lowest numbered register at the address initially in \(Rn \).

The value in \(Rn \) is incremented by 4 times the number of registers in \(\text{reglist} \).

If \(Rn \) is in \(\text{reglist} \):

- for an LDMIA instruction, the final value of \(Rn \) is the value loaded, not the incremented address
- for an STMIA instruction, the value stored for \(Rn \) is:
 - the initial value of \(Rn \) if \(Rn \) is the lowest-numbered register in \(\text{reglist} \)
 - unpredictable otherwise.

Architectures

These instructions are available in all T variants of the ARM architecture.
Examples

- LDMIA r3!, {r0,r4}
- LDMIA r5!, {r0-r7}
- STMIA r0!, {r6,r7}
- STMIA r3!, {r3,r5,r7}

Incorrect examples

- LDMIA r3!,{r0,r9} ; high registers not allowed
- STMIA r5!, {} ; must be at least one register
 ; in list
- STMIA r5!,{r1-r6} ; value stored from r5 is unpredictable
5.2 Thumb arithmetic instructions

This section contains the following subsections:

- **ADD and SUB, low registers** on page 5-16
 Add and subtract.

- **ADD, high or low registers** on page 5-18
 Add values in registers, one or both of them in the range r8 to r15.

- **ADD and SUB, sp** on page 5-19
 Increment or decrement sp by an immediate constant.

- **ADD, pc or sp relative** on page 5-20
 Add an immediate constant to the value from sp or pc, and place the result into a low register.

- **ADC, SBC, and MUL** on page 5-21
 Add with carry, Subtract with carry, and Multiply.
5.2.1 ADD and SUB, low registers

Add and subtract. There are three forms of these instructions that operate on low registers. You can:

- add or subtract the contents of two registers, and place the result in a third register
- add a small integer to, or subtract it from, the value in a register, and place the result in a different register
- add a larger integer to, or subtract it from, the value in a register, and return the result to the same register.

Syntax

\[
\begin{align*}
op & \text{Rd}, \text{Rn}, \text{Rm} \\
op & \text{Rd}, \text{Rn}, \#\text{expr3} \\
op & \text{Rd}, \#\text{expr8}
\end{align*}
\]

where:

- \(\text{op}\) is either \texttt{ADD} or \texttt{SUB}.
- \(\text{Rd}\) is the destination register. It is also used for the first operand in \texttt{op Rd,\#expr8} instructions.
- \(\text{Rn}\) is a register containing the first operand.
- \(\text{Rm}\) is a register containing the second operand.
- \(\text{expr3}\) is an expression evaluating (at assembly time) to an integer in the range \(-7\) to \(+7\).
- \(\text{expr8}\) is an expression evaluating (at assembly time) to an integer in the range \(-255\) to \(+255\).

Usage

- \(\text{op Rd, Rn, Rm}\) performs an \(\text{Rn} + \text{Rm}\) or an \(\text{Rn} - \text{Rm}\) operation, and places the result in \(\text{Rd}\).
- \(\text{op Rd, Rn, \#expr3}\) performs an \(\text{Rn} + \text{expr3}\) or an \(\text{Rn} - \text{expr3}\) operation, and places the result in \(\text{Rd}\).
- \(\text{op Rd, \#expr8}\) performs an \(\text{Rd} + \text{expr8}\) or an \(\text{Rd} - \text{expr8}\) operation, and places the result in \(\text{Rd}\).
--- Note ---

An **ADD** instruction with a negative value for *expr3* or *expr8* assembles to the corresponding **SUB** instruction with a positive constant. A **SUB** instruction with a negative value for *expr3* or *expr8* assembles to the corresponding **ADD** instruction with a positive constant.

Be aware of this when looking at disassembly listings.

Restrictions

Rd, *Rn*, and *Rm* must all be low registers (that is, in the range r0 to r7).

Condition flags

These instructions update the N, Z, C, and V flags.

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

```plaintext
ADD r3,r1,r5
SUB r0,r4,#5
ADD r7,#201
ADD r1,vc+4 ; vc + 4 must evaluate at assembly time to
            ; an integer in the range -255 to +255
```

Incorrect examples

```plaintext
ADD r9,r2,r6 ; high registers not allowed
SUB r4,r5,#201 ; immediate value out of range
SUB r3,#-99 ; negative immediate values not allowed
```
5.2.2 ADD, high or low registers

Add values in registers, returning the result to the first operand register.

Syntax

ADD Rd, Rm

where:

Rd is the destination register. It is also used for the first operand.

Rm is a register containing the second operand.

Usage

This instruction adds the values in Rd and Rm, and places the result in Rd.

Note

An ADD Rd, Rm instruction where both Rd and Rm are low registers assembles to an ADD Rd, Rd, Rm instruction (see ADD and SUB, low registers on page 5-16).

Be aware of this when looking at disassembly listings.

Condition flags

The N, Z, C, and V condition flags are:

• updated if both Rd and Rm are low registers
• unaffected otherwise.

Architectures

This instruction is available in all T variants of the ARM architecture.

Examples

ADD r12, r4
ADD r10, r11
ADD r0, r8
ADD r2, r4 ; equivalent to ADD r2, r2, r4. Does affect flags.
5.2.3 ADD and SUB, sp

Increment or decrement sp by an immediate constant.

Syntax
ADD sp, #expr
SUB sp, #expr

where:
expr is an expression that evaluates (at assembly time) to a multiple of 4 in the range –508 to +508.

Usage
This instruction adds the value of expr to the value from Rp, and places the result in Rd.

Note
An ADD instruction with a negative value for expr assembles to the corresponding SUB instruction with a positive constant. A SUB instruction with a negative value for expr assembles to the corresponding ADD instruction with a positive constant.

Be aware of this when looking at disassembly listings.

Condition flags
These instructions do not affect the flags.

Architectures
These instructions are available in all T variants of the ARM architecture.

Examples
ADD sp,#312
SUB sp,#96
SUB sp,#abc+8 ; abc + 8 must evaluate at assembly time to a multiple of 4 in the range –508 to +508
5.2.4 ADD, pc or sp relative

Add an immediate constant to the value from sp or pc, and place the result into a low register.

Syntax

\[\text{ADD } Rd, \ Rp, \ #expr \]

where:

- \(Rd \) is the destination register. \(Rd \) must be in the range \(r0-r7 \).
- \(Rp \) is either \(sp \) or \(pc \).
- \(expr \) is an expression that evaluates (at assembly time) to a multiple of 4 in the range 0-1020.

Usage

This instruction adds the value of \(expr \) to the value from \(Rp \), and places the result in \(Rd \).

\[\text{Note} \]

If \(Rp \) is the pc, the value used is:

\((\text{the address of the current instruction } + 4) \ \& \ \text{FFFFFC}\).

Condition flags

This instruction does not affect the flags.

Architectures

This instruction is available in all T variants of the ARM architecture.

Examples

\[\text{ADD } \text{r6, sp, #64} \]
\[\text{ADD } \text{r2, pc, #980} \]
\[\text{ADD } \text{r0, pc, #lit-{PC}}; \text{ lit - {PC} must evaluate, at assembly} \]
\[; \text{ time, to a multiple of 4 in the range} \]
\[; \text{0 to 1020} \]
5.2.5 ADC, SBC, and MUL

Add with carry, Subtract with carry, and Multiply.

Syntax

\[\text{op} \quad R_d, \quad R_m \]

where:

- \text{op} is one of ADC, SBC, or MUL.
- \(R_d \) is the destination register. It also contains the first operand.
- \(R_m \) is a register containing the second operand.

Usage

ADC adds the values in \(R_d \) and \(R_m \), together with the carry flag, and places the result in \(R_d \). Use this to synthesize multiword addition.

SBC subtracts the value in \(R_m \) from the value in \(R_d \), taking account of the carry flag, and places the result in \(R_d \). Use this to synthesize multiword subtraction.

MUL multiplies the values in \(R_d \) and \(R_m \), and places the result in \(R_d \).

Restrictions

\(R_d \) and \(R_m \) must be low registers (that is, in the range r0 to r7).

Condition flags

ADC and SBC update the N, Z, C, and V flags.

MUL updates the N and Z flags.

In ARM architecture version 4 and earlier, MUL corrupts the C and V flags. In ARM architecture version 5 and later, MUL has no effect on the C and V flags.

Architectures

These instructions are available in all T variants of the ARM architecture.

Example

\[\text{ADC} \quad r_2, \quad r_4 \]
5.3 Thumb general data processing instructions

This section contains the following subsections:

- **AND, ORR, EOR, and BIC** on page 5-23
 Bitwise logical operations.

- **ASR, LSL, LSR, and ROR** on page 5-24
 Shift and rotate operations.

- **CMP and CMN** on page 5-26
 Compare and Compare Negative.

- **MOV and CPY** on page 5-28
 Move and Copy.

- **MVN and NEG** on page 5-30
 Move NOT, and Negate.

- **TST** on page 5-31
 Test bits.

- **REV, REV16, and REVSH** on page 5-32
 Reverse bytes or halfwords.

- **SEXT and UEXT** on page 5-33
 Sign or zero extend.
5.3.1 AND, ORR, EOR, and BIC

Bitwise logical operations.

Syntax

\[op \ Rd, \ Rm \]

where:

- \(op \) is one of AND, ORR, EOR, or BIC.
- \(Rd \) is the destination register. It also contains the first operand. \(Rd \) must be in the range \(r0-r7 \).
- \(Rm \) is the register containing the second operand. \(Rm \) must be in the range \(r0-r7 \).

Usage

These instructions perform a bitwise logical operation on the contents of \(Rd \) and \(Rm \), and place the result in \(Rd \). The operations are as follows:

- the AND instruction performs a logical AND operation
- the ORR instruction performs a logical OR operation
- the EOR instruction performs a logical Exclusive OR operation
- the BIC instruction performs an \(Rd \) AND NOT \(Rm \) operation.

Condition flags

These instructions update the N and Z flags according to the result. The C and V flags are not affected.

Architectures

These instructions are available in all T variants of the ARM architecture.

Example

\[\text{AND } r2, r4 \]
5.3.2 ASR, LSL, LSR, and ROR

Shift and rotate operations. These instructions can use a value contained in a register, or an immediate shift value.

Syntax

\[op \ Rd, \ Rs \]
\[op \ Rd, \ Rm, \ #expr \]

where:

- \(op \) is one of:
 - **ASR** Arithmetic Shift Right. Register contents are treated as two’s complement signed integers. The sign bit is copied into vacated bits.
 - **LSL** Logical Shift Left. Vacated bits are cleared.
 - **LSR** Logical Shift Right. Vacated bits are cleared.
 - **ROR** Rotate Right. Bits moved out of the right-hand end of the register are rotated back into the left-hand end.

--- **Note** ---

ROR can only be used with a register-controlled shift.

- \(Rd \) is the destination register. It is also the source register for register-controlled shifts. \(Rd \) must be in the range \(r0-r7 \).
- \(Rs \) is the register containing the shift value for register-controlled shifts. \(Rm \) must be in the range \(r0-r7 \).
- \(Rm \) is the source register for immediate shifts. \(Rm \) must be in the range \(r0-r7 \).
- \(expr \) is the immediate shift value. It is an expression evaluating (at assembly time) to an integer in the range:
 - 0-31 if \(op \) is LSL
 - 1-32 otherwise.
Register-controlled shift

These instructions take the value from \(Rd\), apply the shift to it, and place the result back into \(Rd\).

Only the least significant byte of \(Rs\) is used for the shift value.

For all these instructions except \(ROR\):
- if the shift is 32, \(Rd\) is cleared, and the last bit shifted out remains in the C flag
- if the shift is greater than 32, \(Rd\) and the C flag are cleared.

Immediate shift

These instructions take the value from \(Rm\), apply the shift to it, and place the result into \(Rd\).

Condition flags

These instructions update the N and Z flags according to the result. The V flag is not affected.

The C flag:
- is unaffected if the shift value is zero
- otherwise, contains the last bit shifted out of the source register.

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

\[
\begin{align*}
\text{ASR} & \ r3, r5 \\
\text{LSR} & \ r0, r2, #6 \\
\text{LSR} & \ r5, r5, \text{av} \quad ; \text{av must evaluate, at assembly time, to an} \\
& \qquad \text{integer in the range 1-32.} \\
\text{LSL} & \ r0, r4, #0 \quad ; \text{same as MOV r0,r4 except that C and V} \\
& \qquad \text{flags are not affected}
\end{align*}
\]

Incorrect examples

\[
\begin{align*}
\text{ROR} & \ r2, r7, #3 \quad ; \text{ROR cannot use immediate shift value} \\
\text{LSL} & \ r9, r1 \quad ; \text{high registers not allowed} \\
\text{LSL} & \ r0, r7, #32 \quad ; \text{immediate shift out of range} \\
\text{ASR} & \ r0, r7, #0 \quad ; \text{immediate shift out of range}
\end{align*}
\]
5.3.3 CMP and CMN

Compare and Compare Negative.

Syntax

CMP Rn, #expr
CMP Rn, Rm
CMN Rn, Rm

where:

Rn is the register containing the first operand.
expr is an expression that evaluates (at assembly time) to an integer in the range 0-255.
Rm is a register containing the second operand.

Usage

These instructions update the condition flags, but do not place a result in a register.
The CMP instruction subtracts the value of expr, or the value in Rm, from the value in Rn.
The CMN instruction adds the values in Rm and Rn.

Restrictions

In CMP Rn, #expr, and CMN instructions, Rn and Rm must be in the range r0 to r7.
In CMP Rn, Rm instructions, Rn and Rm can be any register r0 to r15.

Condition flags

These instructions update the N, Z, C, and V flags according to the result.

Architectures

These instructions are available in all T variants of the architecture.
Examples

CMP r2,#255
CMP r7,r12 ; high register IS allowed with CMP Rn,Rm
CMN r1,r5

Incorrect examples

CMP r2,#508 ; immediate value out of range
CMP r9,#24 ; high register not allowed with #expr
CMN r0,r10 ; high register not allowed with CMN
5.3.4 MOV and CPY

Move and Copy.

Syntax

MOV Rd, #expr
MOV Rd, Rm
CPY Rd, Rm

where:
Rd is the destination register.
expr is an expression that evaluates (at assembly time) to an integer in the range 0-255.
Rm is the source register.

Usage

The MOV instruction places #expr, or the value from Rm, in Rd.
The CPY instruction copies the value from Rm to Rd.

Restrictions

In MOV Rd, #expr, MVN, and NEG instructions, Rd and Rm must be in the range r0 to r7.
In CPY instructions, Rd and Rm can be any register r0 to r15.
In MOV Rd, Rm instructions, Rd and Rm can be any register r0 to r15, but see Condition flags on page 5-30.
Condition flags

The CPY instruction does not update any flags.

The MOV Rd,#expr instruction updates the N and Z flags. It has no effect on the C or V flags.

MOV Rd, Rm behaves as follows:
- If either Rd or Rm is a high register (r8-r15), the flags are unaffected. In architecture v6 and above, it is better to use CPY in these cases.
- If both Rd and Rm are low registers (r0-r7), the N and Z flags are updated, and C and V flags are cleared.

--- **Note** ---

You can use LSL, with a shift of zero, to move between low registers without clearing the C and V flags (see ASR, LSL, LSR, and ROR on page 5-24). This is not necessary in architecture v6 and above, you can use CPY instead.

Architectures

The MOV instruction is available in all T variants of the ARM architecture.

The CPY instruction is available in T variants of architecture v6 and above.

Examples

```
MOV r3,#0
MOV r0,r12  ; does not update flags
```

Incorrect examples

```
MOV r2,#256 ; immediate value out of range
MOV r8,#3  ; cannot move immediate to high register
```
5.3.5 MVN and NEG

Move NOT and Negate.

Syntax

MVN Rd, Rm
NEG Rd, Rm

where:
Rd is the destination register.
Rm is the source register.
Rd and Rm must be in the range r0 to r7.

Usage

The MVN instruction takes the value in Rm, performs a bitwise logical NOT operation on the value, and places the result in Rd.

The NEG instruction takes the value in Rm, multiplies it by –1, and places the result in Rd.

Condition flags

The MVN instruction updates the N and Z flags. It has no effect on the C or V flags.

The NEG instruction updates the N, Z, C, and V flags.

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

MVN r7, r1
NEG r2, r2

Incorrect examples

MVN r8, r2 ; high registers not allowed with MVN or NEG
NEG r0, #3 ; immediate value not allowed with MVN or NEG
5.3.6 TST

Test bits.

Syntax

TST Rn, Rm

where:

Rn is the register containing the first operand.

Rm is the register containing the second operand.

Usage

This instruction performs a bitwise logical AND operation on the values in Rm and Rn. It updates the condition flags, but does not place a result in a register.

Restrictions

Rn and Rm must be in the range r0-r7.

Condition flags

TST updates the N and Z flags according to the result. The C and V flags are unaffected.

Architectures

TST is available in all T variants of the ARM architecture.

Example

TST r2, r4
5.3.7 REV, REV16, and REVSH

Reverse byte order in a word or halfword. Reverse bytes in a halfword and sign extend.

Syntax

\(\text{op} \ Rd, \ Rm \)

where:

- **op** is any one of the following:
 - REV: Reverses byte order in a word.
 - REV16: Reverses byte order in each halfword of \(Rm \).
 - REVSH: Reverses byte order in the bottom halfword of \(Rm \), and sign extends to 32 bits.

- **Rd** is the destination register. \(Rd \) must be in the range \(r0-r7 \).

- **Rm** is the register containing the second operand. \(Rm \) must be in the range \(r0-r7 \).

Do not use \(r15 \) for \(Rd \) or \(Rm \).

Condition flags

These instructions do not affect the flags.

Architectures

These instructions are available in T variants of architecture v6 and above.

Examples

- REV \(r3, r7 \)
- REV16 \(r0, r0 \)
- REVSH \(r0, r5 \)
5.3.8 SEXT and UEXT

Signed and unsigned data unpacking instructions.

These instructions do any one of the following:
- sign or zero extend an 8-bit value to 32 bits
- sign or zero extend a 16-bit value to 32 bits.

Syntax

\[op \ Rd, \ Rm \]

where:

- \(op \) is one of:
 - \(\text{SEXT8} \): sign extend an 8-bit value to a 32-bit value.
 - \(\text{SEXT16} \): sign extend a 16-bit value to a 32-bit value.
 - \(\text{UEXT8} \): zero extend an 8-bit value to a 32-bit value.
 - \(\text{UEXT16} \): zero extend a 16-bit value to a 32-bit value.

- \(Rd \) is the destination register. Must be in the range r0 to r7.
- \(Rm \) is the register holding the operand. Must be in the range r0 to r7.

Condition flags

These instructions do not affect any flags.

Architectures

These instructions are available in T variants of architecture v6 and above.

Examples

\[
\begin{align*}
\text{SEXT8} & \quad r3, \ r1 \\
\text{UEXT16} & \quad r5, \ r0
\end{align*}
\]
5.4 Thumb branch instructions

This section contains the following subsections:

- \textit{B} on page 5-35
 Branch.

- \textit{BL} on page 5-37
 Branch with Link.

- \textit{BX} on page 5-38
 Branch and exchange instruction set.

- \textit{BLX} on page 5-39
 Branch with Link and exchange instruction set.
5.4.1 B

Branch. This is the only instruction in the Thumb instruction set that can be conditional.

Syntax

B{cond} label

where:

cond is an optional condition code (see Table 5-2 on page 5-36).

label is a program-relative expression. This is usually a label within the same piece of code. See Register-relative and program-relative expressions on page 3-23 for more information.

label must be within:

- –252 to +258 bytes of the current instruction, if cond is used
- ±2KB if the instruction is unconditional.

Usage

The B instruction causes a branch to label, if cond is satisfied, or if cond is not used.

Note

label must be within the specified limits. The ARM linker cannot add code to generate longer branches.

Architectures

This instruction is available in all T variants of the ARM architecture.

Examples

B dloop
BEQ sectB
Table 5-2 Condition codes for Thumb B instruction

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Flags</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>Z set</td>
<td>Equal</td>
</tr>
<tr>
<td>NE</td>
<td>Z clear</td>
<td>Not equal</td>
</tr>
<tr>
<td>CS/HS</td>
<td>C set</td>
<td>Higher or same (unsigned >=)</td>
</tr>
<tr>
<td>CC/L0</td>
<td>C clear</td>
<td>Lower (unsigned <)</td>
</tr>
<tr>
<td>MI</td>
<td>N set</td>
<td>Negative</td>
</tr>
<tr>
<td>PL</td>
<td>N clear</td>
<td>Positive or zero</td>
</tr>
<tr>
<td>VS</td>
<td>V set</td>
<td>Overflow</td>
</tr>
<tr>
<td>VC</td>
<td>V clear</td>
<td>No overflow</td>
</tr>
<tr>
<td>HI</td>
<td>C set and Z clear</td>
<td>Higher (unsigned <=)</td>
</tr>
<tr>
<td>LS</td>
<td>C clear or Z set</td>
<td>Lower or same (unsigned <=)</td>
</tr>
<tr>
<td>GE</td>
<td>N and V the same</td>
<td>Signed >=</td>
</tr>
<tr>
<td>LT</td>
<td>N and V different</td>
<td>Signed <</td>
</tr>
<tr>
<td>GT</td>
<td>Z clear, and N and V the same</td>
<td>Signed ></td>
</tr>
<tr>
<td>LE</td>
<td>Z set, or N and V different</td>
<td>Signed <=</td>
</tr>
</tbody>
</table>
5.4.2 BL

Long branch with Link.

Syntax

BL label

where:

label is a program-relative expression. See Register-relative and program-relative expressions on page 3-23 for more information.

Usage

BL copies the address of the next instruction into r14 (lr, the link register), and causes a branch to label.

The machine-level instruction cannot branch to an address outside ±4Mb of the current instruction. When necessary, the ARM linker inserts code (a veneer) to allow longer branches (see The ARM linker chapter in RealView Compilation Tools v2.0 Linker and Utilities Guide).

Architectures

BL is available in all T variants of the ARM architecture.

Example

BL extract
5.4.3 BX

Branch, and optionally exchange instruction set.

Syntax

```
BX Rm
```

where:

- \(Rm \) is an ARM register containing the address to branch to.
 - Bit 0 of \(Rm \) is not used as part of the address.
 - If bit 0 of \(Rm \) is clear:
 - bit 1 must also be clear
 - the instruction clears the T flag in the CPSR, and the code at the destination is interpreted as ARM code.

Usage

BX causes a branch to the address held in \(Rm \), and changes instruction set to Thumb if bit 0 of \(Rm \) is set.

Architectures

BX is available in all T variants of the ARM architecture.

Examples

```
BX r5
```
5.4.4 BLX

Branch with Link, and optionally exchange instruction set.

Syntax

BLX Rm
BLX label

where:

Rm is an ARM register containing the address to branch to.
Bit 0 of Rm is not used as part of the address. If bit 0 of Rm is clear:
 • Bit 1 must also be clear.
 • The instruction clears the T flag in the CPSR. Code at the
destination is interpreted as ARM code.

label is a program-relative expression. See Register-relative and
program-relative expressions on page 3-23 for more information.

BLX label always causes a change to ARM state.

Usage

The BLX instruction:
 • copies the address of the next instruction into r14 (lr, the link register)
 • causes a branch to label, or to the address held in Rm
 • changes instruction set to ARM if either:
 — bit 0 of Rm is clear
 — the BLX label form is used.

The machine-level instruction cannot branch to an address outside ±4Mb of the current
instruction. When necessary, the ARM linker inserts code (a veneer) to allow longer
branches (see The ARM linker chapter in RealView Compilation Tools v2.0 Linker and
Utilities Guide).

Architectures

BLX is available in all T variants of ARM architecture version 5 and above.
Examples

BLX r6
BLX armsub
5.5 Thumb miscellaneous instructions

This section contains the following subsections:

- **SWI** on page 5-42
 Software interrupt.

- **CPS** on page 5-43
 Change processor state.

- **SETEND** on page 5-44
 Set the endianness bit in the CPSR.

- **BKPT** on page 5-45
 Breakpoint.
5.5.1 SWI

Software interrupt.

Syntax

SWI *immed_8*

where:

immed_8 is a numeric expression evaluating to an integer in the range 0-255.

Usage

The SWI instruction causes a SWI exception. This means that the processor state changes to ARM, the processor mode changes to Supervisor, the CPSR is saved to the Supervisor Mode SPSR, and execution branches to the SWI vector (see the *Handling Processor Exceptions* chapter in *RealView Compilation Tools v2.0 Developer Guide*).

immed_8 is ignored by the processor. However, it is present in bits[7:0] of the instruction opcode. It can be retrieved by the exception handler to determine what service is being requested.

Condition flags

SWI does not affect the flags.

Architectures

SWI is available in all T variants of the ARM architecture.

Example

```
SWI 12
```
5.5.2 CPS

Change processor state.

Syntax

CPS\text{effect} \text{iflags}

where:

\text{effect} \quad \text{is one of the following:}
 \text{IE} \quad \text{Interrupt enable.}
 \text{ID} \quad \text{Interrupt disable.}

\text{iflags} \quad \text{is a sequence of one or more of the following:}
 \text{a} \quad \text{Enables or disables imprecise aborts.}
 \text{i} \quad \text{Enables or disables IRQ interrupts.}
 \text{f} \quad \text{Enables or disables FIQ interrupts.}

Operation

CPS makes the changes specified, without affecting any other bits in the CPSR.

Condition flags

CPS does not affect any condition flags.

Architectures

CPS is available in T variants of architecture v6 and above.

Examples

\begin{verbatim}
CPSIE if ; enable interrupts and fast interrupts
CPSID a ; disable imprecise aborts
\end{verbatim}

incorrect example

\begin{verbatim}
CPSID ai, #17 ; cannot change mode with Thumb CPS
\end{verbatim}
5.5.3 SETEND

Set the endianness bit in the CPSR.

Syntax

SETEND specifier

where:

specifier is one of the following:

- BE Big endian.
- LE Little endian.

Usage

Use SETEND to access data of different endianness, for example to access several big-endian DMA-formatted data fields by an otherwise little-endian application.

Architectures

SETEND is available in T variants of architecture v6 and above.

Example

```assembly
SETEND BE ; Set the CPSR E bit for big-endian accesses
LDR r0, [r2, #header]
LDR r1, [r2, #CRC32]
SETEND LE ; Set the CPSR E bit for little-endian accesses for the
; rest of the application
```
5.5.4 BKPT

Breakpoint.

Syntax

BKPT immed_8

where:

immed_8 is an expression evaluating to an integer in the range 0-255.

Usage

BKPT causes the processor to enter Debug mode. Debug tools can use this to investigate system state when the instruction at a particular address is reached.

immed_8 is ignored by the processor. However, it is present in bits[7:0] of the instruction opcode. It can be used by a debugger to store additional information about the breakpoint.

Architectures

BKPT is available in T variants of ARM architecture version 5 and above.

Examples

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BKPT</td>
<td>67</td>
</tr>
<tr>
<td>BKPT</td>
<td>2_10110</td>
</tr>
</tbody>
</table>
5.6 Thumb pseudo-instructions

The ARM assembler supports a number of Thumb pseudo-instructions that are translated into the appropriate Thumb instructions at assembly time.

The pseudo-instructions that are available in Thumb state are in the following sections:

- *ADR Thumb pseudo-instruction* on page 5-47
- *LDR Thumb pseudo-instruction* on page 5-48
- *NOP Thumb pseudo-instruction* on page 5-50.
5.6.1 ADR Thumb pseudo-instruction

The ADR pseudo-instruction loads a program-relative address into a register.

Syntax

ADR register, expr

where:

register is the register to load.

expr is a program-relative expression. The offset must be positive and less than 1KB. expr must be defined locally, it cannot be imported.

Usage

In Thumb state, ADR can generate word-aligned addresses only. Use the ALIGN directive to ensure that expr is aligned (see ALIGN on page 7-52).

expr must evaluate to an address in the same code section as the ADR pseudo-instruction. There is no guarantee that the address will be within range after linking if it resides in another ELF section.

Example

ADR r4,txampl ; => ADD r4,pc,#nn
; code
ALIGN
txampl DCW 0,0,0,0
5.6.2 LDR Thumb pseudo-instruction

The LDR pseudo-instruction loads a low register with either:

• a 32-bit constant value
• an address.

--- Note

This section describes the LDR pseudo-instruction only. See Thumb memory access instructions on page 5-4 for information on the LDR instruction.

Syntax

LDR register, = [expr | label-exp]

where:

register is the register to be loaded. LDR can access the low registers (r0-r7) only.

expr evaluates to a numeric constant:

• if the value of expr is within range of a MOV instruction, the assembler generates the instruction
• if the value of expr is not within range of a MOV instruction, the assembler places the constant in a literal pool and generates a program-relative LDR instruction that reads the constant from the literal pool.

label-exp is a program-relative or external expression. The assembler places the value of label-exp in a literal pool and generates a program-relative LDR instruction that loads the value from the literal pool.

If label-exp is an external expression, or is not contained in the current section, the assembler places a linker relocation directive in the object file. The linker ensures that the correct address is generated at link time.

The offset from the pc to the value in the literal pool must be positive and less than 1KB. You are responsible for ensuring that there is a literal pool within range. See LTORG on page 7-14 for more information.

Usage

The LDR pseudo-instruction is used for two main purposes:

• To generate literal constants when an immediate value cannot be moved into a register because it is out of range of the MOV instruction.
To load a program-relative or external address into a register. The address remains valid regardless of where the linker places the ELF section containing the LDR.

Example

LDR r1, =0xfff ; loads 0xfff into r1

LDR r2, =labelname ; loads the address of labelname into r2
5.6.3 NOP Thumb pseudo-instruction

NOP generates the preferred Thumb no-operation instruction.

The following instruction might be used, but this is not guaranteed:

MOV r8, r8

Syntax

The syntax for NOP is:

NOP

Condition flags

ALU status flags are unaltered by NOP.
This chapter provides reference information about programming the Vector Floating-point coprocessor in Assembly language. It contains the following sections:

- *The vector floating-point coprocessor* on page 6-4
- *Floating-point registers* on page 6-5
- *Vector and scalar operations* on page 6-7
- *VFP and condition codes* on page 6-8
- *VFP system registers* on page 6-10
- *Flush-to-zero mode* on page 6-13
- *VFP instructions* on page 6-15
- *VFP pseudo-instruction* on page 6-36
- *VFP directives and vector notation* on page 6-38.

See Table 6-1 on page 6-2 for locations of descriptions of individual instructions.
<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Brief description</th>
<th>Page</th>
<th>Operation</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABS</td>
<td>Absolute value</td>
<td>page 6-16</td>
<td>Vector</td>
<td>All</td>
</tr>
<tr>
<td>FADD</td>
<td>Add</td>
<td>page 6-17</td>
<td>Vector</td>
<td>All</td>
</tr>
<tr>
<td>FCMP</td>
<td>Compare</td>
<td>page 6-18</td>
<td>Scalar</td>
<td>All</td>
</tr>
<tr>
<td>FCPY</td>
<td>Copy</td>
<td>page 6-16</td>
<td>Vector</td>
<td>All</td>
</tr>
<tr>
<td>FCVTDS</td>
<td>Convert single-precision to double-precision</td>
<td>page 6-19</td>
<td>Scalar</td>
<td>All</td>
</tr>
<tr>
<td>FCVTSD</td>
<td>Convert double-precision to single-precision</td>
<td>page 6-20</td>
<td>Scalar</td>
<td>All</td>
</tr>
<tr>
<td>FDIV</td>
<td>Divide</td>
<td>page 6-21</td>
<td>Vector</td>
<td>All</td>
</tr>
<tr>
<td>FLD</td>
<td>Load (see also FLD pseudo-instruction on page 6-36)</td>
<td>page 6-22</td>
<td>Scalar</td>
<td>All</td>
</tr>
<tr>
<td>FLDM</td>
<td>Load multiple</td>
<td>page 6-24</td>
<td>-</td>
<td>All</td>
</tr>
<tr>
<td>FMAC</td>
<td>Multiply-accumulate</td>
<td>page 6-26</td>
<td>Scalar</td>
<td>All</td>
</tr>
<tr>
<td>FDHR, FDLR</td>
<td>Transfer from one ARM register to half of double-precision</td>
<td>page 6-28</td>
<td>Scalar</td>
<td>All</td>
</tr>
<tr>
<td>FMRRR</td>
<td>Transfer from two ARM registers to double-precision</td>
<td>page 6-27</td>
<td>Scalar</td>
<td>VFPv2</td>
</tr>
<tr>
<td>FMRRD, FMRL</td>
<td>Transfer from half of double-precision to ARM register</td>
<td>page 6-28</td>
<td>Scalar</td>
<td>All</td>
</tr>
<tr>
<td>FMRRS</td>
<td>Transfer from double-precision to two ARM registers</td>
<td>page 6-27</td>
<td>Scalar</td>
<td>VFPv2</td>
</tr>
<tr>
<td>FMRRS</td>
<td>Transfer between two ARM registers and two single-precision</td>
<td>page 6-30</td>
<td>Scalar</td>
<td>VFPv2</td>
</tr>
<tr>
<td>FMRS</td>
<td>Transfer from single-precision to ARM register</td>
<td>page 6-29</td>
<td>Scalar</td>
<td>All</td>
</tr>
<tr>
<td>FMXR</td>
<td>Transfer from VFP system register to ARM register</td>
<td>page 6-31</td>
<td>-</td>
<td>All</td>
</tr>
<tr>
<td>FMSC</td>
<td>Multiply-subtract</td>
<td>page 6-26</td>
<td>Vector</td>
<td>All</td>
</tr>
<tr>
<td>FMSR</td>
<td>Transfer from ARM register to single-precision</td>
<td>page 6-29</td>
<td>Scalar</td>
<td>All</td>
</tr>
<tr>
<td>FMSSR</td>
<td>Transfer between two ARM registers and two single-precision</td>
<td>page 6-30</td>
<td>Scalar</td>
<td>VFPv2</td>
</tr>
<tr>
<td>FMSTAT</td>
<td>Transfer VFP status flags to ARM CPSR status flags</td>
<td>page 6-31</td>
<td>-</td>
<td>All</td>
</tr>
<tr>
<td>FMUL</td>
<td>Multiply</td>
<td>page 6-32</td>
<td>Vector</td>
<td>All</td>
</tr>
<tr>
<td>FMOR</td>
<td>Transfer from ARM register to VFP system register</td>
<td>page 6-31</td>
<td>-</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 6-1 Location of descriptions of VFP instructions (continued)

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Brief description</th>
<th>Page</th>
<th>Operation</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNEG</td>
<td>Negate</td>
<td>page 6-16</td>
<td>Vector</td>
<td>All</td>
</tr>
<tr>
<td>FMAC</td>
<td>Negate-multiply-accumulate</td>
<td>page 6-26</td>
<td>Vector</td>
<td>All</td>
</tr>
<tr>
<td>FNSC</td>
<td>Negate-multiply-subtract</td>
<td>page 6-26</td>
<td>Vector</td>
<td>All</td>
</tr>
<tr>
<td>FMUL</td>
<td>Negate-multiply</td>
<td>page 6-32</td>
<td>Vector</td>
<td>All</td>
</tr>
<tr>
<td>FSIT0</td>
<td>Convert signed integer to floating-point</td>
<td>page 6-33</td>
<td>Scalar</td>
<td>All</td>
</tr>
<tr>
<td>FSQRT</td>
<td>Square Root</td>
<td>page 6-34</td>
<td>Vector</td>
<td>All</td>
</tr>
<tr>
<td>FST</td>
<td>Store</td>
<td>page 6-22</td>
<td>Scalar</td>
<td>All</td>
</tr>
<tr>
<td>FSTM</td>
<td>Store multiple</td>
<td>page 6-24</td>
<td>-</td>
<td>All</td>
</tr>
<tr>
<td>FSUB</td>
<td>Subtract</td>
<td>page 6-17</td>
<td>Vector</td>
<td>All</td>
</tr>
<tr>
<td>FTOSI, FTOUT</td>
<td>Convert floating-point to signed or unsigned integer</td>
<td>page 6-35</td>
<td>Scalar</td>
<td>All</td>
</tr>
<tr>
<td>FUIT0</td>
<td>Convert unsigned integer to floating-point</td>
<td>page 6-33</td>
<td>Scalar</td>
<td>All</td>
</tr>
</tbody>
</table>
6.1 The vector floating-point coprocessor

The Vector Floating-Point (VFP) coprocessor, together with associated support code, provides single-precision and double-precision floating-point arithmetic, as defined by ANSI/IEEE Std. 754-1985 **IEEE Standard for Binary Floating-Point Arithmetic**. This document is referred to as the IEEE 754 standard in this chapter. There is a summary of the standard in the floating-point chapter in *RealView Compilation Tools v2.0 Compiler and Libraries Guide*.

Short vectors of up to eight single-precision or four double-precision numbers are handled particularly efficiently. Most arithmetic instructions can be used on these vectors, allowing single-instruction, multiple-data (SIMD) parallelism. In addition, the floating-point load and store instructions have multiple register forms, allowing vectors to be transferred to and from memory efficiently.

For more details of the vector floating-point coprocessor, see *ARM Architecture Reference Manual*.

6.1.1 VFP architectures

There are two versions of the VFP architecture. VFPv2 has all the instructions that VFPv1 has, and four additional instructions.

The additional instructions allow you to transfer two 32-bit words between ARM registers and VFP registers with one instruction.
6.2 Floating-point registers

The Vector Floating-point coprocessor has 32 single-precision registers, s0 to s31. Each register can contain either a single-precision floating-point value, or a 32-bit integer.

These 32 registers are also treated as 16 double-precision registers, d0 to d15. dn occupies the same hardware as s(2n) and s(2n+1).

You can use:

- some registers for single-precision values at the same time as you are using others for double-precision values
- the same registers for single-precision values and double-precision values at different times.

Do not attempt to use corresponding single-precision and double-precision registers at the same time. No damage is caused but the results are meaningless.

6.2.1 Register banks

The VFP registers are arranged as four banks of:

- eight single-precision registers, s0 to s7, s8 to s15, s16 to s23, and s24 to s31
- four double-precision registers, d0 to d3, d4 to d7, d8 to d11, and d12 to d15
- any combination of single-precision and double-precision registers.

See Figure 6-1 for further clarification.

![Figure 6-1 VFP register banks](image-url)
6.2.2 Vectors

A vector can use up to eight single-precision registers, or four double-precision registers, from the same bank. The number of registers used by a vector is controlled by the LEN bits in the FPSCR (see FPSCR, the floating-point status and control register on page 6-10).

A vector can start from any register. The first register used by a vector is specified in the register fields in the individual instructions.

Vector wrap-around

If the vector extends beyond the end of a bank, it wraps around to the beginning of the same bank, for example:

- a vector of length 6 starting at s5 is \{s5, s6, s7, s0, s1, s2\}
- a vector of length 3 starting at s15 is \{s15, s8, s9\}
- a vector of length 4 starting at s22 is \{s22, s23, s16, s17\}
- a vector of length 2 starting at d7 is \{d7, d4\}
- a vector of length 3 starting at d10 is \{d10, d11, d8\}.

A vector cannot contain registers from more than one bank.

Vector stride

Vectors can occupy consecutive registers, as in the examples above, or they can occupy alternate registers. This is controlled by the STRIDE bits in the FPSCR (see FPSCR, the floating-point status and control register on page 6-10). For example:

- a vector of length 3, stride 2, starting at s1, is \{s1, s3, s5\}
- a vector of length 4, stride 2, starting at s6, is \{s6, s0, s2, s4\}
- a vector of length 2, stride 2, starting at d1, is \{d1, d3\}.

Restriction on vector length

A vector cannot use the same register twice. Allowing for vector wrap-around, this means that you cannot have:

- a single-precision vector with length > 4 and stride = 2
- a double-precision vector with length > 4 and stride = 1
- a double-precision vector with length > 2 and stride = 2.
6.3 Vector and scalar operations

You can use VFP arithmetic instructions to operate:

- on scalars
- on vectors
- on scalars and vectors together.

Use the LEN bits in the FPSCR to control the length of vectors (see FPSCR, the floating-point status and control register on page 6-10).

When LEN is 1 all operations are scalar.

6.3.1 Control of scalar, vector and mixed operations

When LEN is greater than 1, the behavior of arithmetic operations depends on which register bank the destination and operand registers are in (see Register banks on page 6-5).

The behavior of instructions of the following general forms:

\[
\text{Op} \quad F_d, F_n, F_m
\]

\[
\text{Op} \quad F_d, F_m
\]

is as follows:

- If \(F_d \) is in the first bank of registers, \(s0 \) to \(s7 \) or \(d0 \) to \(d3 \), the operation is scalar.
- If the \(F_m \) is in the first bank of registers, but \(F_d \) is not, the operation is mixed.
- If neither \(F_d \) nor \(F_m \) are in the first bank of registers, the operation is vector.

Scalar operations

\(\text{Op} \) acts on the value in \(F_m \), and the value in \(F_n \) if present. The result is placed in \(F_d \).

Vector operations

\(\text{Op} \) acts on the values in the vector starting at \(F_m \), together with the values in the vector starting at \(F_n \) if present. The results are placed in the vector starting at \(F_d \).

Mixed scalar and vector operations

For single-operand instructions, \(\text{Op} \) acts on the single value in \(F_m \). LEN copies of the result are placed in the vector starting at \(F_d \).

For multiple-operand instructions, \(\text{Op} \) acts on the single value in \(F_m \), together with the values in the vector starting at \(F_n \). The results are placed in the vector starting at \(F_d \).
6.4 VFP and condition codes

You can use a condition code to control the execution of any VFP instruction. The instruction is executed conditionally, according to the status flags in the CPSR, in exactly the same way as almost all other ARM instructions.

The only VFP instruction that can be used to update the status flags is FCMP. It does not update the flags in the CPSR directly, but updates a separate set of flags in the FPSCR (see FPSCR, the floating-point status and control register on page 6-10).

Note
To use these flags to control conditional instructions, including conditional VFP instructions, you must first copy them into the CPSR using an FMSTAT instruction (see FMRX, FMXR, and FMSTAT on page 6-31).

Following an FCMP instruction, the precise meanings of the flags are different from their meanings following an ARM data-processing instruction. This is because:

- floating-point values are never unsigned, so the unsigned conditions are not needed
- Not-a-Number (NaN) values have no ordering relationship with numbers or with each other, so additional conditions are needed to allow for unordered results.

The meanings of the condition code mnemonics are shown in Table 6-2.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Meaning after ARM data processing instruction</th>
<th>Meaning after VFP FCMP instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>Equal</td>
<td>Equal</td>
</tr>
<tr>
<td>NE</td>
<td>Not equal</td>
<td>Not equal, or unordered</td>
</tr>
<tr>
<td>CS / HS</td>
<td>Carry set / Unsigned higher or same</td>
<td>Greater than or equal, or unordered</td>
</tr>
<tr>
<td>CC / LO</td>
<td>Carry clear / Unsigned lower</td>
<td>Less than</td>
</tr>
<tr>
<td>MI</td>
<td>Negative</td>
<td>Less than</td>
</tr>
<tr>
<td>PL</td>
<td>Positive or zero</td>
<td>Greater than or equal, or unordered</td>
</tr>
<tr>
<td>VS</td>
<td>Overflow</td>
<td>Unordered (at least one NaN operand)</td>
</tr>
<tr>
<td>VC</td>
<td>No overflow</td>
<td>Not unordered</td>
</tr>
</tbody>
</table>
The type of the instruction that last updated the flags in the CPSR determines the meaning of condition codes.

Table 6-2 Condition codes (continued)

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Meaning after ARM data processing instruction</th>
<th>Meaning after VFP FCMP instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI</td>
<td>Unsigned higher</td>
<td>Greater than, or unordered</td>
</tr>
<tr>
<td>LS</td>
<td>Unsigned lower or same</td>
<td>Less than or equal</td>
</tr>
<tr>
<td>GE</td>
<td>Signed greater than or equal</td>
<td>Greater than or equal</td>
</tr>
<tr>
<td>LT</td>
<td>Signed less than</td>
<td>Less than, or unordered</td>
</tr>
<tr>
<td>GT</td>
<td>Signed greater than</td>
<td>Greater than</td>
</tr>
<tr>
<td>LE</td>
<td>Signed less than or equal</td>
<td>Less than or equal, or unordered</td>
</tr>
<tr>
<td>AL</td>
<td>Always (normally omitted)</td>
<td>Always (normally omitted)</td>
</tr>
</tbody>
</table>

Note

The type of the instruction that last updated the flags in the CPSR determines the meaning of condition codes.
6.5 VFP system registers

Three VFP system registers are accessible to you in all implementations of VFP:
- **FPSCR, the floating-point status and control register**
- **FPEXC, the floating-point exception register** on page 6-12
- **FPSID, the floating-point system ID register** on page 6-12.

A particular implementation of VFP can have additional registers (see the technical reference manual for the VFP coprocessor you are using).

6.5.1 FPSCR, the floating-point status and control register

The FPSCR contains all the user-level VFP status and control bits:

- **bits[31:28]** are the N, Z, C, and V flags. These are the VFP status flags. They cannot be used to control conditional execution until they have been copied into the status flags in the CPSR (see *VFP and condition codes* on page 6-8).

- **bit[24]** is the flush-to-zero mode control bit:
 - 0 flush-to-zero mode is disabled.
 - 1 flush-to-zero mode is enabled.

Flush-to-zero mode can allow greater performance, depending on your hardware and software, at the expense of loss of range (see *Flush-to-zero mode* on page 6-13).

Note

Flush-to-zero mode must not be used when IEEE 754 compatibility is a requirement.

- **bits[23:22]** control rounding mode as follows:
 - 0b00 *Round to Nearest* (RN) mode
 - 0b01 *Round towards Plus infinity* (RP) mode
 - 0b10 *Round towards Minus infinity* (RM) mode
 - 0b11 *Round towards Zero* (RZ) mode.

- **bits[21:20]** STRIDE is the distance between successive values in a vector (see *Vectors* on page 6-6). Stride is controlled as follows:
 - 0b00 stride = 1
 - 0b11 stride = 2.
bits[18:16] LEN is the number of registers used by each vector (see Vectors on page 6-6). It is 1 + the value of bits[18:16]:

- 0b000 LEN = 1
- 0b111 LEN = 8.

bits[12:8] are the exception trap enable bits:

- IXE inexact exception enable
- UFE underflow exception enable
- OFE overflow exception enable
- DZE division by zero exception enable
- IOE invalid operation exception enable.

This Guide does not cover the use of floating-point exception trapping. For information see the technical reference manual for the VFP coprocessor you are using.

bits[4:0] are the cumulative exception bits:

- IXC inexact exception
- UFC underflow exception
- OFC overflow exception
- DZC division by zero exception
- IOC invalid operation exception.

Cumulative exception bits are set when the corresponding exception occurs. They remain set until you clear them by writing directly to the FPSCR.

all other bits are unused in the basic VFP specification. They can be used in particular implementations (see the technical reference manual for the VFP coprocessor you are using). Do not modify these bits except in accordance with any use in a particular implementation.

To alter some bits without affecting other bits, use a read-modify-write procedure (see Modifying individual bits of a VFP system register on page 6-12).
6.5.2 FPEXC, the floating-point exception register

You can only access the FPEXC in privileged modes. It contains the following bits:

- **bit[31]** is the EX bit. You can read it in all VFP implementations. In some implementations you might also be able to write to it.
 - If the value is 0, the only significant state in the VFP system is the contents of the general purpose registers plus FPSCR and FPEXC.
 - If the value is 1, you need implementation-specific information to save state (see the technical reference manual for the VFP coprocessor you are using).

- **bit[30]** is the EN bit. You can read and write it in all VFP implementations.
 - If the value is 1, the VFP coprocessor is enabled and operates normally.
 - If the value is 0, the VFP coprocessor is disabled. When the coprocessor is disabled, you can read or write the FPSID or FPEXC registers, but other VFP instructions are treated as undefined instructions.

- **bits[29:0]** might be used by particular implementations of VFP. You can use all the VFP functions described in this chapter without accessing these bits.
 - You must not alter these bits except in accordance with their use in a particular implementation (see the technical reference manual for the VFP coprocessor you are using).

To alter some bits without affecting other bits, use a read-modify-write procedure (see Modifying individual bits of a VFP system register).

6.5.3 FPSID, the floating-point system ID register

The FPSID is a read-only register. You can read it to find out which implementation of the VFP architecture your program is running on.

6.5.4 Modifying individual bits of a VFP system register

To alter some bits of a VFP system register without affecting other bits, use a read-modify-write procedure similar to the following example:

```assembly
FMRX r10, FPSCR ; copy FPSCR into r10
BIC r10, r10, #0x00370000 ; clears STRIDE and LEN
ORR r10, r10, #0x00030000 ; sets STRIDE = 1, LEN = 4
FMXR FPSCR, r10 ; copy r10 back into FPSCR
```

See FMRX, FMXR, and FMSTAT on page 6-31.
6.6 Flush-to-zero mode

Some implementations of VFP use support code to handle denormalized numbers. The performance of such systems, in calculations involving denormalized numbers, is much less than it is in normal calculations.

Flush-to-zero mode replaces denormalized numbers with +0. This does not comply with IEEE 754 arithmetic, but in some circumstances can improve performance considerably.

6.6.1 When to use flush-to-zero mode

You should select flush-to-zero mode if all the following are true:

- IEEE 754 compliance is not a requirement for your system
- the algorithms you are using are such that they sometimes generate denormalized numbers
- your system uses support code to handle denormalized numbers
- the algorithms you are using do not depend for their accuracy on the preservation of denormalized numbers
- the algorithms you are using do not generate frequent exceptions as a result of replacing denormalized numbers with +0.

You can change between flush-to-zero and normal mode at any time, if different parts of your code have different requirements. Numbers already in registers are not affected by changing mode.

6.6.2 The effects of using flush-to-zero mode

With certain exceptions (see Operations not affected by flush-to-zero mode on page 6-14), flush-to-zero mode has the following effects on floating-point operations:

- A denormalized number is treated as +0 when used as an input to a floating point operation. The source register is not altered.
- If the result of a single-precision floating-point operation, before rounding, is in the range \(-2^{-126} \) to \(+2^{-126}\), it is replaced by +0.
- If the result of a double-precision floating-point operation, before rounding, is in the range \(-2^{-1022} \) to \(+2^{-1022}\), it is replaced by +0.

An inexact exception occurs whenever a denormalized number is used as an operand, or a result is flushed to zero. Underflow exceptions do not occur in flush-to-zero mode.
6.6.3 Operations not affected by flush-to-zero mode

The following operations can be carried out on denormalized numbers even in flush-to-zero mode, without flushing the results to zero:

- Copy, absolute value, and negate (see FABS, FCPY, and FNEG on page 6-16)
- Load and store (see FLD and FST on page 6-22)
- Load multiple and store multiple (see FLDM and FSTM on page 6-24)
- Transfer between floating-point registers and ARM general-purpose registers (see FMDRR and FMRRD on page 6-27 and FMRRS and FMSRR on page 6-30).
6.7 VFP instructions

This section contains the following subsections:

- **FABS, FCPY, and FNEG** on page 6-16
 Floating-point absolute value, copy, and negate.
- **FADD and FSUB** on page 6-17
 Floating-point add and subtract.
- **FCMP** on page 6-18
 Floating-point compare.
- **FCVTDS** on page 6-19
 Convert single-precision floating-point to double-precision.
- **FCVTSD** on page 6-20
 Convert double-precision floating-point to single-precision.
- **FDIV** on page 6-21
 Floating-point divide.
- **FLD and FST** on page 6-22
 Floating-point load and store.
- **FLDM and FSTM** on page 6-24
 Floating-point load multiple and store multiple.
- **FMAC, FNMAC, FMSC, and FNMSC** on page 6-26
 Floating-point multiply accumulate instructions.
- **FMDRR and FMRRD** on page 6-27
 Transfer contents between ARM registers and a double-precision floating-point register.
- **FMRRS and FMSRR** on page 6-30
 Transfer contents between a single-precision floating-point register and an ARM register.
- **FMRX, FMXR, and FMSTAT** on page 6-31
 Transfer contents between an ARM register and a VFP system register.
- **FMUL and FNMUL** on page 6-32
 Floating-point multiply and negate-multiply.
- **FSITO and FUITO** on page 6-33
 Convert signed integer to floating-point and unsigned integer to floating-point.
- **FSQRT** on page 6-34
 Floating-point square root.
- **FTOSI and FTOUI** on page 6-35
 Convert floating-point to signed integer and floating-point to unsigned integer.
6.7.1 FABS, FCPY, and FNEG

Floating-point copy, absolute value, and negate.

These instructions can be scalar, vector, or mixed (see Vector and scalar operations on page 6-7).

Syntax

\(<\text{op}><\text{precision}>\{\text{cond}\} \ Fd, Fm\)

where:

\(<\text{op}>\) must be one of FCPY, FABS, or FNEG.

\(<\text{precision}>\) must be either S for single-precision, or D for double-precision.

\(\text{cond}\) is an optional condition code (see VFP and condition codes on page 6-8).

\(F_d\) is the VFP register for the result.

\(F_m\) is the VFP register holding the operand.

The precision of \(F_d\) and \(F_m\) must match the precision specified in \(<\text{precision}>\).

Usage

The FCPY instruction copies the contents of \(F_m\) into \(F_d\).

The FABS instruction takes the contents of \(F_m\), clears the sign bit, and places the result in \(F_d\). This gives the absolute value.

The FNEG instruction takes the contents of \(F_m\), changes the sign bit, and places the result in \(F_d\). This gives the negation of the value.

If the operand is a NaN, the sign bit is determined in each case as above, but no exception is produced.

Exceptions

None of these instructions can produce any exceptions.

Examples

\[
\begin{align*}
\text{FABSD} & \quad d3, d5 \\
\text{FNEGSMI} & \quad s15, s15
\end{align*}
\]
6.7.2 FADD and FSUB

Floating-point add and subtract.

FADD and FSUB can be scalar, vector, or mixed (see Vector and scalar operations on page 6-7).

Syntax

FADD<precision>{cond} Fd, Fn, Fm
FSUB<precision>{cond} Fd, Fn, Fm

where:

<precision> must be either S for single-precision, or D for double-precision.
cond is an optional condition code (see VFP and condition codes on page 6-8).
Fd is the VFP register for the result.
Fn is the VFP register holding the first operand.
Fm is the VFP register holding the second operand.

The precision of Fd, Fn and Fm must match the precision specified in <precision>.

Usage

The FADD instruction adds the values in Fn and Fm and places the result in Fd.

The FSUB instruction subtracts the value in Fm from the value in Fn and places the result in Fd.

Exceptions

FADD and FSUB instructions can produce Invalid Operation, Overflow, or Inexact exceptions.

Examples

FSUBSEQ s2, s4, s17
FADDGT d4, d0, d12
FSUBD d0, d0, d12
6.7.3 FCMP

Floating-point compare.

FCMP is always scalar.

Syntax

\[
\text{FCMP}(\text{E})<\text{precision}>(\text{cond}) \ Fd, \ Fm \\
\text{FCMP}(\text{E})Z<\text{precision}>(\text{cond}) \ Fd
\]

where:

- \(E \) is an optional parameter. If \(E \) is present, an exception is raised if either operand is any kind of NaN. Otherwise, an exception is raised only if either operand is a signalling NaN.
- \(Z \) is a parameter specifying comparison with zero.
- \(<\text{precision}> \) must be either \(S \) for single-precision, or \(D \) for double-precision.
- \(\text{cond} \) is an optional condition code (see VFP and condition codes on page 6-8).
- \(Fd \) is the VFP register holding the first operand.
- \(Fm \) is the VFP register holding the second operand. Omit \(Fm \) for a compare with zero instruction.

The precision of \(Fd \) and \(Fm \) must match the precision specified in \(<\text{precision}> \).

Usage

The FCMP instruction subtracts the value in \(Fm \) from the value in \(Fd \) and sets the VFP condition flags on the result (see VFP and condition codes on page 6-8).

Exceptions

FCMP instructions can produce Invalid Operation exceptions.

Examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Modify</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCMPS</td>
<td>s3, s0</td>
</tr>
<tr>
<td>FCMPEDNE</td>
<td>d5, d13</td>
</tr>
<tr>
<td>FCMPSEQ</td>
<td>s2</td>
</tr>
</tbody>
</table>
6.7.4 FCVTDS

Convert single-precision floating-point to double-precision.
FCVTDS is always scalar.

Syntax
FCVTDS \{cond\} \ Dd, Sm

where:
\(cond\) is an optional condition code (see VFP and condition codes on page 6-8).
\(Dd\) is a double-precision VFP register for the result.
\(Sm\) is a single-precision VFP register holding the operand.

Usage
The FCVTDS instruction converts the single-precision value in \(Sm\) to double-precision and places the result in \(Dd\).

Exceptions
FCVTDS instructions can produce Invalid Operation exceptions.

Examples
 FCVTDS d5, s7
 FCVTDSGT d0, s4
6.7.5 FCVTSD

Convert double-precision floating-point to single-precision.
FCVTSD is always scalar.

Syntax

FCVTSD\(\{\text{cond}\}\) \(Sd, Dm\)

where:

- \(\text{cond}\) is an optional condition code (see VFP and condition codes on page 6-8).
- \(Sd\) is a single-precision VFP register for the result.
- \(Dm\) is a double-precision VFP register holding the operand.

Usage

The FCVTSD instruction converts the double-precision value in \(Dm\) to single-precision and places the result in \(Sd\).

Exceptions

FCVTSD instructions can produce Invalid Operation, Overflow, Underflow, or Inexact exceptions.

Examples

- FCVTSD \(\text{s3}, \text{d14}\)
- FCVTSDMI \(\text{s0}, \text{d1}\)
6.7.6 FDIV

Floating-point divide. FDIV can be scalar, vector, or mixed (see Vector and scalar operations on page 6-7).

Syntax

FDIV<precision>{cond} Fd, Fn, Fm

where:

<precision> must be either 5 for single-precision, or 0 for double-precision.
cond is an optional condition code (see VFP and condition codes on page 6-8).
Fd is the VFP register for the result.
Fn is the VFP register holding the first operand.
Fm is the VFP register holding the second operand.

The precision of Fd, Fn and Fm must match the precision specified in <precision>.

Usage

The FDIV instruction divides the value in Fn by the value in Fm and places the result in Fd.

Exceptions

FDIV operations can produce Division by Zero, Invalid Operation, Overflow, Underflow, or Inexact exceptions.

Examples

FDIV5 s8, s0, s12
FDIVSNE s2, s27, s28
FDIVD d10, d2, d10
6.7.7 FLD and FST

Floating-point load and store.

Syntax

\[
\text{FLD}\{\text{precision}\}\{\text{cond}\} \ Fd, [Rn\{, \#\text{offset}\}]
\]

\[
\text{FST}\{\text{precision}\}\{\text{cond}\} \ Fd, [Rn\{, \#\text{offset}\}]
\]

\[
\text{FLD}\{\text{precision}\}\{\text{cond}\} \ Fd, \text{label}
\]

\[
\text{FST}\{\text{precision}\}\{\text{cond}\} \ Fd, \text{label}
\]

where:

- \(<\text{precision}>\) must be either \(S\) for single-precision, or \(D\) for double-precision.
- \(\text{cond}\) is an optional condition code (see VFP and condition codes on page 6-8).
- \(Fd\) is the VFP register to be loaded or saved. The precision of \(Fd\) must match the precision specified in \(<\text{precision}>\).
- \(Rn\) is the ARM register holding the base address for the transfer.
- \(<\text{offset}>\) is an optional numeric expression. It must evaluate to a numeric constant at assembly time. The value must be a multiple of 4, and lie in the range \(-1020\) to \(+1020\). The value is added to the base address to form the address used for the transfer.
- \(\text{label}\) is a program-relative expression. See Register-relative and program-relative expressions on page 3-23 for more information. \(\text{label}\) must be within \(\pm1\text{KB}\) of the current instruction.

Usage

The FLD instruction loads a floating-point register from memory. The FST instruction saves the contents of a floating-point register to memory.

One word is transferred if \(<\text{precision}>\) is \(S\). Two words are transferred if \(<\text{precision}>\) is \(D\).

There is also an FLD pseudo-instruction (see FLD pseudo-instruction on page 6-36).

Examples

\[
\text{FLD} \quad d5, [r7, \#-12]
\]

\[
\text{FLDSN} \quad s3, [r2, \#72+\text{count}]
\]
FSTS s2, [r5]
FLDD d2, [r15, #addr-{PC}]
FLDS s9, fpconst
6.7.8 FLDM and FSTM

Floating-point load multiple and store multiple.

Syntax

FLDM<addressmode><precision>{cond} Rn,{!} VFPregisters
FSTM<addressmode><precision>{cond} Rn,{!} VFPregisters

where:

<addressmode> must be one of:

IA meaning Increment address After each transfer.
DB meaning Decrement address Before each transfer.
EA meaning Empty Ascending stack operation. This is the same as DB for loads, and the same as IA for saves.
FD meaning Full Descending stack operation. This is the same as IA for loads, and the same as DB for saves.

<precision> must be one of:

S for single-precision
D for double-precision
X for unspecified precision.

cond is an optional condition code (see VFP and condition codes on page 6-8).

Rn is the ARM register holding the base address for the transfer.

! is optional. ! specifies that the updated base address must be written back to Rn.

---------- Note ----------
If ! is not specified, <addressmode> must be IA.

VFPregisters is a list of consecutive floating-point registers enclosed in braces, { and }. The list can be comma-separated, or in range format. There must be at least one register in the list.
Usage

The FLDM instruction loads several consecutive floating-point registers from memory.

The FSTM instruction saves the contents of several consecutive floating-point registers to memory.

If `<precision>` is specified as D, `VFPregisters` must be a list of double-precision registers, and two words are transferred for each register in the list.

If `<precision>` is specified as S, `VFPregisters` must be a list of single-precision registers, and one word is transferred for each register in the list.

Unspecified precision

If `<precision>` is specified as X, `VFPregisters` must be specified as double-precision registers. However, any or all of the specified double-precision registers can actually contain two single-precision values or integers.

The number of words transferred might be $2n$ or $(2n + 1)$, where n is the number of double-precision registers in the list. This is implementation-dependent. However, if writeback is specified, Rn is always adjusted by $(2n + 1)$ words.

You must only use unspecified-precision loads and saves in matched pairs, to save and restore data. The format of the saved data is implementation-dependent.

Examples

```
FLDIAS r2, {s1-s5}
FSTMFD r13!, {d3-d6}
FSTMIAS r0!, {s31}
```

The following instructions are equivalent:

```
FLDIAS r7, {s3-s7}
FLDIAS r7, {s3,s4,s5,s6,s7}
```

The following instructions must always be used as a matching pair:

```
FSTMFDX r13!, {d0-d3}
FLDMDX r13!, {d0-d3}
```

The following instruction is illegal, as the registers in the list are not consecutive:

```
FLDIA0 r13!, {d0,d2,d3}
```
6.7.9 FMAC, FNMAC, FMSC, and FNMSC

Floating-point multiply-accumulate, negate-multiply-accumulate, multiply-subtract and negate-multiply-subtract. These instructions can be scalar, vector, or mixed (see Vector and scalar operations on page 6-7).

Syntax

\[
<op><precision>{cond} Fd, Fn, Fm
\]

where:

- \(<op>\) must be one of FMAC, FNMAC, FMSC, or FNMSC.
- \(<precision>\) must be either S for single-precision, or D for double-precision.
- \(cond\) is an optional condition code (see VFP and condition codes on page 6-8).
- \(Fd\) is the VFP register for the result.
- \(Fn\) is the VFP register holding the first operand.
- \(Fm\) is the VFP register holding the second operand.

The precision of \(Fd, Fn\) and \(Fm\) must match the precision specified in \(<precision>\).

Usage

The FMAC instruction calculates \(Fd + Fn \times Fm\) and places the result in \(Fd\).

The FNMAC instruction calculates \(Fd – Fn \times Fm\) and places the result in \(Fd\).

The FMSC instruction calculates \(-Fd + Fn \times Fm\) and places the result in \(Fd\).

The FNMSC instruction calculates \(-Fd – Fn \times Fm\) and places the result in \(Fd\).

Exceptions

These operations can produce Invalid Operation, Overflow, Underflow, or Inexact exceptions.

Examples

FMACD d8, d0, d8
FMACS s20, s24, s28
FNMSCSLE s6, s0, s26
6.7.10 FMDRR and FMRRD

Transfer contents between two ARM registers and a double-precision floating-point register.

Syntax

FMDRR{cond} Dn, Rd, Rn

FMRRD{cond} Rd, Rn, Dn

where:

cond is an optional condition code (see VFP and condition codes on page 6-8).

Dn is the VFP double-precision register.

Rd, Rn are ARM registers. Do not use r15.

Usage

FMDRR Dn, Rd, Rn transfers the contents of Rd into the low half of Dn, and the contents of Rn into the high half of Dn.

FMRRD Rd, Rn, Dn transfers the contents of the low half of Dn into Rd, and the contents of the high half of Dn into Rn.

Exceptions

These instructions do not produce any exceptions.

Architectures

These instructions are available in VFPv2 and above.

Examples

FMDRR d5, r3, r4

FMRRDPL r12, r2, d2
6.7.11 FMDHR, FMDLR, FMRDH, and FMRDL

Transfer contents between an ARM register and a half of a double-precision floating-point register.

Syntax

\[
\text{FMDHR}\{\text{cond}\} \quad Dn, \quad Rd \\
\text{FMDLR}\{\text{cond}\} \quad Dn, \quad Rd \\
\text{FMRDH}\{\text{cond}\} \quad Rd, \quad Dn \\
\text{FMRDL}\{\text{cond}\} \quad Rd, \quad Dn
\]

where:

- \(\text{cond}\) is an optional condition code (see \textit{VFP and condition codes} on page 6-8).
- \(Dn\) is the VFP double-precision register.
- \(Rd\) is the ARM register. \(Rd\) must not be r15.

Usage

These instructions are used together as matched pairs:

- Use FMDHR with FMDLR
 - \text{FMDHR} copy the contents of \(Rd\) into the high half of \(Dn\)
 - \text{FMDLR} copy the contents of \(Rd\) into the low half of \(Dn\)
- Use FMRDH with FMRDL
 - \text{FMRDH} copy the contents of the high half of \(Dn\) into \(Rd\)
 - \text{FMRDL} copy the contents of the low half of \(Dn\) into \(Rd\).

Exceptions

These instructions do not produce any exceptions.

Examples

\[
\text{FMDHR} \quad d5, \quad r3 \\
\text{FMDLR} \quad d5, \quad r12 \\
\text{FMRDH} \quad r5, \quad d3 \\
\text{FMRDL} \quad r9, \quad d3 \\
\text{FMDLRPL} \quad d2, \quad r1
\]
6.7.12 FMRS and FMSR

Transfer contents between a single-precision floating-point register and an ARM register.

Syntax

\[
\text{FMRS}\{\text{cond}\} \quad R_d, \quad S_n \\
\text{FMSR}\{\text{cond}\} \quad S_n, \quad R_d
\]

where:

- \(\text{cond}\) is an optional condition code (see *VFP and condition codes* on page 6-8).
- \(S_n\) is the VFP single-precision register.
- \(R_d\) is the ARM register. \(R_d\) must not be \(r15\).

Usage

The \text{FMRS} instruction transfers the contents of \(S_n\) into \(R_d\).

The \text{FMSR} instruction transfers the contents of \(R_d\) into \(S_n\).

Exceptions

These instructions do not produce any exceptions.

Examples

\[
\begin{align*}
\text{FMRS} &\quad r2, \quad s0 \\
\text{FMSRNE} &\quad s30, \quad r5
\end{align*}
\]
6.7.13 FMRRS and FMSRR

Transfer contents between two single-precision floating-point registers and two ARM registers.

Syntax

FMRRS{cond} Rd, Rn, {Sn,Sm}
FMSRR{cond} {Sn,Sm}, Rd, Rn

where:

cond is an optional condition code (see VFP and condition codes on page 6-8).
Sn, Sm are two consecutive VFP single-precision registers.
Rd, Rn are the ARM registers. Do not use r15.

Usage

The FMRRS instruction transfers the contents of Sn into Rd, and the contents of Sm into Rn.
The FMSRR instruction transfers the contents of Rd into Sn, and the contents of Rn into Sm.

Exceptions

These instructions do not produce any exceptions.

Architectures

These instructions are available in VFPv2 and above.

Examples

FMRRS r2, r3, {s0,s1}
FMSRRNE {s27,s28}, r5, r2

Incorrect examples

FMRRS r2, r3, {s2,s4} ; VFP registers must be consecutive
FMSRR {s5,s6}, r15, r0 ; you must not use r15
6.7.14 FMRX, FMXR, and FMSTAT

Transfer contents between an ARM register and a VFP system register.

Syntax

FMRX{cond} Rd, VFPsysreg
FMXR{cond} VFPsysreg, Rd
FMSTAT{cond}

where:

cond is an optional condition code (see VFP and condition codes on page 6-8).
VFPsysreg is the VFP system register, usually FPSCR, FPSID, or FPEXC (see Floating-point registers on page 6-5).
Rd is the ARM register.

Usage

The FMRX instruction transfers the contents of VFPsysreg into Rd.
The FMXR instruction transfers the contents of Rd into VFPsysreg.
The FMSTAT instruction is a synonym for FMRX r15, FPSCR. It transfers the floating-point condition flags to the corresponding flags in the ARM CPSR (see VFP and condition codes on page 6-8).

--- Note ---
These instructions stall the ARM until all current VFP operations complete.

Exceptions

These instructions do not produce any exceptions.

Examples

FMSTAT
FMSTATNE
FMXR FPSCR, r2
FMXR r3, FPSID
6.7.15 FMUL and FNMUL

Floating-point multiply and negate-multiply. FMUL and FNMUL can be scalar, vector, or mixed (see Vector and scalar operations on page 6-7).

Syntax

FMUL<precision>{cond} Fd, Fn, Fm
FNMUL<precision>{cond} Fd, Fn, Fm

where:

<precision> must be either S for single-precision, or D for double-precision.
cond is an optional condition code (see VFP and condition codes on page 6-8).
Fd is the VFP register for the result.
Fn is the VFP register holding the first operand.
Fm is the VFP register holding the second operand.

The precision of Fd, Fn and Fm must match the precision specified in <precision>.

Usage

The FMUL instruction multiplies the values in Fn and Fm and places the result in Fd.
The FNMUL instruction multiplies the values in Fn and Fm and places the negation of the result in Fd.

Exceptions

FMUL and FNMUL operations can produce Invalid Operation, Overflow, Underflow, or Inexact exceptions.

Examples

FNMUL5 s10, s10, s14
FMU DL T d0, d7, d8
6.7.16 FSITO and FUITO

Convert signed integer to floating-point and unsigned integer to floating-point.

FSITO and FUITO are always scalar.

Syntax

FSITO<precision>{cond} Fd, Sm
FUITO<precision>{cond} Fd, Sm

where:

<precision> must be either S for single-precision, or D for double-precision.

cond is an optional condition code (see VFP and condition codes on page 6-8).

Fd is a VFP register for the result. The precision of Fd must match the precision specified in <precision>.

Sm is a single-precision VFP register holding the integer operand.

Usage

The FSITO instruction converts the signed integer value in Sm to floating-point and places the result in Fd.

The FUITO instruction converts the unsigned integer value in Sm to floating-point and places the result in Fd.

Exceptions

FSITOS and FUITOS instructions can produce Inexact exceptions.

FSITO0 and FUITO0 instructions do not produce any exceptions.

Examples

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Source</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUITOD</td>
<td>d3, s31</td>
<td>unsigned integer to double-precision</td>
</tr>
<tr>
<td>FSITOD</td>
<td>d5, s16</td>
<td>signed integer to double-precision</td>
</tr>
<tr>
<td>FSITOSNE</td>
<td>s2, s2</td>
<td>signed integer to single-precision</td>
</tr>
</tbody>
</table>
6.7.17 FSQRT

Floating-point square root instruction. This instruction can be scalar, vector, or mixed (see Vector and scalar operations on page 6-7).

Syntax

\[
\text{FSQRT}\{\text{precision}\}\{\text{cond}\} \ Fd, \ Fm
\]

where:
- \text{<precision>} must be either \text{S} for single-precision, or \text{D} for double-precision.
- \text{cond} is an optional condition code (see VFP and condition codes on page 6-8).
- \text{Fd} is the VFP register for the result.
- \text{Fm} is the VFP register holding the operand.

The precision of \text{Fd} and \text{Fm} must match the precision specified in \text{<precision>}.

Usage

The FSQRT instruction calculates the square root of the value of the contents of \text{Fm} and places the result in \text{Fd}.

Exceptions

FSQRT operations can produce Invalid Operation or Inexact exceptions.

Examples

- FSQRTS \ s4, s28
- FSQRTD \ d14, d6
- FSQRTSNE \ s15, s13
6.7.18 FTOSI and FTOUI

Convert floating-point to signed integer and floating-point to unsigned integer.

FTOSI and FTOUI are always scalar.

Syntax

FTOSI{Z}<precision>{cond} Sd, Fm
FTOUI{Z}<precision>{cond} Sd, Fm

where:

Z is an optional parameter specifying rounding towards zero. If specified, this overrides the rounding mode currently specified in the FPSCR. The FPSCR is not altered.

<precision> must be either S for single-precision, or D for double-precision.

cond is an optional condition code (see VFP and condition codes on page 6-8).

Sd is a single-precision VFP register for the integer result.

Fm is a VFP register holding the operand. The precision of Fm must match the precision specified in <precision>.

Usage

The FTOSI instruction converts the floating-point value in Fm to a signed integer and places the result in Sd.

The FTOUI instruction converts the floating-point value in Fm to an unsigned integer and places the result in Sd.

Exceptions

FTOSI and FTOUI instructions can produce Invalid Operation or Inexact exceptions.

Examples

FTOSID s10, d2
FTOUID s3, d1
FTOSIZS s3, s31
6.8 VFP pseudo-instruction

There is one VFP pseudo-instruction.

6.8.1 FLD pseudo-instruction

The FLD pseudo-instruction loads a VFP floating-point register with a single-precision or double-precision floating-point constant.

--- Note ---

You can use FLD only if the command line option -fpu is set to vfp, softvfp+vfp, vfpv1, vfpv2 or softvfp+vfpv2.

This section describes the FLD pseudo-instruction only. See FLD and FST on page 6-22 for information on the FLD instruction.

Syntax

FLD<precision>{cond} fp-register,=fp-literal

where:

<precision> can be S for single-precision, or D for double-precision.

cond is an optional condition code.

fp-register is the floating-point register to be loaded.

fp-literal is a single-precision or double-precision floating-point literal (see Floating-point literals on page 3-22).

Usage

The assembler places the constant in a literal pool and generates a program-relative FLD instruction to read the constant from the literal pool. One word in the literal pool is used to store a single-precision constant. Two words are used to store a double-precision constant.

The offset from pc to the constant must be less than 1KB. You are responsible for ensuring that there is a literal pool within range. See LTORG on page 7-14 for more information.
Examples

FLDD d1,=3.12E106 ; loads 3.12E106 into d1
FLDS s31,=3.12E-16 ; loads 3.12E-16 into s31
6.9 VFP directives and vector notation

This section applies only to armasm. The inline assemblers in the C and C++ compilers do not accept these directives or vector notation.

You can make assertions about VFP vector lengths and strides in your code, and have them checked by the assembler. See:
- \textit{VFPASSERT SCALAR} on page 6-39
- \textit{VFPASSERT VECTOR} on page 6-40.

If you use \textit{VFPASSERT} directives, you must specify vector details in all VFP data processing instructions. The vector notation is described below. If you do not use \textit{VFPASSERT} directives you must not use this vector notation.

In VFP data processing instructions, specify vectors of VFP registers using angle brackets:

\textit{sn} is a single-precision scalar register \textit{n}

\textit{sn}<> is a single-precision vector whose length and stride are given by the current vector length and stride, starting at register \textit{n}

\textit{sn}<\textit{L}> is a single-precision vector of length \textit{L}, stride 1, starting at register \textit{n}

\textit{sn}<\textit{L};\textit{S}> is a single-precision vector of length \textit{L}, stride \textit{S}, starting at register \textit{n}

\textit{dn} is a double-precision scalar register \textit{n}

\textit{dn}<> is a double-precision vector whose length and stride are given by the current vector length and stride, starting at register \textit{n}

\textit{dn}<\textit{L}> is a double-precision vector of length \textit{L}, stride 1, starting at register \textit{n}

\textit{dn}<\textit{L};\textit{S}> is a double-precision vector of length \textit{L}, stride \textit{S}, starting at register \textit{n}.

You can use this vector notation with names defined using the DN and SN directives (see \textit{DN and SN} on page 7-11).

You must not use this vector notation in the DN and SN directives themselves.
6.9.1 VFPASSERT SCALAR

The VFPASSERT SCALAR directive informs the assembler that following VFP instructions are in scalar mode.

Syntax

VFPASSERT SCALAR

Usage

Use the VFPASSERT SCALAR directive to mark the end of any block of code where the VFP mode is VECTOR.

Place the VFPASSERT SCALAR directive immediately after the instruction where the change occurs. This is usually an FMXR instruction, but might be a BL instruction.

If a function expects the VFP to be in vector mode on exit, place a VFPASSERT SCALAR directive immediately after the last instruction. Such a function would not be ATPCS conformant. See the Using the Procedure Call Standard chapter in RealView Compilation Tools v2.0 Developer Guide for more information.

See also:

- VFP directives and vector notation on page 6-38
- VFPASSERT VECTOR on page 6-40.

Note

This directive does not generate any code. It is only an assertion by the programmer. The assembler produces error messages if any such assertions are inconsistent with each other, or with any vector notation in VFP data processing instructions.

The assembler faults vector notation in VFP data processing instructions following a VFPASSERT SCALAR directive, even if the vector length is 1.

Example

```
VFPASSERT SCALAR ; scalar mode
fadd d4, d4, d0  ; okay
fadds s4<s>, s0, s8<s> ; ERROR, vector in scalar mode
fabss s24<l>, s28<l> ; ERROR, vector in scalar mode (even though length==1)
```
6.9.2 VFPASSERT VECTOR

The VFPASSERT VECTOR directive informs the assembler that following VFP instructions are in vector mode. It can also specify the length and stride of the vectors.

Syntax

VFPASSERT VECTOR[<n[:s]>]

where:

n is the vector length, 1-8.

s is the vector stride, 1-2.

Usage

Use the VFPASSERT VECTOR directive to mark the start of a block of instructions where the VFP mode is VECTOR, and to mark changes in the length or stride of vectors.

Place the VFPASSERT VECTOR directive immediately after the instruction where the change occurs. This is usually an FMXR instruction, but might be a BL instruction.

If a function expects the VFP to be in vector mode on entry, place a VFPASSERT VECTOR directive immediately before the first instruction. Such a function would not be ATPCS conformant. See the Using the Procedure Call Standard chapter in RealView Compilation Tools v2.0 Developer Guide for more information.

See:

• VFP directives and vector notation on page 6-38
• VFPASSERT SCALAR on page 6-39.

Note

This directive does not generate any code. It is only an assertion by the programmer. The assembler produces error messages if any such assertions are inconsistent with each other, or with any vector notation in VFP data processing instructions.
Example

FMRX r10,FPSCR
BIC r10,r10,#0x00370000
ORR r10,r10,#0x00020000 ; set length = 3, stride = 1
FMXR FPSCR,r10

VFPASSERT VECTOR ; assert vector mode, unspecified length and stride
fadd d4, d4, d0 ; ERROR, scalar in vector mode
fadds s16<3>, s0, s8<3> ; okay
fabss s24<1>, s28<1> ; wrong length, but not faulted (unspecified)

FMRX r10,FPSCR
BIC r10,r10,#0x00370000
ORR r10,r10,#0x00030000 ; set length = 4, stride = 1
FMXR FPSCR,r10

VFPASSERT VECTOR<4> ; assert vector mode, length 4, stride 1
fadds s24<4>, s0, s8<4> ; okay
fabss s24<2>, s24<2> ; ERROR, wrong length

FMRX r10,FPSCR
BIC r10,r10,#0x00370000
ORR r10,r10,#0x00130000 ; set length = 4, stride = 2
FMXR FPSCR,r10

VFPASSERT VECTOR<4:2> ; assert vector mode, length 4, stride 2
fadds s8<4>, s0, s16<4> ; ERROR, wrong stride
fabss s16<4:2>, s28<4:2> ; okay
fadds s8<>, s2, s16<> ; okay (s8 and s16 both have
 ; length 4 and stride 2.
 ; s2 is scalar.)
Chapter 7
Directives Reference

This chapter describes the directives that are provided by the ARM assembler, armasm. It contains the following sections:

- **Alphabetical list of directives** on page 7-2
- **Symbol definition directives** on page 7-3
- **Data definition directives** on page 7-13
 Allocate memory, define data structures, set initial contents of memory.
- **Assembly control directives** on page 7-26
 Conditional assembly, looping, inclusions, and macros.
- **Frame description directives** on page 7-34
- **Reporting directives** on page 7-46
- **Miscellaneous directives** on page 7-51.

Note
None of these directives are available in the inline assemblers in the ARM C and C++ compilers.
7.1 Alphabetical list of directives

Table 7-1 shows where you can find a description of each directive.

<table>
<thead>
<tr>
<th>Directive</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIGN</td>
<td>7-52</td>
</tr>
<tr>
<td>AREA</td>
<td>7-54</td>
</tr>
<tr>
<td>ASSERT</td>
<td>7-46</td>
</tr>
<tr>
<td>CN</td>
<td>7-9</td>
</tr>
<tr>
<td>CODE16 and CODE32</td>
<td>7-57</td>
</tr>
<tr>
<td>CP</td>
<td>7-10</td>
</tr>
<tr>
<td>DATA</td>
<td>7-25</td>
</tr>
<tr>
<td>DCB</td>
<td>7-18</td>
</tr>
<tr>
<td>DCD and DCDU</td>
<td>7-19</td>
</tr>
<tr>
<td>DCOO</td>
<td>7-20</td>
</tr>
<tr>
<td>DCFD and DCFDU</td>
<td>7-21</td>
</tr>
<tr>
<td>DCFS and DCFSU</td>
<td>7-22</td>
</tr>
<tr>
<td>DCI</td>
<td>7-23</td>
</tr>
<tr>
<td>DCQ and DCQU</td>
<td>7-24</td>
</tr>
<tr>
<td>DCW and DCWU</td>
<td>7-25</td>
</tr>
<tr>
<td>DN and SN</td>
<td>7-11</td>
</tr>
<tr>
<td>END</td>
<td>7-58</td>
</tr>
<tr>
<td>ENDFUNC or ENDP</td>
<td>7-45</td>
</tr>
<tr>
<td>ENTRY</td>
<td>7-59</td>
</tr>
<tr>
<td>EQU</td>
<td>7-60</td>
</tr>
<tr>
<td>EXPORT or GLOBAL</td>
<td>7-61</td>
</tr>
<tr>
<td>EXPORTAS</td>
<td>7-62</td>
</tr>
<tr>
<td>EXTERN</td>
<td>7-63</td>
</tr>
<tr>
<td>FIELD</td>
<td>7-16</td>
</tr>
<tr>
<td>FN</td>
<td>7-12</td>
</tr>
<tr>
<td>FRAME ADDRESS</td>
<td>7-35</td>
</tr>
<tr>
<td>FRAME POP</td>
<td>7-36</td>
</tr>
<tr>
<td>FRAME PUSH</td>
<td>7-37</td>
</tr>
<tr>
<td>FRAME REGISTER</td>
<td>7-38</td>
</tr>
<tr>
<td>FRAME RESTORE</td>
<td>7-39</td>
</tr>
<tr>
<td>FRAME SAVE</td>
<td>7-41</td>
</tr>
<tr>
<td>FRAME STATE REMEMBER</td>
<td>7-42</td>
</tr>
<tr>
<td>FRAME STATE RESTORE</td>
<td>7-43</td>
</tr>
<tr>
<td>FUNCTION or PROC</td>
<td>7-44</td>
</tr>
<tr>
<td>GBLA, GBLL, and GBLS</td>
<td>7-4</td>
</tr>
<tr>
<td>GET or INCLUDE</td>
<td>7-44</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>7-65</td>
</tr>
<tr>
<td>IF, ELSE, ENDF, and ELIF</td>
<td>7-30</td>
</tr>
<tr>
<td>IMPORT</td>
<td>7-65</td>
</tr>
<tr>
<td>INCBIN</td>
<td>7-66</td>
</tr>
<tr>
<td>INFOS</td>
<td>7-47</td>
</tr>
<tr>
<td>KEEP</td>
<td>7-67</td>
</tr>
<tr>
<td>LCLA, LCLL, and LCLS</td>
<td>7-6</td>
</tr>
<tr>
<td>MACRO and MEND</td>
<td>7-27</td>
</tr>
<tr>
<td>MAP</td>
<td>7-15</td>
</tr>
<tr>
<td>MEXIT</td>
<td>7-29</td>
</tr>
<tr>
<td>NOFP</td>
<td>7-68</td>
</tr>
<tr>
<td>OPT</td>
<td>7-48</td>
</tr>
<tr>
<td>REQUIRE</td>
<td>7-68</td>
</tr>
<tr>
<td>REQUIRE8 and PRESERVE8</td>
<td>7-69</td>
</tr>
<tr>
<td>RN</td>
<td>7-70</td>
</tr>
<tr>
<td>ROUT</td>
<td>7-71</td>
</tr>
<tr>
<td>SPACE</td>
<td>7-17</td>
</tr>
<tr>
<td>SETA, SETL, and SETS</td>
<td>7-7</td>
</tr>
<tr>
<td>SETA, SETL, and SETS</td>
<td>7-7</td>
</tr>
<tr>
<td>SPACE</td>
<td>7-17</td>
</tr>
<tr>
<td>TTL and SUBT</td>
<td>7-50</td>
</tr>
<tr>
<td>WHILE and WEND</td>
<td>7-33</td>
</tr>
</tbody>
</table>
7.2 Symbol definition directives

This section describes the following directives:

- **GBLA, GBLL, and GBLS** on page 7-4
 Declare a global arithmetic, logical, or string variable.

- **LCLA, LCLL, and LCLS** on page 7-6
 Declare a local arithmetic, logical, or string variable.

- **SETA, SETL, and SETS** on page 7-7
 Set the value of an arithmetic, logical, or string variable.

- **RLIST** on page 7-8
 Define a name for a set of general-purpose registers.

- **CN** on page 7-9
 Define a coprocessor register name.

- **CP** on page 7-10
 Define a coprocessor name.

- **DN and SN** on page 7-11
 Define a double-precision or single-precision VFP register name.

- **FN** on page 7-12
 Define an FPA register name.
7.2.1 GBLA, GBLL, and GBLS

The GBLA directive declares a global arithmetic variable, and initializes its value to 0.
The GBLL directive declares a global logical variable, and initializes its value to {FALSE}.
The GBLS directive declares a global string variable and initializes its value to a null string, "".

Syntax

\[<gblx> \text{ variable} \]

where:

- \(<gblx> \) is one of GBLA, GBLL, or GBLS.
- \(\text{variable} \) is the name of the variable. \(\text{variable} \) must be unique among symbols within a source file.

Usage

Using one of these directives for a variable that is already defined re-initializes the variable to the same values given above.

The scope of the variable is limited to the source file that contains it.

Set the value of the variable with a SETA, SETL, or SETS directive (see SETA, SETL, and SETS on page 7-7).

See LCLA, LCLL, and LCLS on page 7-6 for information on declaring local variables.

Global variables can also be set with the -predefine assembler command-line option. See Command syntax on page 3-2 for more information.
Examples

Example 7-1 declares a variable `objectsize`, sets the value of `objectsize` to 0xFF, and then uses it later in a SPACE directive.

```
Example 7-1

GBLA objectsize ; declare the variable name
objectsize SETA 0xFF ; set its value
.
.
; other code
.
SPACE objectsize ; quote the variable
```

Example 7-2 shows how to declare and set a variable when you invoke armasm. Use this when you need to set the value of a variable at assembly time. `-pd` is a synonym for `-predefine`.

```
Example 7-2

armasm -pd "objectsize SETA 0xFF" -o objectfile sourcefile
```
7.2.2 LCLA, LCLL, and LCLS

The LCLA directive declares a local arithmetic variable, and initializes its value to 0.
The LCLL directive declares a local logical variable, and initializes its value to \{FALSE\}.
The LCLS directive declares a local string variable, and initializes its value to a null string, "".

Syntax

\[<lclx>\text{ variable}\]

where:

\(<lclx>\) is one of LCLA, LCLL, or LCLS.

\(\text{variable}\) is the name of the variable. \(\text{variable}\) must be unique within the macro that contains it.

Usage

Using one of these directives for a variable that is already defined re-initializes the variable to the same values given above.

The scope of the variable is limited to a particular instantiation of the macro that contains it (see MACRO and MEND on page 7-27).

Set the value of the variable with a SETA, SETL, or SETS directive (see SETA, SETL, and SETS on page 7-7).

See GBLA, GBLL, and GBLS on page 7-4 for information on declaring global variables.

Example

```
MACRO
LABEL message $a                      ; Declare a macro
LCLS    err                     ; Macro prototype line
        ; Declare local string
        ; variable err.

err     SETS    "error no: "          ; Set value of err

LABEL ; code
        INFO 0, "err":CC::STR:$a     ; Use string
        MEND
```
7.2.3 SETA, SETL, and SETS

The SETA directive sets the value of a local or global arithmetic variable.

The SETL directive sets the value of a local or global logical variable.

The SETS directive sets the value of a local or global string variable.

Syntax

\[
\text{variable} \ <\text{setx}> \ expr
\]

where:

\(<\text{setx}>\) is one of SETA, SETL, or SETS.
\nvariable is the name of a variable declared by a GBLA, GBLL, GBLS, LCLA, LCLL, or LCLS directive.

expr is an expression, which is:

- numeric, for SETA (see Numeric expressions on page 3-20)
- logical, for SETL (see Logical expressions on page 3-23)
- string, for SETS (see String expressions on page 3-19).

Usage

You must declare variable using a global or local declaration directive before using one of these directives. See GBLA, GBLL, and GBLS on page 7-4 and LCLA, LCLL, and LCLS on page 7-6 for more information.

You can also predefine variable names on the command line. See Command syntax on page 3-2 for more information.

Examples

\begin{verbatim}
GBLA VersionNumber
VersionNumber SETA 21
GBLL Debug
Debug SETL {TRUE}
GBLS VersionString
VersionString SETS "Version 1.0"
\end{verbatim}
7.2.4 RLIST

The RLIST (register list) directive gives a name to a set of general-purpose registers.

Syntax

```
name RLIST {list-of-registers}
```

where:

- `name` is the name to be given to the set of registers. `name` cannot be the same as any of the predefined names listed in *Predefined register and coprocessor names* on page 3-9.

- `list-of-registers` is a comma-delimited list of register names and/or register ranges. The register list must be enclosed in braces.

Usage

Use RLIST to give a name to a set of registers to be transferred by the LDM or STM instructions.

LDM and STM always put the lowest physical register numbers at the lowest address in memory, regardless of the order they are supplied to the LDM or STM instruction. If you have defined your own symbolic register names it can be less apparent that a register list is not in increasing register order.

Use the `-checkreglist` assembler option to ensure that the registers in a register list are supplied in increasing register order. If registers are not supplied in increasing register order, a warning is issued.

Example

```
Context RLIST   {r0-r6,r8,r10-r12,r15}
```
7.2.5 CN

The CN directive defines a name for a coprocessor register.

Syntax

```
name CN expr
```

where:

- `name` is the name to be defined for the coprocessor register. `name` cannot be the same as any of the predefined names listed in *Predefined register and coprocessor names* on page 3-9.
- `expr` evaluates to a coprocessor register number from 0 to 15.

Usage

Use CN to allocate convenient names to registers, to help you remember what you use each register for.

--- Note ---

Avoid conflicting uses of the same register under different names.

The names c0 to c15 are predefined.

Example

```
power    CN  6        ; defines power as a symbol for
; coprocessor register 6
```
7.2.6 CP

The CP directive defines a name for a specified coprocessor. The coprocessor number must be within the range 0 to 15.

Syntax

\texttt{name CP expr}

where:

\texttt{name} is the name to be assigned to the coprocessor. \texttt{name} cannot be the same as any of the predefined names listed in Predefined register and coprocessor names on page 3-9.

\texttt{expr} evaluates to a coprocessor number from 0 to 15.

Usage

Use CP to allocate convenient names to coprocessors, to help you to remember what you use each one for.

\textbf{Note}

Avoid conflicting uses of the same coprocessor under different names.

The names p0 to p15 are predefined for coprocessors 0 to 15.

Example

\begin{verbatim}
dmu CP 6 ; defines dmu as a symbol for coprocessor 6
\end{verbatim}
7.2.7 DN and SN

The DN directive defines a name for a specified double-precision VFP register. The names d0-d15 and D0-D15 are predefined.

The SN directive defines a name for a specified single-precision VFP register. The names s0-s31 and S0-S31 are predefined.

Syntax

\[
\text{name DN expr} \\
\text{name SN expr}
\]

where:

- \text{name} is the name to be assigned to the VFP register. \text{name} cannot be the same as any of the predefined names listed in \textit{Predefined register and coprocessor names} on page 3-9.
- \text{expr} evaluates to a double-precision VFP register number from 0 to 15, or a single-precision VFP register number from 0 to 31 as appropriate.

Usage

Use DN or SN to allocate convenient names to VFP registers, to help you to remember what you use each one for.

\begin{center}
\textbf{Note}
\end{center}

Avoid conflicting uses of the same register under different names.

You cannot specify a vector length in a DN or SN directive (see \textit{VFP directives and vector notation} on page 6-38).

Examples

\begin{verbatim}
energy DN 6 ; defines energy as a symbol for VFP double-precision register 6
mass SN 16 ; defines mass as a symbol for VFP single-precision register 16
\end{verbatim}
7.2.8 FN

The FN directive defines a name for a specified FPA floating-point register. The names f0-f7 and F0-F7 are predefined.

Syntax

name FN expr

where:

name is the name to be assigned to the floating-point register. name cannot be the same as any of the predefined names listed in Predefined register and coprocessor names on page 3-9.

expr evaluates to a floating-point register number from 0 to 7.

Usage

Use FN to allocate convenient names to FPA floating-point registers, to help you to remember what you use each one for.

Note

Avoid conflicting uses of the same register under different names.

Example

energy FN 6 ; defines energy as a symbol for floating-point register 6
7.3 Data definition directives

This section describes the following directives:

- **LTORG** on page 7-14
 Set an origin for a literal pool.

- **MAP** on page 7-15
 Set the origin of a storage map.

- **FIELD** on page 7-16
 Define a field within a storage map.

- **SPACE** on page 7-17
 Allocate a zeroed block of memory.

- **DCB** on page 7-18
 Allocate bytes of memory, and specify the initial contents.

- **DCD and DCDU** on page 7-19
 Allocate words of memory, and specify the initial contents.

- **DCDO** on page 7-20
 Allocate words of memory, and specify the initial contents as offsets from the static base register.

- **DCFD and DCFDU** on page 7-21
 Allocate doublewords of memory, and specify the initial contents as double-precision floating-point numbers.

- **DCFS and DCFSU** on page 7-22
 Allocate words of memory, and specify the initial contents as single-precision floating-point numbers.

- **DCI** on page 7-23
 Allocate words of memory, and specify the initial contents. Mark the location as code not data.

- **DCQ and DCQU** on page 7-24
 Allocate doublewords of memory, and specify the initial contents as 64-bit integers.

- **DCW and DCWU** on page 7-25
 Allocate halfwords of memory, and specify the initial contents.

- **DATA** on page 7-25
 Mark data within a code section. Obsolete, for backwards compatibility only.
The `LTORG` directive instructs the assembler to assemble the current literal pool immediately.

Syntax

`LTORG`

Usage

The assembler assembles the current literal pool at the end of every code section. The end of a code section is determined by the `AREA` directive at the beginning of the following section, or the end of the assembly.

These default literal pools can sometimes be out of range of some `LDR`, `LDFD`, and `LDFS` pseudo-instructions. See [LDR ARM pseudo-instruction](#) on page 4-126 and [LDR Thumb pseudo-instruction](#) on page 5-48 for more information. Use `LTORG` to ensure that a literal pool is assembled within range. Large programs can require several literal pools.

Place `LTORG` directives after unconditional branches or subroutine return instructions so that the processor does not attempt to execute the constants as instructions.

The assembler word-aligns data in literal pools.

Example

```assembly
AREA    Example, CODE, READONLY
start   BL      func1
func1                           ; function body
     ; code
LDR     r1,=0x55555555  ; => LDR R1, [pc, #offset to Literal Pool 1]
     ; code
MOV     pc,lr           ; end function
LTORG                   ; Literal Pool 1 contains literal &55555555.

data    SPACE   4200            ; Clears 4200 bytes of memory,
       ; starting at current location.
END                     ; Default literal pool is empty.
```
7.3.2 MAP

The MAP directive sets the origin of a storage map to a specified address. The storage-map location counter, \{VAR\}, is set to the same address. \& is a synonym for MAP.

Syntax

\texttt{MAP expr\{,base-register\}}

where:

\texttt{expr} is a numeric or program-relative expression:

- If \texttt{base-register} is not specified, \texttt{expr} evaluates to the address where the storage map starts. The storage map location counter is set to this address.
- If \texttt{expr} is program-relative, you must have defined the label before you use it in the map. The map requires the definition of the label during the first pass of the assembler.

\texttt{base-register} specifies a register. If \texttt{base-register} is specified, the address where the storage map starts is the sum of \texttt{expr}, and the value in \texttt{base-register} at runtime.

Usage

Use the MAP directive in combination with the FIELD directive to describe a storage map.

Specify \texttt{base-register} to define register-relative labels. The base register becomes implicit in all labels defined by following FIELD directives, until the next MAP directive. The register-relative labels can be used in load and store instructions. See FIELD on page 7-16 for an example.

The MAP directive can be used any number of times to define multiple storage maps.

The \{VAR\} counter is set to zero before the first MAP directive is used.

Examples

\texttt{MAP 0,r9}
\texttt{MAP 0xff,r9}
7.3.3 FIELD

The FIELD directive describes space within a storage map that has been defined using the MAP directive. # is a synonym for FIELD.

Syntax

{label} FIELD expr

where:

label is an optional label. If specified, label is assigned the value of the storage location counter, {VAR}. The storage location counter is then incremented by the value of expr.

expr is an expression that evaluates to the number of bytes to increment the storage counter.

Usage

If a storage map is set by a MAP directive that specifies a base-register, the base register is implicit in all labels defined by following FIELD directives, until the next MAP directive. These register-relative labels can be quoted in load and store instructions (see MAP on page 7-15).

Note

You must be careful when using MAP, FIELD, and register-relative labels. See Describing data structures with MAP and FIELD directives on page 2-53 for more information.

Example

The following example shows how register-relative labels are defined using the MAP and FIELD directives.

MAP 0,r9 ; set {VAR} to the address stored in r9
FIELD 4 ; increment {VAR} by 4 bytes
Lab FIELD 4 ; set Lab to the address [r9 + 4]
; and then increment {VAR} by 4 bytes
LDR r0,Lab ; equivalent to LDR r0,[r9,#4]
7.3.4 SPACE

The SPACE directive reserves a zeroed block of memory. % is a synonym for SPACE.

Syntax

{label} SPACE expr

where:

expr evaluates to the number of zeroed bytes to reserve (see Numeric expressions on page 3-20).

Usage

You must use a DATA directive if you use SPACE to define labeled data within Thumb code. See DATA on page 7-25 for more information.

Use the ALIGN directive to align any code following a SPACE directive. See ALIGN on page 7-52 for more information.

See also:

• DCB on page 7-18
• DCD and DCDU on page 7-19
• DCDO on page 7-20
• DCW and DCWU on page 7-25.

Example

AREA MyData, DATA, READWRITE
data1 SPACE 255 ; defines 255 bytes of zeroed store
7.3.5 DCB

The DCB directive allocates one or more bytes of memory, and defines the initial runtime contents of the memory. := is a synonym for DCB.

Syntax

\{label\} DCB expr{,expr}...

where:

expr is either:

• A numeric expression that evaluates to an integer in the range –128 to 255 (see Numeric expressions on page 3-20).
• A quoted string. The characters of the string are loaded into consecutive bytes of store.

Usage

If DCB is followed by an instruction, use an ALIGN directive to ensure that the instruction is aligned. See ALIGN on page 7-52 for more information.

See also:

• DCD and DCDU on page 7-19
• DCQ and DCQU on page 7-24
• DCW and DCWU on page 7-25
• SPACE on page 7-17.

Example

Unlike C strings, ARM assembler strings are not null-terminated. You can construct a null-terminated C string using DCB as follows:

C_string DCB "C_string",0
7.3.6 DCD and DCDU

The DCD directive allocates one or more words of memory, aligned on four-byte boundaries, and defines the initial runtime contents of the memory.

& is a synonym for DCD.

DCDU is the same, except that the memory alignment is arbitrary.

Syntax

\{label\} DCD{U} expr{,expr}

where:

expr is either:

- a numeric expression (see Numeric expressions on page 3-20).
- a program-relative expression.

Usage

DCD inserts up to three bytes of padding before the first defined word, if necessary, to achieve four-byte alignment.

Use DCDU if you do not require alignment.

See also:

- DCB on page 7-18
- DCW and DCWU on page 7-25
- DCQ and DCQU on page 7-24
- SPACE on page 7-17.

Examples

data1 DCD 1,5,20 ; Defines 3 words containing decimal values 1, 5, and 20

data2 DCD mem06 + 4 ; Defines 1 word containing 4 + the address of the label mem06

AREA MyData, DATA, READWRITE
DCB 255 ; Now misaligned ...

data3 DCDU 1,5,20 ; Defines 3 words containing 1, 5 and 20, not word aligned
7.3.7 DCDO

The DCDO directive allocates one or more words of memory, aligned on four-byte boundaries, and defines the initial runtime contents of the memory as an offset from the static base register, sb (r9).

Syntax

```
{label} DCDO expr{,expr}...
```

where:

expr is a register-relative expression or label. The base register must be sb.

Usage

Use DCDO to allocate space in memory for static base register relative relocatable addresses.

Example

```
IMPORT externsym
DCDO externsym ; 32-bit word relocated by offset of externsym from base of SB section.
```
7.3.8 DCFD and DCFDU

The DCFD directive allocates memory for word-aligned double-precision floating-point numbers, and defines the initial runtime contents of the memory. Double-precision numbers occupy two words and must be word aligned to be used in arithmetic operations.

DCFDU is the same, except that the memory alignment is arbitrary.

Syntax

\{label\} DCFD\{U\} \textit{fpliteral},\{\textit{fpliteral}\}...

where:

\textit{fpliteral} is a double-precision floating-point literal (see Floating-point literals on page 3-22).

Usage

The assembler inserts up to three bytes of padding before the first defined number, if necessary, to achieve four-byte alignment.

Use DCFDU if you do not require alignment.

The word order used when converting \textit{fpliteral} to internal form is controlled by the floating-point architecture selected. You cannot use DCFD or DCFDU if you select the -fpu none option.

The range for double-precision numbers is:

- maximum 1.79769313486231571e+308
- minimum 2.22507385850720138e–308.

See also DCFS and DCFSU on page 7-22.

Examples

\begin{verbatim}
DCFD 1E308,-4E-100
DCFDU 10000,-.1,3.1E26
\end{verbatim}
7.3.9 DCFS and DCFSU

The DCFS directive allocates memory for word-aligned single-precision floating-point numbers, and defines the initial runtime contents of the memory. Single-precision numbers occupy one word and must be word aligned to be used in arithmetic operations.

DCFSU is the same, except that the memory alignment is arbitrary.

Syntax

\{label\} DCFS\{U\} \ fpliteral\{, fpliteral\}...

where:

\fpliteral\ is a single-precision floating-point literal (see Floating-point literals on page 3-22).

Usage

DCFS inserts up to three bytes of padding before the first defined number, if necessary to achieve four-byte alignment.

Use DCFSU if you do not require alignment.

The range for single-precision values is:

- maximum 3.40282347e+38
- minimum 1.17549435e-38.

See also DCFD and DCFDU on page 7-21.

Example

DCFS 1E3,-4E-9
DCFSU 1.0,-.1,3.1E6
7.3.10 DCI

In ARM code, the DCI directive allocates one or more words of memory, aligned on four-byte boundaries, and defines the initial runtime contents of the memory.

In Thumb code, the DCI directive allocates one or more halfwords of memory, aligned on two-byte boundaries, and defines the initial runtime contents of the memory.

Syntax

```
{label} DCI expr{,expr}
```

where:

expr is a numeric expression (see Numeric expressions on page 3-20).

Usage

The DCI directive is very like the DCD or DCW directives, but the location is marked as code instead of data. Use DCI when writing macros for new instructions not supported by the version of the assembler you are using.

In ARM code, DCI inserts up to three bytes of padding before the first defined word, if necessary, to achieve four-byte alignment. In Thumb code, DCI inserts an initial byte of padding, if necessary, to achieve two-byte alignment.

See also DCD and DCDU on page 7-19 and DCW and DCWU on page 7-25.

Example

```
MACRO
    ; this macro translates newinstr Rd,Rm
    ; to the appropriate machine code
    newinst $Rd,$Rm
    DCI 0xe16f0f10 :OR: ($Rd:SHL:12) :OR: $Rm
MEND
```
7.3.11 DCQ and DCQU

The DCQ directive allocates one or more eight-byte blocks of memory, aligned on four-byte boundaries, and defines the initial runtime contents of the memory.

DCQU is the same, except that the memory alignment is arbitrary.

Syntax

\{label\} DCQ\{U\} \{-\}\{\{-\}\}\{\{-\}\}...

where:

\textit{literal} is a 64-bit numeric literal (see \textit{Numeric literals} on page \ref{numeric_literals}).

The range of numbers allowed is 0 to \(2^{64} - 1\).

In addition to the characters normally allowed in a numeric literal, you can prefix \textit{literal} with a minus sign. In this case, the range of numbers allowed is \(-2^{63}\) to \(-1\).

The result of specifying \(-n\) is the same as the result of specifying \(2^{64} - n\).

Usage

DCQ inserts up to three bytes of padding before the first defined eight-byte block, if necessary, to achieve four-byte alignment.

Use DCQU if you do not require alignment.

See also:

- \textit{DCB} on page \ref{dcb}
- \textit{DCD and DCDU} on page \ref{dcd}
- \textit{DCW and DCDW} on page \ref{dcw}
- \textit{SPACE} on page \ref{space}.

Example

\begin{verbatim}
AREA MiscData, DATA, READWRITE
data DCQ -225,2_101 ; 2_101 means binary 101.
 DCQU number+4 ; number must already be defined.
\end{verbatim}
7.3.12 DCW and DCWU

The DCW directive allocates one or more halfwords of memory, aligned on two-byte boundaries, and defines the initial runtime contents of the memory.

DCWU is the same, except that the memory alignment is arbitrary.

Syntax

```
{label} DCW expr{,expr}...
```

where:

- `expr` is a numeric expression that evaluates to an integer in the range –32768 to 65535 (see *Numeric expressions* on page 3-20).

Usage

DCW inserts a byte of padding before the first defined halfword if necessary to achieve two-byte alignment.

Use DCWU if you do not require alignment.

See also:

- *DCB* on page 7-18
- *DCD and DCDU* on page 7-19
- *DCQ and DCQU* on page 7-24
- *SPACE* on page 7-17.

Example

```asm
.data DCW -225,2*number ; number must already be defined
   DCWU number+4
```

7.3.13 DATA

The DATA directive is no longer needed. It is ignored by the assembler.
7.4 Assembly control directives

This section describes the following directives:

- MACRO and MEND on page 7-27
- MEXIT on page 7-29
- IF, ELSE, ENDF, and ELIF on page 7-30
- WHILE and WEND on page 7-33.

7.4.1 Nesting directives

The following structures can be nested to a total depth of 256:

- MACRO definitions
- WHILE...WEND loops
- IF...ELSE...ENDIF conditional structures
- INCLUDE file inclusions.

The limit applies to all structures taken together, however they are nested. The limit is not 256 of each type of structure.
7.4.2 MACRO and MEND

The MACRO directive marks the start of the definition of a macro. Macro expansion terminates at the MEND directive. See Using macros on page 2-50 for more information.

Syntax

Two directives are used to define a macro. The syntax is:

```
MACRO
${label} macroname ${parameter{,}$parameter}...
; code
MEND
```

where:

${label} is a parameter that is substituted with a symbol given when the macro is invoked. The symbol is usually a label.

macroname is the name of the macro. It must not begin with an instruction or directive name.

${parameter} is a parameter that is substituted when the macro is invoked. A default value for a parameter can be set using this format:

```
$parameter="default value"
```

Double quotes must be used if there are any spaces within, or at either end of, the default value.

Usage

If you start any WHILE...WEND loops or IF...ENDIF conditions within a macro, they must be closed before the MEND directive is reached. See MEXIT on page 7-29 if you need to allow an early exit from a macro, for example from within a loop.

Within the macro body, parameters such as $label, $parameter can be used in the same way as other variables (see Assembly time substitution of variables on page 3-14). They are given new values each time the macro is invoked. Parameters must begin with $ to distinguish them from ordinary symbols. Any number of parameters can be used.

$label is optional. It is useful if the macro defines internal labels. It is treated as a parameter to the macro. It does not necessarily represent the first instruction in the macro expansion. The macro defines the locations of any labels.

Use | as the argument to use the default value of a parameter. An empty string is used if the argument is omitted.
In a macro that uses several internal labels, it is useful to define each internal label as the base label with a different suffix.

Use a dot between a parameter and following text, or a following parameter, if a space is not required in the expansion. Do not use a dot between preceding text and a parameter.

Macros define the scope of local variables (see LCLA, LCLL, and LCLS on page 7-6).

Macros can be nested (see Nesting directives on page 7-26).

Examples

```
; macro definition
MACRO $label ; start macro definition
    xmac $p1,$p2
    ; code
    $label.loop1 ; code
    ; code
    BGE $label.loop1
    $label.loop2 ; code
    BL $p1
    BGT $label.loop2
    ; code
    ADR $p2
    ; code
    MEND ; end macro definition

; macro invocation
abc xmac subr1,de ; invoke macro
    ; code
    ; this is what is
abcloop1 ; code
    ; code
    ; is produced when
    BGE abcloop1 ; the xmac macro is expanded
abcloop2 ; code
    BL subr1
    BGT abcloop2
    ; code
    ADR de
    ; code
```
Using a macro to produce assembly-time diagnostics:

```assembly
MACRO                        ; Macro definition
diagnose $param1="default"  ; This macro produces
INFO    0,"$param1"        ; assembly-time diagnostics
MEND    ; (on second assembly pass)
```

; macro expansion
```
diagnose            ; Prints blank line at assembly-time
diagnose "hello"    ; Prints "hello" at assembly-time
diagnose |          ; Prints "default" at assembly-time
```

7.4.3 MEXIT

The `MEXIT` directive is used to exit a macro definition before the end.

Usage

Use `MEXIT` when you need an exit from within the body of a macro. Any unclosed `WHILE...WEND` loops or `IF...ENDIF` conditions within the body of the macro are closed by the assembler before the macro is exited.

See also `MACRO` and `MEND` on page 7-27.

Example

```assembly
MACRO
$abc  macro   abc    $param1,$param2
    ; code
    WHILE condition1
    ; code
    IF condition2
    ; code
    MEXIT
    ELSE
    ; code
    ENDIF
    WEND
    ; code
    MEND
```
7.4.4 IF, ELSE, ENDF, and ELIF

The IF directive introduces a condition that is used to decide whether to assemble a sequence of instructions and/or directives. [is a synonym for IF.

The ELSE directive marks the beginning of a sequence of instructions and/or directives that you want to be assembled if the preceding condition fails. | is a synonym for ELSE.

The ENDF directive marks the end of a sequence of instructions and/or directives that you want to be conditionally assembled.] is a synonym for ENDF.

The ELIF directive creates a structure equivalent to ELSE IF, without the need for nesting or repeating the condition. See Using ELIF on page 7-31 for details.

Syntax

```
IF logical-expression
...
{ELSE
...
}
ENDIF
```

where:

logical-expression is an expression that evaluates to either {TRUE} or {FALSE}.

See Relational operators on page 3-30.

Usage

Use IF with ENDF, and optionally with ELSE, for sequences of instructions and/or directives that are only to be assembled or acted on under a specified condition.

IF...ENDIF conditions can be nested (see Nesting directives on page 7-26).
Using ELIF

Without using ELIF, you can construct a nested set of conditional instructions like this:

```
IF logical-expression
  instructions
ELSE
  IF logical-expression2
    instructions
  ELSE
    IF logical-expression3
      instructions
    ENDIF
  ENDIF
ENDIF
```

A nested structure like this can be nested up to 256 levels deep.

You can write the same structure more simply using ELIF:

```
IF logical-expression
  instructions
ELIF logical-expression2
  instructions
ELIF logical-expression3
  instructions
ENDIF
```

This structure only adds one to the current nesting depth, for the IF ENDIF pair.
Examples

Example 7-3 assembles the first set of instructions if NEWVERSION is defined, or the alternative set otherwise.

Example 7-3 Assembly conditional on a variable being defined

```
IF :DEF:NEWVERSION
  ; first set of instructions/directives
ELSE
  ; alternative set of instructions/directives
ENDIF
```

Invoking armasm as follows defines NEWVERSION, so the first set of instructions and directives are assembled:

```
armasm -PD "NEWVERSION SETL {TRUE}" test.s
```

Invoking armasm as follows leaves NEWVERSION undefined, so the second set of instructions and directives are assembled:

```
armasm test.s
```

Example 7-4 assembles the first set of instructions if NEWVERSION has the value {TRUE}, or the alternative set otherwise.

Example 7-4 Assembly conditional on a variable being defined

```
IF NEWVERSION = {TRUE}
  ; first set of instructions/directives
ELSE
  ; alternative set of instructions/directives
ENDIF
```

Invoking armasm as follows causes the first set of instructions and directives to be assembled:

```
armasm -PD "NEWVERSION SETL {TRUE}" test.s
```

Invoking armasm as follows causes the second set of instructions and directives to be assembled:

```
armasm -PD "NEWVERSION SETL {FALSE}" test.s
```
7.4.5 WHILE and WEND

The WHILE directive starts a sequence of instructions or directives that are to be assembled repeatedly. The sequence is terminated with a WEND directive.

Syntax

WHILE logical-expression
code
WEND

where:

logical-expression

is an expression that can evaluate to either {TRUE} or {FALSE} (see Logical expressions on page 3-23).

Usage

Use the WHILE directive, together with the WEND directive, to assemble a sequence of instructions a number of times. The number of repetitions can be zero.

You can use IF...ENDIF conditions within WHILE...WEND loops.

WHILE...WEND loops can be nested (see Nesting directives on page 7-26).

Example

count SETA 1 ; you are not restricted to
 WHILE count <= 4 ; such simple conditions
 count SETA count+1 ; In this case,
 ; code
 ; code
 ; code ; this code will be
 ; code ; repeated four times
 WEND
7.5 Frame description directives

This section describes the following directives:

- FRAME ADDRESS on page 7-35
- FRAME POP on page 7-36
- FRAME PUSH on page 7-37
- FRAME REGISTER on page 7-38
- FRAME RESTORE on page 7-39
- FRAME RETURN ADDRESS on page 7-40
- FRAME SAVE on page 7-41
- FRAME STATE REMEMBER on page 7-42
- FRAME STATE RESTORE on page 7-43
- FUNCTION or PROC on page 7-44
- ENDFUNC or ENDP on page 7-45.

Correct use of these directives:

- allows the arm\link-callgraph option to calculate stack usage of assembler functions
- helps you to avoid errors in function construction, particularly when you are modifying existing code
- allows the assembler to alert you to errors in function construction
- enables backtracing of function calls during debugging
- allows the debugger to profile assembler functions.

If you require profiling of assembler functions, but do not need frame description directives for other purposes:

- you must use the FUNCTION and ENDFUNC, or PROC and ENDP, directives
- you can omit the other FRAME directives
- you only need to use the FUNCTION and ENDFUNC directives for the functions you want to profile.

In DWARF 2, the canonical frame address is an address on the stack specifying where the call frame of an interrupted function is located.
7.5.1 FRAME ADDRESS

The FRAME ADDRESS directive describes how to calculate the canonical frame address for following instructions. You can only use it in functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

FRAME ADDRESS reg[,offset]

where:

reg is the register on which the canonical frame address is to be based. This is sp unless the function uses a separate frame pointer.

offset is the offset of the canonical frame address from reg. If offset is zero, you can omit it.

Usage

Use FRAME ADDRESS if your code alters which register the canonical frame address is based on, or if it alters the offset of the canonical frame address from the register. You must use FRAME ADDRESS immediately after the instruction which changes the calculation of the canonical frame address.

Note

If your code uses a single instruction to save registers and alter the stack pointer, you can use FRAME PUSH instead of using both FRAME ADDRESS and FRAME SAVE (see FRAME PUSH on page 7-37).

If your code uses a single instruction to load registers and alter the stack pointer, you can use FRAME POP instead of using both FRAME ADDRESS and FRAME RESTORE (see FRAME POP on page 7-36).

Example

_fn FUNCTION ; CFA (Canonical Frame Address) is value of sp on entry to function
; of sp on entry to function
STMFD sp!, {r4,fp,ip,lr,pc}
FRAME PUSH {r4,fp,ip,lr,pc}
SUB sp,sp,#4 ; CFA offset now changed
FRAME ADDRESS sp,24 ; - so we correct it
ADD fp,sp,#20
FRAME ADDRESS fp,4 ; New base register
; code using fp to base call-frame on, instead of sp
7.5.2 FRAME POP

Use the FRAME POP directive to inform the assembler when the callee reloads registers. You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

You need not do this after the last instruction in a function.

Syntax

There are two alternative syntaxes for FRAME POP:

FRAME POP {reglist}
FRAME POP n

where:

reglist is a list of registers restored to the values they had on entry to the function. There must be at least one register in the list.

n is the number of bytes that the stack pointer moves.

Usage

FRAME POP is equivalent to a FRAME ADDRESS and a FRAME RESTORE directive. You can use it when a single instruction loads registers and alters the stack pointer.

You must use FRAME POP immediately after the instruction it refers to.

The assembler calculates the new offset for the canonical frame address. It assumes that:

• each ARM register popped occupied four bytes on the stack
• each FPA floating-point register popped occupied 12 bytes on the stack
• each VFP single-precision register popped occupied four bytes on the stack, plus an extra four-byte word for each list.

See FRAME ADDRESS on page 7-35 and FRAME RESTORE on page 7-39.
7.5.3 FRAME PUSH

Use the FRAME PUSH directive to inform the assembler when the callee saves registers, normally at function entry. You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

There are two alternative syntaxes for FRAME PUSH:

FRAME PUSH \{reglist\}
FRAME PUSH \ n

where:

\textit{reglist} \hspace{1em} \text{is a list of registers stored consecutively below the canonical frame address. There must be at least one register in the list.}

\textit{n} \hspace{1em} \text{is the number of bytes that the stack pointer moves.}

Usage

FRAME PUSH is equivalent to a FRAME ADDRESS and a FRAME SAVE directive. You can use it when a single instruction saves registers and alters the stack pointer.

You must use FRAME PUSH immediately after the instruction it refers to.

The assembler calculates the new offset for the canonical frame address. It assumes that:

- each ARM register pushed occupies four bytes on the stack
- each FPA floating-point register pushed occupies 12 bytes on the stack
- each VFP single-precision register pushed occupies four bytes on the stack, plus an extra four-byte word for each list.

\textit{See FRAME ADDRESS} on page 7-35 and \textit{FRAME SAVE} on page 7-41.
Example

```assembly
p PROC ; Canonical frame address is sp + 0
EXPORT p
STMFD sp!,{r4-r6,lr}
; sp has moved relative to the canonical frame address,
; and registers r4, r5, r6 and lr are now on the stack
FRAME PUSH {r4-r6,lr}
; Equivalent to:
; FRAME ADDRESS    sp,16       ; 16 bytes in {r4-r6,lr}
; FRAME SAVE    {r4-r6,lr},-16
```

7.5.4 FRAME REGISTER

Use the FRAME REGISTER directive to maintain a record of the locations of function arguments held in registers. You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

```
FRAME REGISTER reg1,reg2
```

where:

- `reg1` is the register that held the argument on entry to the function.
- `reg2` is the register in which the value is preserved.

Usage

Use the FRAME REGISTER directive when you use a register to preserve an argument that was held in a different register on entry to a function.
7.5.5 FRAME RESTORE

Use the FRAME RESTORE directive to inform the assembler that the contents of specified registers have been restored to the values they had on entry to the function. You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

FRAME RESTORE {reglist}

where:

reglist is a list of registers whose contents have been restored. There must be at least one register in the list.

Usage

Use FRAME RESTORE immediately after the callee reloads registers from the stack. You need not do this after the last instruction in a function.

reglist can contain integer registers or floating-point registers, but not both.

Note

If your code uses a single instruction to load registers and alter the stack pointer, you can use FRAME POP instead of using both FRAME RESTORE and FRAME ADDRESS (see FRAME POP on page 7-36).
7.5.6 FRAME RETURN ADDRESS

The FRAME RETURN ADDRESS directive provides for functions that use a register other than r14 for their return address. You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Note
Any function that uses a register other than r14 for its return address is not ATPCS compliant. Such a function must not be exported.

Syntax

FRAME RETURN ADDRESS reg

where:

reg is the register used for the return address.

Usage

Use the FRAME RETURN ADDRESS directive in any function that does not use r14 for its return address. Otherwise, a debugger cannot backtrace through the function.

Use FRAME RETURN ADDRESS immediately after the FUNCTION or PROC directive that introduces the function.
7.5.7 FRAME SAVE

The FRAME SAVE directive describes the location of saved register contents relative to the canonical frame address. You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

FRAME SAVE {reglist}, offset

where:

reglist is a list of registers stored consecutively starting at offset from the canonical frame address. There must be at least one register in the list.

Usage

Use FRAME SAVE immediately after the callee stores registers onto the stack.

reglist can include registers which are not required for backtracing. The assembler determines which registers it needs to record in the DWARF call frame information.

Note

If your code uses a single instruction to save registers and alter the stack pointer, you can use FRAME PUSH instead of using both FRAME SAVE and FRAME ADDRESS (see FRAME PUSH on page 7-37).
7.5.8 FRAME STATE REMEMBER

The FRAME STATE REMEMBER directive saves the current information on how to calculate the canonical frame address and locations of saved register values. You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

FRAME STATE REMEMBER

Usage

During an inline exit sequence the information about calculation of canonical frame address and locations of saved register values can change. After the exit sequence another branch can continue using the same information as before. Use FRAME STATE REMEMBER to preserve this information, and FRAME STATE RESTORE to restore it.

These directives can be nested. Each FRAME STATE RESTORE directive must have a corresponding FRAME STATE REMEMBER directive. See:

- FRAME STATE RESTORE on page 7-43
- FUNCTION or PROC on page 7-44.

Example

```
; function code
FRAME STATE REMEMBER
; save frame state before in-line exit sequence
LDMFD sp!,{r4-r6,pc}
; no need to FRAME POP here, as control has
; transferred out of the function
FRAME STATE RESTORE
; end of exit sequence, so restore state
exitB ; code for exitB
LDMFD sp!,{r4-r6,pc}
ENDP
```
7.5.9 FRAME STATE RESTORE

The FRAME STATE RESTORE directive restores information about how to calculate the canonical frame address and locations of saved register values. You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

FRAME STATE RESTORE

Usage

See:
- FRAME STATE REMEMBER on page 7-42
- FUNCTION or PROC on page 7-44.
7.5.10 FUNCTION or PROC

The FUNCTION directive marks the start of an ATPCS-conforming function. PROC is a synonym for FUNCTION.

Syntax

```
label FUNCTION [{Reglist1} [, {Reglist2}]]
```

where:

reglist1 is an optional list of callee saved ARM registers. If **reglist1** is not present, and your debugger checks register usage, it will assume that the ATPCS is in use.

reglist2 is an optional list of callee saved VFP registers.

Usage

Use FUNCTION to mark the start of functions. The assembler uses FUNCTION to identify the start of a function when producing DWARF call frame information for ELF.

FUNCTION sets the canonical frame address to be sp, and the frame state stack to be empty.

Each FUNCTION directive must have a matching ENDFUNC directive. You must not nest FUNCTION/ENDFUNC pairs, and they must not contain PROC or ENDP directives.

You can use the optional **reglist** parameters to inform the debugger about an alternative procedure call standard, if you are using your own. Not all debuggers support this feature. See your debugger documentation for details.

See also FRAME ADDRESS on page 7-35 to FRAME STATE RESTORE on page 7-43.

Examples

```
dadd    FUNCTION
    EXPORT  dadd
    STMFD   sp!,{r4-r6,lr}
    FRAME PUSH {r4-r6,lr}
    ; subroutine body
    LDMFD   sp!,{r4-r6,pc}
    ENDFUNC

func6   PROC {r4-r8,r12},{D1-D3} ; non-ATPCS-conforming function
    ...
    ENDP
```
7.5.11 ENDFUNC or ENDP

The ENDFUNC directive marks the end of an ATPCS-conforming function (see FUNCTION or PROC on page 7-44). ENDP is a synonym for ENDFUNC.
7.6 Reporting directives

This section describes the following directives:

- **ASSERT**
 generates an error message if an assertion is false during assembly.
- **INFO** on page 7-47
 generates diagnostic information during assembly.
- **OPT** on page 7-48
 sets listing options.
- **TTL and SUBT** on page 7-50
 insert titles and subtitles in listings.

7.6.1 ASSERT

The ASSERT directive generates an error message during the second pass of the assembly if a given assertion is false.

Syntax

\[
\text{ASSERT \ logical-expression}
\]

where:

- **logical-expression**
 is an assertion that can evaluate to either \{TRUE\} or \{FALSE\}.

Usage

Use ASSERT to ensure that any necessary condition is met during assembly.

If the assertion is false an error message is generated and assembly fails.

See also INFO on page 7-47.

Example

\[
\text{ASSERT \ label1 <= label2 \ ; Tests if the address represented by label1 is <= the address represented by label2.}
\]
7.6.2 INFO

The `INFO` directive supports diagnostic generation on either pass of the assembly.

`!` is very similar to `INFO`, but has less detailed reporting.

Syntax

```
INFO numeric-expression, string-expression
```

where:

- `numeric-expression` is a numeric expression that is evaluated during assembly. If the expression evaluates to zero:
 - no action is taken during pass one
 - `string-expression` is printed during pass two.

If the expression does not evaluate to zero, `string-expression` is printed as an error message and the assembly fails.

- `string-expression` is an expression that evaluates to a string.

Usage

`INFO` provides a flexible means for creating custom error messages. See *Numeric expressions* on page 3-20 and *String expressions* on page 3-19 for additional information on numeric and string expressions.

See also `ASSERT` on page 7-46.

Examples

```
INFO 0, "Version 1.0"

IF endofdata <= label1
  INFO 4, "Data overrun at label1"
ENDIF
```
7.6.3 OPT

The OPT directive sets listing options from within the source code.

Syntax

```
OPT n
```

where:

- `n` is the OPT directive setting. Table 7-2 lists valid settings.

Table 7-2 OPT directive settings

<table>
<thead>
<tr>
<th>OPT n</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Turns on normal listing.</td>
</tr>
<tr>
<td>2</td>
<td>Turns off normal listing.</td>
</tr>
<tr>
<td>4</td>
<td>Page throw. Issues an immediate form feed and starts a new page.</td>
</tr>
<tr>
<td>8</td>
<td>Resets the line number counter to zero.</td>
</tr>
<tr>
<td>16</td>
<td>Turns on listing for SET, GBL and LCL directives.</td>
</tr>
<tr>
<td>32</td>
<td>Turns off listing for SET, GBL and LCL directives.</td>
</tr>
<tr>
<td>64</td>
<td>Turns on listing of macro expansions.</td>
</tr>
<tr>
<td>128</td>
<td>Turns off listing of macro expansions.</td>
</tr>
<tr>
<td>256</td>
<td>Turns on listing of macro invocations.</td>
</tr>
<tr>
<td>512</td>
<td>Turns off listing of macro invocations.</td>
</tr>
<tr>
<td>1024</td>
<td>Turns on the first pass listing.</td>
</tr>
<tr>
<td>2048</td>
<td>Turns off the first pass listing.</td>
</tr>
<tr>
<td>4096</td>
<td>Turns on listing of conditional directives.</td>
</tr>
<tr>
<td>8192</td>
<td>Turns off listing of conditional directives.</td>
</tr>
<tr>
<td>16384</td>
<td>Turns on listing of MEND directives.</td>
</tr>
<tr>
<td>32768</td>
<td>Turns off listing of MEND directives.</td>
</tr>
</tbody>
</table>

Usage

Specify the `-list` assembler option to turn on listing.
By default the -list option produces a normal listing that includes variable declarations, macro expansions, call-conditioned directives, and MEND directives. The listing is produced on the second pass only. Use the OPT directive to modify the default listing options from within your code. See Command syntax on page 3-2 for information on the -list option.

You can use OPT to format code listings. For example, you can specify a new page before functions and sections.

Example

```
AREA    Example, CODE, READONLY
start   ; code
        ; code
        BL      func1
        ; code
        OPT 4   ; places a page break before func1
func1   ; code
```
The **TTL** directive inserts a title at the start of each page of a listing file. The title is printed on each page until a new **TTL** directive is issued.

The **SUBT** directive places a subtitle on the pages of a listing file. The subtitle is printed on each page until a new **SUBT** directive is issued.

Syntax

```
TTL title
SUBT subtitle
```

where:

- `title` is the title
- `subtitle` is the subtitle.

Usage

Use the **TTL** directive to place a title at the top of the pages of a listing file. If you want the title to appear on the first page, the **TTL** directive must be on the first line of the source file.

Use additional **TTL** directives to change the title. Each new **TTL** directive takes effect from the top of the next page.

Use **SUBT** to place a subtitle at the top of the pages of a listing file. Subtitles appear in the line below the titles. If you want the subtitle to appear on the first page, the **SUBT** directive must be on the first line of the source file.

Use additional **SUBT** directives to change subtitles. Each new **SUBT** directive takes effect from the top of the next page.

Example

```
TTL First Title ; places a title on the first
    ; and subsequent pages of a
    ; listing file.
SUBT First Subtitle ; places a subtitle on the
    ; second and subsequent pages
    ; of a listing file.
```
7.7 **Miscellaneous directives**

This section describes the following directives:

- ALIGN on page 7-52
- AREA on page 7-54
- CODE16 and CODE32 on page 7-57
- END on page 7-58
- ENTRY on page 7-59
- EQU on page 7-60
- EXPORT or GLOBAL on page 7-61
- EXTERN on page 7-63
- GET or INCLUDE on page 7-64
- GLOBAL on page 7-65
- IMPORT on page 7-65
- INCBIN on page 7-66
- INCLUDE on page 7-66
- KEEP on page 7-67
- NOFP on page 7-68
- REQUIRE on page 7-68
- REQUIRE8 and PRESERVE8 on page 7-69
- RN on page 7-70
- ROUT on page 7-71.
7.7.1 ALIGN

The ALIGN directive aligns the current location to a specified boundary by padding with zeroes.

Syntax

ALIGN {expr,offset,pad}

where:

- **expr** is a numeric expression evaluating to any power of 2 from 2^0 to 2^{31}.
- **offset** can be any numeric expression.
- **pad** can be any numeric expression.

Operation

The current location is aligned to the next address of the form:

\[\text{offset} + n \times \text{expr} \]

If **expr** is not specified, ALIGN sets the current location to the next word (four byte) boundary.

The unused bytes between the previous and the new current location are filled with copies of the least significant byte of **pad**, or zeroes if **pad** is not specified.

Usage

Use ALIGN to ensure that your data and code is aligned to appropriate boundaries. This is typically required in the following circumstances:

- The ADR Thumb pseudo-instruction can only load addresses that are word aligned, but a label within Thumb code might not be word aligned. Use ALIGN 4 to ensure four-byte alignment of an address within Thumb code.
- Use ALIGN to take advantage of caches on some ARM processors. For example, the ARM940T has a cache with 16-byte lines. Use ALIGN 16 to align function entries on 16-byte boundaries and maximize the efficiency of the cache.
- LDRD and STRD doubleword data transfers must be eight-byte aligned. Use ALIGN 8 before memory allocation directives such as DCQ (see Data definition directives on page 7-13) if the data is to be accessed using LDRD or STRD.
A label on a line by itself can be arbitrarily aligned. Following ARM code is word-aligned (Thumb code is halfword aligned). The label therefore does not address the code correctly. Use ALIGN 4 (or ALIGN 2 for Thumb) before the label.

Alignment is relative to the start of the ELF section where the routine is located. The section must be aligned to the same, or coarser, boundaries. The ALIGN attribute on the AREA directive is specified differently (see AREA on page 7-54 and Examples).

Examples

```assembly
AREA    cacheable, CODE, ALIGN=3
rout1   ; code                   ; aligned on 8-byte boundary
                                        ; code
  MOV     pc,lr                 ; aligned only on 4-byte boundary
  ALIGN   8                     ; now aligned on 8-byte boundary
rout2   ; code

AREA    OffsetExample, CODE
DCB     1                     ; This example places the two
ALIGN   4,3                   ; bytes in the first and fourth
DCB     1                     ; bytes of the same word.

AREA    Example, CODE, READONLY
start   LDR     r6,=label1
          ; code
  MOV     pc,lr
label1   DCB     1             ; pc now misaligned
  ALIGN
          ; ensures that subroutine1 addresses
subroutine1                        ; the following instruction.
  MOV r5,#0x5
```
7.7.2 AREA

The AREA directive instructs the assembler to assemble a new code or data section. Sections are independent, named, indivisible chunks of code or data that are manipulated by the linker. See ELF sections and the AREA directive on page 2-16 for more information.

Syntax

AREA sectionname{,attr}{,attr}...

where:

sectionname is the name that the section is to be given.

You can choose any name for your sections. However, names starting with a digit must be enclosed in bars or a missing section name error is generated. For example, |1_DataArea|.

Certain names are conventional. For example, |.text| is used for code sections produced by the C compiler, or for code sections otherwise associated with the C library.

attr are one or more comma-delimited section attributes. Valid attributes are:

ALIGN=expression

By default, ELF sections are aligned on a four-byte boundary. expression can have any integer value from 0 to 31. The section is aligned on a 2expression-byte boundary. For example, if expression is 10, the section is aligned on a 1KB boundary. This is not the same as the way that the ALIGN directive is specified. See ALIGN on page 7-52.

Note

Do not use ALIGN=0 or ALIGN=1 for code sections.

ASSOC=section

section specifies an associated ELF section. sectionname must be included in any link that includes section

CODE Contains machine instructions. READMEONLY is the default.

COMDEF Is a common section definition. This ELF section can contain code or data. It must be identical to any other section of the same name in other source files.
Identical ELF sections with the same name are overlaid in the same section of memory by the linker. If any are different, the linker generates a warning and does not overlay the sections. See the Linker chapter in RealView Compilation Tools v2.0 Linker and Utilities Guide.

COMMON

Is a common data section. You must not define any code or data in it. It is initialized to zeroes by the linker. All common sections with the same name are overlaid in the same section of memory by the linker. They do not all need to be the same size. The linker allocates as much space as is required by the largest common section of each name.

DATA

Contains data, not instructions. **READWRITE** is the default.

NOALLOC

Indicates that no memory on the target system is allocated to this AREA.

NOINIT

Indicates that the data section is uninitialized, or initialized to zero. It contains only space reservation directives SPACE or DCB, DCD, DCQU, DCQ, DCW, or DCWU with initialized values of zero. You can decide at link time whether an AREA is uninitialized or zero-initialized (see the Linker chapter in RealView Compilation Tools v2.0 Linker and Utilities Guide).

READONLY

Indicates that this section should not be written to. This is the default for Code areas.

READWRITE

Indicates that this section can be read from and written to. This is the default for Data areas.

Usage

Use the **AREA** directive to subdivide your source file into ELF sections. You can use the same name in more than one **AREA** directive. All areas with the same name are placed in the same ELF section. Only the attributes of the first **AREA** directive of a particular name are applied.

You should normally use separate ELF sections for code and data. Large programs can usually be conveniently divided into several code sections. Large independent data sets are also usually best placed in separate sections.

The scope of local labels is defined by **AREA** directives, optionally subdivided by **ROUT** directives (see Local labels on page 3-16 and **ROUT** on page 7-71).

There must be at least one **AREA** directive for an assembly.
Example

The following example defines a read-only code section named Example.

```
AREA Example, CODE, READONLY ; An example code section.
; code
```
7.7.3 CODE16 and CODE32

The CODE16 directive instructs the assembler to interpret subsequent instructions as 16-bit Thumb instructions. If necessary, it also inserts a byte of padding to align to the next halfword boundary.

The CODE32 directive instructs the assembler to interpret subsequent instructions as 32-bit ARM instructions. If necessary, it also inserts up to three bytes of padding to align to the next word boundary.

Syntax

CODE16
CODE32

Usage

In files that contain a mixture of ARM and Thumb code:

- Use CODE16 when changing from ARM state to Thumb state. CODE16 must precede any Thumb code.
- Use CODE32 when changing from Thumb state to ARM state. CODE32 must precede any ARM code.

CODE16 and CODE32 do not assemble to instructions that change the state. They only instruct the assembler to assemble Thumb or ARM instructions as appropriate, and insert padding if necessary.

Example

This example shows how CODE16 can be used to branch from ARM to Thumb instructions.

```
AREA    ChangeState, CODE, READONLY
CODE32

LDR     r0,=start+1 ; Load the address and set the
         ; least significant bit
BX      r0           ; Branch and exchange instruction sets
         ; Not necessarily in same section

start   MOV     r1,#10       ; Following instructions are Thumb

CODE16               ; Following instructions are Thumb
```
7.7.4 END

The END directive informs the assembler that it has reached the end of a source file.

Syntax

END

Usage

Every assembly language source file must end with END on a line by itself.

If the source file has been included in a parent file by a GET directive, the assembler returns to the parent file and continues assembly at the first line following the GET directive. See GET or INCLUDE on page 7-64 for more information.

If END is reached in the top-level source file during the first pass without any errors, the second pass begins.

If END is reached in the top-level source file during the second pass, the assembler finishes the assembly and writes the appropriate output.
7.7.5 ENTRY

The ENTRY directive declares an entry point to a program.

Syntax
ENTRY

Usage
You must specify at least one ENTRY point for a program. If no ENTRY exists, a warning is generated at link time.

You must not use more than one ENTRY directive in a single source file. Not every source file has to have an ENTRY directive. If more than one ENTRY exists in a single source file, an error message is generated at assembly time.

Example

```
AREA    ARMex, CODE, READONLY
ENTRY                 ; Entry point for the application
```
7.7.6 EQU

The EQU directive gives a symbolic name to a numeric constant, a register-relative value or a program-relative value. * is a synonym for EQU.

Syntax

name EQU expr[, type]

where:

name is the symbolic name to assign to the value.

expr is a register-relative address, a program-relative address, an absolute address, or a 32-bit integer constant.

type is optional. type can be any one of:

- CODE16
- CODE32
- DATA

You can use type only if expr is an absolute address. If name is exported, the name entry in the symbol table in the object file will be marked as CODE16, CODE32, or DATA, according to type. This can be used by the linker.

Usage

Use EQU to define constants. This is similar to the use of #define to define a constant in C.

See KEEP on page 7-67 and EXPORT or GLOBAL on page 7-61 for information on exporting symbols.

Examples

abc EQU 2 ; assigns the value 2 to the symbol abc.

xyz EQU label+8 ; assigns the address (label+8) to the ; symbol xyz.

fiq EQU 0x1C, CODE32 ; assigns the absolute address 0x1C to ; the symbol fiq, and marks it as code
7.7.7 EXPORT or GLOBAL

The EXPORT directive declares a symbol that can be used by the linker to resolve symbol references in separate object and library files. GLOBAL is a synonym for EXPORT.

Syntax

EXPORT {symbol}[[WEAK]]

where:

symbol is the symbol name to export. The symbol name is case-sensitive. If symbol is omitted, all symbols are exported.

[WEAK] means that this instance of symbol should only be imported into other sources if no other source exports an alternative instance. If [WEAK] is used without symbol, all exported symbols are weak.

Usage

Use EXPORT to give code in other files access to symbols in the current file.

Use the [WEAK] attribute to inform the linker that a different instance of symbol takes precedence over this one, if a different one is available from another source.

See also IMPORT on page 7-65.

Example

```
AREA    Example,CODE,READONLY
EXPORT  DoAdd           ; Export the function name
        ADD     r0,r0,r1

DoAdd   ADD     r0,r0,r1
```
7.7.8 EXPORTAS

The EXPORTAS directive allows you to export a symbol to the object file, corresponding to a different symbol in the source file.

Syntax

EXPORTAS symbol1, symbol2

where:

- `symbol1` is the symbol name in the source file. `symbol1` must have been defined already. It can be any symbol, including an area name, a label, or a constant.
- `symbol2` is the symbol name you want to appear in the object file.

The symbol names are case-sensitive.

Usage

Use EXPORTAS to change a symbol in the object file without having to change every instance in the source file.

See also `EXPORT` or `GLOBAL` on page 7-61.

Examples

```
AREA data1, DATA       ;; starts a new area data1
AREA data2, DATA       ;; starts a new area data2
EXPORTAS data2, data1  ;; the section symbol referred to as data2 will appear in the object file string table as data1.

one EQU 2
EXPORTAS one, two     ;; the symbol 'two' will appear in the object file's symbol table with the value 2.
EXPORT one             ;; the symbol 'one' will appear in the object file's symbol table with the value 2.
```
7.7.9 EXTERN

The EXTERN directive provides the assembler with a name that is not defined in the current assembly.

EXTERN is very similar to IMPORT, except that the name is not imported if no reference to it is found in the current assembly (see IMPORT on page 7-65, and EXPORT or GLOBAL on page 7-61).

Syntax

EXTERN symbol{[WEAK]}

where:

symbol is a symbol name defined in a separately assembled source file, object file, or library. The symbol name is case-sensitive.

[WEAK] prevents the linker generating an error message if the symbol is not defined elsewhere. It also prevents the linker searching libraries that are not already included.

Usage

The name is resolved at link time to a symbol defined in a separate object file. The symbol is treated as a program address. If [WEAK] is not specified, the linker generates an error if no corresponding symbol is found at link time.

If [WEAK] is specified and no corresponding symbol is found at link time:

- If the reference is the destination of a B or BL instruction, the value of the symbol is taken as the address of the following instruction. This makes the B or BL instruction effectively a NOP.
- Otherwise, the value of the symbol is taken as zero.

Example

This example tests to see if the C++ library has been linked, and branches conditionally on the result.

```
AREA    Example, CODE, READONLY
EXTERN  __CPP_INITIALIZE[WEAK] ; If C++ library linked, gets the address of __CPP_INITIALIZE function.
LDR     r0,=__CPP_INITIALIZE    ; If not linked, address is zeroed.
CMP     r0,#0                   ; Test if zero.
BEQ     nocplusplus             ; Branch on the result.
```
7.7.10 GET or INCLUDE

The GET directive includes a file within the file being assembled. The included file is assembled at the location of the GET directive. INCLUDE is a synonym for GET.

Syntax

GET filename

where:

filename is the name of the file to be included in the assembly. The assembler accepts pathnames in either UNIX or MS-DOS format.

Usage

GET is useful for including macro definitions, EQUs, and storage maps in an assembly. When assembly of the included file is complete, assembly continues at the line following the GET directive.

By default the assembler searches the current place for included files. The current place is the directory where the calling file is located. Use the -i assembler command-line option to add directories to the search path. File names and directory names containing spaces must not be enclosed in double quotes (" ").

The included file can contain additional GET directives to include other files (see Nesting directives on page 7-26).

If the included file is in a different directory from the current place, this becomes the current place until the end of the included file. The previous current place is then restored.

GET cannot be used to include object files (see INCBIN on page 7-66).

Example

```
AREA Example, CODE, READONLY
GET file1.s ; includes file1 if it exists
            ; in the current place.
GET c:\project\file2.s ; includes file2
GET c:\Program files\file3.s ; space is allowed
```
7.7.11 GLOBAL

See EXPORT or GLOBAL on page 7-61.

7.7.12 IMPORT

The IMPORT directive provides the assembler with a name that is not defined in the current assembly.

IMPORT is very similar to EXTERN, except that the name is imported whether or not it is referred to in the current assembly (see EXTERN on page 7-63, and EXPORT or GLOBAL on page 7-61).

Syntax

IMPORT symbol{{WEAK}}

where:

symbol is a symbol name defined in a separately assembled source file, object file, or library. The symbol name is case-sensitive.

WEAK prevents the linker generating an error message if the symbol is not defined elsewhere. It also prevents the linker searching libraries that are not already included.

Usage

The name is resolved at link time to a symbol defined in a separate object file. The symbol is treated as a program address. If [WEAK] is not specified, the linker generates an error if no corresponding symbol is found at link time.

If [WEAK] is specified and no corresponding symbol is found at link time:

- If the reference is the destination of a B or BL instruction, the value of the symbol is taken as the address of the following instruction. This makes the B or BL instruction effectively a NOP.

- Otherwise, the value of the symbol is taken as zero.

To avoid trying to access symbols that are not found at link time, use code like the example in EXTERN on page 7-63.
7.7.13 INCBIN

The INCBIN directive includes a file within the file being assembled. The file is included as it is, without being assembled.

Syntax

INCBIN filename

where:

filename is the name of the file to be included in the assembly. The assembler accepts pathnames in either UNIX or MS-DOS format.

Usage

You can use INCBIN to include executable files, literals, or any arbitrary data. The contents of the file are added to the current ELF section, byte for byte, without being interpreted in any way. Assembly continues at the line following the INCBIN directive.

By default the assembler searches the current place for included files. The current place is the directory where the calling file is located. Use the -i assembler command-line option to add directories to the search path. File names and directory names containing spaces must not be enclosed in double quotes (" ").

Example

```
AREA Example, CODE, READONLY
INCBIN file1.dat               ; includes file1 if it exists in the current place.
INCBIN c:\project\file2.txt    ; includes file2
```

7.7.14 INCLUDE

See GET or INCLUDE on page 7-64
7.7.15 KEEP

The *KEEP* directive instructs the assembler to retain local symbols in the symbol table in the object file.

Syntax

```
KEEP {symbol}
```

where:

symbol is the name of the local symbol to keep. If *symbol* is not specified, all local symbols are kept except register-relative symbols.

Usage

By default, the only symbols that the assembler describes in its output object file are:

- exported symbols
- symbols that are relocated against.

Use *KEEP* to preserve local symbols that can be used to help debugging. Kept symbols appear in the ARM debuggers and in linker map files.

KEEP cannot preserve register-relative symbols (see *MAP* on page 7-15).

Example

```
label  ADC  r2,r3,r4
KEEP   label ; makes label available to debuggers
ADD    r2,r2,r5
```
7.7.16 NOFP

The NOFP directive disallows floating-point instructions in an assembly language source file.

Syntax
NOFP

Usage
Use NOFP to ensure that no floating-point instructions are used in situations where there is no support for floating-point instructions either in software or in target hardware.

If a floating-point instruction occurs after the NOFP directive, an Unknown opcode error is generated and the assembly fails.

If a NOFP directive occurs after a floating-point instruction, the assembler generates the error:
Too late to ban floating point instructions
and the assembly fails.

7.7.17 REQUIRE

The REQUIRE directive specifies a dependency between sections.

Syntax
REQUIRE label

where:
label is the name of the required label.

Usage
Use REQUIRE to ensure that a related section is included, even if it is not directly called.
If the section containing the REQUIRE directive is included in a link, the linker also includes the section containing the definition of the specified label.
7.7.18 REQUIRE8 and PRESERVE8

The REQUIRE8 directive specifies that the current file requires eight-byte alignment of the stack.

The PRESERVE8 directive specifies that the current file preserves eight-byte alignment of the stack.

Syntax

REQUIRE8

PRESERVE8

Usage

LDRD and STRD instructions (doubleword transfers) only work correctly if the address they access is eight-byte aligned.

If your code includes LDRD or STRD transfers to or from the stack, use REQUIRE8 to instruct the linker to ensure that your code is only called from objects that preserve eight-byte alignment of the stack.

If your code preserves eight-byte alignment of the stack, use PRESERVE8 to inform the linker.

The linker ensures that any code that requires eight-byte alignment of the stack is only called, directly or indirectly, by code that preserves eight-byte alignment of the stack.
The RN directive defines a register name for a specified register.

Syntax

```plaintext
name RN expr
```

where:

- `name` is the name to be assigned to the register. `name` cannot be the same as any of the predefined names listed in *Predefined register and coprocessor names* on page 3-9.
- `expr` evaluates to a register number from 0 to 15.

Usage

Use RN to allocate convenient names to registers, to help you to remember what you use each register for. Be careful to avoid conflicting uses of the same register under different names.

Examples

```plaintext
regname RN 11 ; defines regname for register 11
sqr4 RN r6 ; defines sqr4 for register 6
```
7.7.20 ROUT

The ROUT directive marks the boundaries of the scope of local labels (see Local labels on page 3-16).

Syntax

```
{name} ROUT
```

where:

```
name
```

is the name to be assigned to the scope.

Usage

Use the ROUT directive to limit the scope of local labels. This makes it easier for you to avoid referring to a wrong label by accident. The scope of local labels is the whole area if there are no ROUT directives in it (see AREA on page 7-54).

Use the name option to ensure that each reference is to the correct local label. If the name of a label or a reference to a label does not match the preceding ROUT directive, the assembler generates an error message and the assembly fails.

Example

```
routineA    ROUT            ; ROUT is not necessarily a routine
          ; code
3routineA   ROUT            ; start of next scope
          ; code
BEQ     %4routineA   ; this reference is checked
          ; code
BGE     %3      ; refers to 3 above, but not checked
          ; code
4routineA   ROUT            ; start of next scope
          ; code
otherstuff  ROUT            ; ROUT is not necessarily a routine
          ; code
```
Glossary

American National Standards Institute (ANSI)
An organization that specifies standards for, among other things, computer software.

Angel™
Angel is a program that enables you to develop and debug applications running on ARM-based hardware. Angel can debug applications running in either ARM state or Thumb state.

ANSI
See American National Standards Institute.

Architecture
The term used to identify a group of processors that have similar characteristics.

ARM-Thumb Procedure Call Standard (ATPCS)
ARM-Thumb Procedure Call Standard defines how registers and the stack will be used for subroutine calls.

ATPCS
See ARM-Thumb Procedure Call Standard.

Big-endian
Memory organization where the least significant byte of a word is at a higher address than the most significant byte.

Byte
A unit of memory storage consisting of eight bits.

Canonical Frame Address (CFA)
In DWARF 2, this is an address on the stack specifying where the call frame of an interrupted function is located.

CFA
See Canonical Frame Address.
Glossary

Coprocessor
An additional processor that is used for certain operations. Usually used for floating-point math calculations, signal processing, or memory management.

CPSR
See Current Processor Status Register.

Current place
In compiler terminology, the directory that contains files to be included in the compilation process.

Current Processor Status Register (CPSR)
CPSR. A register containing the current state of control bits and flags.

See also Saved Processor Status Register.

Debugger
An application that monitors and controls the execution of a second application. Usually used to find errors in the application program flow.

Doubleword
A 64-bit unit of information. Contents are taken as being an unsigned integer unless otherwise stated.

DWARF
Debug With Arbitrary Record Format.

ELF
Executable Linkable Format.

Global variables
Variables that are accessible to all code in the application.

See also Local variables.

Halfword
A 16-bit unit of information. Contents are taken as being an unsigned integer unless otherwise stated.

Image
An executable file that has been loaded onto a processor for execution.

A binary execution file loaded onto a processor and given a thread of execution. An image can have multiple threads. An image is related to the processor on which its default thread runs.

Interrupt
A change in the normal processing sequence of an application caused by, for example, an external signal.

Interworking
Producing an application that uses both ARM and Thumb code.

Library
A collection of assembler or compiler output objects grouped together into a single repository.

Linker
Software that produces a single image from one or more source assembler or compiler output objects.

Little-endian
Memory organization where the least significant byte of a word is at a lower address than the most significant byte.
Local variable
A variable that is only accessible to the subroutine that created it.
See also Global variables.

PIC
Position Independent Code.
See also ROPI.

PID
Position Independent Data or the ARM Platform-Independent Development card.
See also RWPI.

PSR
See Processor Status Register

Processor Status Register (PSR)
A register containing various control bits and flags.
See also Current Processor Status Register
See also Saved Processor Status Register.

Read Only Position Independent (ROPI)
Code and read-only data addresses can be changed at run-time.

Read Write Position Independent (RWPI)
Read/write data addresses can be changed at run-time.

RealView Compilation Tools (RVCT)
RealView Compilation Tools is a suite of tools, together with supporting documentation and examples, that enable you to write and build applications for the ARM family of RISC processors.

ROPI
See Read Only Position Independent.

RVCT
See RealView Compilation Tools.

RWPI
See Read Write Position Independent.

Saved Processor Status Register (SPSR)
SPSR. A register that holds a copy of what was in the Current Processor Status Register before the most recent exception. Each exception mode has its own SPSR.

Scope
The accessibility of a function or variable at a particular point in the application code. Symbols that have global scope are always accessible. Symbols with local or private scope are only accessible to code in the same subroutine or object.

Section
A block of software code or data for an Image.

Semihosting
A mechanism whereby the target communicates I/O requests made in the application code to the host system, rather attempting to support the I/O itself.
Software Interrupt (SWI)

An instruction that causes the processor to call a programmer-specified subroutine. Used by ARM to handle semihosting.

SPSR

See Saved Processor Status Register.

Stack

The portion of computer memory that is used to record the address of code that calls a subroutine. The stack can also be used for parameters and temporary variables.

SWI

See Software Interrupt.

Target

The actual target processor, (real or simulated), on which the target application is running.

The fundamental object in any debugging session. The basis of the debugging system. The environment in which the target software will run. It is essentially a collection of real or simulated processors.

Vector Floating Point (VFP)

A standard for floating-point coprocessors where several data values can be processed by a single instruction.

Veneer

A small block of code used with subroutine calls when there is a requirement to change processor state or branch to an address that cannot be reached in the current processor state.

VFP

See Vector Floating Point.

Word

A 32-bit unit of information. Contents are taken as being an unsigned integer unless otherwise stated.

Zero Initialized (ZI)

R/W memory used to hold variables that do not have an initial value. The memory is normally set to zero on reset.

ZI

See Zero Initialized.
Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The references given are to page numbers.

<table>
<thead>
<tr>
<th>A</th>
<th>alignment 2-58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute addresses 3-15</td>
<td>base register 2-54</td>
</tr>
<tr>
<td>ADD instruction 2-60</td>
<td>binary operators 3-28</td>
</tr>
<tr>
<td>Addresses</td>
<td>block copy 2-46</td>
</tr>
<tr>
<td>loading into registers 2-32</td>
<td>Boolean constants 2-15</td>
</tr>
<tr>
<td>ADR</td>
<td>built-in variables 3-10</td>
</tr>
<tr>
<td>ARM pseudo-instruction 4-122, 4-123</td>
<td>case rules 2-13</td>
</tr>
<tr>
<td>Thumb pseudo-instruction 5-47</td>
<td>character constants 2-15</td>
</tr>
<tr>
<td>ADR pseudo-instruction 2-32, 2-60</td>
<td>code size 2-63</td>
</tr>
<tr>
<td>ADR Thumb pseudo-instruction 2-32</td>
<td>comments 2-14</td>
</tr>
<tr>
<td>ADRL pseudo-instruction 2-32, 2-60</td>
<td>condition code suffixes 2-23</td>
</tr>
<tr>
<td>ALIGN directive 2-58, 7-52</td>
<td>conditional execution 2-22</td>
</tr>
<tr>
<td>Alignment 2-58</td>
<td>constants 2-15</td>
</tr>
<tr>
<td>ALU status flags 2-22</td>
<td>coprocessor names 3-9</td>
</tr>
<tr>
<td>:AND: operator 2-58</td>
<td>data structures 2-53</td>
</tr>
<tr>
<td>AREA directive 2-14, 2-16, 7-54</td>
<td>defining macros 7-27</td>
</tr>
<tr>
<td>AREA directive (literal pools) 2-30</td>
<td>ELF sections 2-16</td>
</tr>
<tr>
<td>arnasm</td>
<td>entry point 2-17, 7-59</td>
</tr>
<tr>
<td>command syntax 3-2</td>
<td>examples 2-2, 2-16, 2-18, 2-24, 2-30, 2-33, 2-37, 2-39, 2-46, 2-63, 2-65</td>
</tr>
<tr>
<td>Assembly language</td>
<td>examples, Thumb 2-20, 2-26, 2-40, 2-48</td>
</tr>
<tr>
<td>absolute addresses 3-15</td>
<td>execution speed 2-63</td>
</tr>
<tr>
<td></td>
<td>floating-point literals 3-22</td>
</tr>
<tr>
<td></td>
<td>format of source lines 3-8</td>
</tr>
<tr>
<td></td>
<td>global variables 7-4, 7-7</td>
</tr>
<tr>
<td></td>
<td>immediate constants, ARM 2-28</td>
</tr>
<tr>
<td></td>
<td>jump tables 2-34</td>
</tr>
<tr>
<td></td>
<td>labels 2-14, 3-15</td>
</tr>
<tr>
<td></td>
<td>line format 2-13</td>
</tr>
<tr>
<td></td>
<td>line length 2-13</td>
</tr>
<tr>
<td></td>
<td>literal pools 2-30</td>
</tr>
<tr>
<td></td>
<td>loading addresses 2-32</td>
</tr>
<tr>
<td></td>
<td>loading constants 2-27</td>
</tr>
<tr>
<td></td>
<td>local labels 2-14, 3-16</td>
</tr>
<tr>
<td></td>
<td>logical expressions 3-23</td>
</tr>
<tr>
<td></td>
<td>logical literals 3-23</td>
</tr>
<tr>
<td></td>
<td>macros 2-50</td>
</tr>
<tr>
<td></td>
<td>maintenance 2-58</td>
</tr>
<tr>
<td></td>
<td>maps 2-53</td>
</tr>
<tr>
<td></td>
<td>multiple register transfers 2-41</td>
</tr>
<tr>
<td></td>
<td>multiplicative operators 3-28</td>
</tr>
<tr>
<td></td>
<td>nesting subroutines 2-45</td>
</tr>
</tbody>
</table>
Index

numeric constants 2-15, 3-13
numeric expressions 3-20
numeric literals 3-21
numeric variables 3-13
operator precedence 3-24, 3-25
padding 2-58
pc 2-5, 2-42, 2-45, 2-48, 3-11, 3-15, 3-23
program counter 2-5, 3-11, 3-15, 3-23
program-relative 2-14
expressions 3-23
program-relative labels 3-15
program-relative maps 2-56
register names 3-9
register-based maps 2-55
register-relative expressions 3-23
labels 3-15
register-relative address 2-14
relational operators 3-30
relative maps 2-54
shift operators 3-29
speed 2-63
stacks 2-44
string expressions 3-19
manipulation 3-28
variables 3-13
string constants 2-15
string literals 3-19
subroutines 2-18
symbol naming rules 3-12
symbols 2-60, 3-12
Thumb block copy 2-48
unary operators 3-26
variable substitution 3-14
variables 3-13
built-in 3-10
global 7-4, 7-7
local 7-6, 7-7
VFP directives and notation 6-38
ASSERT directive 2-57, 2-67, 7-46

B

B instruction, Thumb 2-22
Barrel shifter 2-9, 2-22
Barrel shifter, Thumb 2-11
:BASE: operator 2-60, 3-26
Base register 2-54
Binary operators, assembly 3-28
BL instruction 2-18
BL instruction, Thumb 2-22
Block copy, assembly language 2-46
Block copy, Thumb 2-48
Boolean constants, assembly language 2-15
Branch instructions 2-7
Branch instructions, Thumb 2-11
BX instruction 2-20

C

Case rules, assembly language 2-13
Character constants, assembly language 2-15
:CHR: operator 3-26
CN directive 7-9
Code size 2-24, 2-63
CODE16 directive 2-20, 3-2, 7-57
CODE32 directive 2-20, 7-57
Command syntax
armasm 3-2
Comments
assembly language 2-14
Condition code suffixes 2-23
Conditional execution, assembly 2-22, 2-24
Conditional execution, Thumb 2-10, 2-11
Constants, assembly 2-15
Coprocessor names, assembly 3-9
CP directive 7-10
CPISR 2-5, 2-22
Current Program Status Register 2-5

D

DATA directive 7-25
Data maps, assembly 2-53
Data processing instructions 2-7
Data processing instructions, Thumb 2-11
Data structure, assembly 2-53
DCB directive 7-18
DCDO directive 7-20
DCD, DCDU directives 7-19
DCFD, DCFDU directives 7-21
DCFS, DCFSU directives 7-22
DCI directive 7-23
DCQ, DCQU directives 7-24
DCW, DCWU directives 7-25
Directives, assembly language
ALIGN 2-58, 7-52
AREA 2-14, 2-16, 7-54
AREA (literal pools) 2-30
ASSERT 2-57, 2-67, 7-46
CN 7-9
CODE16 2-20, 3-2, 7-57
CODE32 2-20, 7-57
CP 7-10
DATA 7-25
DCB 7-18
DCD 7-20
DCD, DCDU 7-19
DCFD, DCFDU 7-21
DCFS, DCFSU 7-22
DCI 7-23
DCQ, DCQU 7-24
DCW, DCWU 7-25
DN 7-11
ELIF 7-30
ELSE 7-30
END 2-17, 7-58
END (literal pools) 2-30
ENDFUNC 7-45
ENDIF 7-30
ENDP 7-45
ENTRY 2-17, 7-59
EQU 3-13, 7-60
EXPORT 7-61
EXPORTAS 7-62
EXTERN 7-63
FIELD 7-16
FN 7-12
FRAME ADDRESS 7-35
FRAME POP 7-36
FRAME PUSH 7-37
FRAME REGISTER 7-38
FRAME RESTORE 7-39
FRAME RETURN ADDRESS 7-40
FRAME SAVE 7-41
FRAME STATE REMEMBER 7-42
FRAME STATE RESTORE 7-43
FUNCTION 7-44
GBLA 3-6, 3-13, 7-4, 7-48
GBLL 3-6, 3-13, 7-4, 7-48
GBLS 3-6, 3-13, 7-4, 7-48
GET 3-5, 7-64
GLOBAL 7-61
IF 7-29, 7-30, 7-33
IMPORT 7-65
INCBIN 7-66
INCLUDE 3-5, 7-64
INFO 7-47
KEEP 7-67
LCLA 3-13, 7-6, 7-48
LCLL 3-13, 7-48
LCLS 3-13, 7-48
LTORG 7-14
MACRO 2-50, 7-27
MAP 2-53, 7-15
MEND 7-27, 7-48
MEXIT 7-29
nesting 7-26
NOFF 7-68
OPT 3-11, 7-48
PRESERVE 7-69
PROC 7-44
REQUIRE 7-68
REQUIRE8 7-69
RLIST 3-3, 7-8
RN 7-70
RUT 2-14, 3-16, 3-17, 7-71
SETA 3-6, 3-11, 3-13, 7-7, 7-48
SETL 3-6, 3-11, 3-13, 7-7, 7-48
SEST 3-6, 3-11, 3-13, 7-7, 7-48
SN 7-11
SPACE 7-17
SUBT 7-50
TTL 7-50
VFPASSERT SCALAR 6-39
VFPASSERT VECTOR 6-40
WEND 7-33
WHILE 7-29, 7-33
! 7-47
* 7-60
= 7-18
| 7-30
| 7-30
^ 7-15
| 7-30
DN directive 7-11

G

GBLA directive 3-6, 3-13, 7-4, 7-48
GBLL directive 3-6, 3-13, 7-4, 7-48
GBLS directive 3-6, 3-13, 7-4, 7-48
GET directive 3-5, 7-64
GLOBAL directive 7-61

H

Halfwords
in load and store instructions 2-7

I

IF directive 7-29, 7-30, 7-33
Immediate constants, ARM 2-28
IMPORT directive 7-65
INCBIN directive 7-66
INCLUDE directive 3-5, 7-64
:INDEX: operator 2-60, 3-26
INFO directive 7-47
Instruction set
ARM 2-7
Thumb 2-10
Instructions, assembly language
ADD 2-60
BL 2-18
BX 2-20
LDM 2-41, 2-56, 3-3, 4-20, 7-8
LDM, Thumb 2-48
LDR 4-9, 4-14, 4-17
MOV 2-27, 2-28, 2-54
MRS 2-9
MSR 2-9
MVN 2-27, 2-28
PLD 4-22
POP, Thumb 2-48
PUSH, Thumb 2-48
STM 2-41, 2-56, 3-3, 4-20, 7-8
STM, Thumb 2-48
STR 4-9, 4-14, 4-17
SWP 4-31
Invoke 3-2
Index

J
Jump tables, assembly language 2-34

K
KEEP directive 7-67

L
Labels, assembly 3-15
Labels, assembly language 2-14
Labels, local, assembly 3-16
LCLA directive 3-13, 7-6, 7-48
LCLL directive 3-13, 7-48
LCLS directive 3-13, 7-48
LDFD pseudo-instruction 6-36, 7-14
LDFS pseudo-instruction 7-14
LDM
instruction 4-20
LDM instruction 2-41, 2-56, 3-3, 7-8
Thumb 2-48
LDR
instruction 4-9, 4-14, 4-17
pseudo-instruction 2-27, 2-29, 2-37, 4-126
relative maps 2-54
Thumb pseudo-instruction 5-48
LDR pseudo-instruction 7-14
literal pools 2-30
loading constants 2-29, 2-37
string copying 2-39
:LEFT: operator 3-28
:LEN: operator 3-26
Line format, assembly language 2-13
Line length, assembly language 2-13
Link register 2-5, 2-18
Linking
assembly language labels 2-14
Literal pools, assembly language 2-30
Loading constants, assembly language 2-27
Local
labels, assembly 3-16
variables, assembly 7-6, 7-7
Local labels, assembly language 2-14
Logical
expressions, assembly 3-23
variable, assembly 3-13
Logical literals, assembly 3-23
LTORG directive 7-14

M
MACRO directive 2-50, 7-27
MAP directive 2-53, 7-15
Maps, assembly language
program-relative 2-56
register-based 2-55
relative 2-54
MEND directive 7-27, 7-48
MEXIT directive 7-29
MOV instruction 2-27, 2-28, 2-54
MRS instruction 2-9
MSR instruction 2-9
Multiple register transfers 2-41
Multiplicative operators, assembly 3-28
MVN instruction 2-27, 2-28

N
Nesting directives 7-26
Nesting subroutines, assembly language 2-45
NOFF directive 7-68
NOP pseudo-instruction 4-122, 4-129
NOP Thumb pseudo-instruction 5-50
Numeric constants, assembly 3-13
Numeric constants, assembly language 2-15
Numeric expressions, assembly 3-20
numeric literals, assembly 3-21
Numeric variable, assembly 3-13

O
Operator precedence, assembly 3-24, 3-25
Operators, assembly language
:BASE: 2-60
:INDEX: 2-60
:AND: 2-58
OPT directive 3-11, 7-48

P
Padding 2-58
Parameters, assembly macros 2-50
pc, assembly 3-11, 3-15, 3-23
pc, assembly language 2-5, 2-42, 2-45, 2-48
PLD
instruction 4-22
POP instruction, Thumb 2-48
PRESERVE8 directive 7-69
PROC directive 7-44
Processor modes 2-4
Program counter, assembly 3-11, 3-15, 3-23
program counter, assembly language 2-5
Program counter, Thumb 2-12
Program-relative
expressions 3-23
labels 3-15
Program-relative address 2-14
Program-relative maps 2-56
Prototype statement 2-50
Pseudo-instructions, assembly language
ADR 2-32, 2-60, 4-122, 4-123
ADR (Thumb) 2-32, 5-47
ADRL 2-32, 2-60
LDFD 6-36, 7-14
LDFS 7-14
LDR 2-27, 2-29, 2-37, 4-126, 7-14
LDR (literal pools) 2-30
LDR (loading addresses) 2-37
LDR constants 2-29
LDR (Thumb) 5-48
NOR 4-122, 4-129
NOR (Thumb) 5-50
SEXT 4-128
UXEXT 4-128
PUSH instruction, Thumb 2-48

R
Register
names, assembly 3-9
Register access, Thumb 2-10
Register banks 2-4
Register-based
 symbols 2-60
Register-based maps 2-55
Register-relative
 expressions 3-23
Register-relative address 2-14
Register-relative labels 3-15
Registers 2-4
Relational operators, assembly 3-30
Relative maps 2-54
REQUIRE directive 7-68
REQUIRE8 directive 7-69
:RIGHT: operator 3-28
RLIST directive 3-3, 7-8
RN directive 7-70
ROUT directive 2-14, 3-16, 3-17, 7-71

S
Scope, assembly language 2-14
SETA directive 3-6, 3-11, 3-13, 7-7, 7-48
SETL directive 3-6, 3-11, 3-13, 7-7, 7-48
SETS directive 3-6, 3-11, 3-13, 7-7, 7-48
SEXT pseudo-instruction 4-128
Shift operators, assembly 3-29
SN directive 7-11
SPACE directive 7-17
Stack pointer 2-4
Stacks, assembly language 2-44
Status flags 2-22
STM
 instruction 4-20
STM instruction 2-41, 2-56, 3-3, 7-8
 Thumb 2-48
STR
 instruction 4-9, 4-14, 4-17
 :STR: operator 3-26
String
 expressions, assembly 3-19
 manipulation, assembly 3-28
 variable, assembly 3-13
String constants, assembly language 2-15
String literals, assembly 3-19
Subroutines, assembly language 2-18
SUBT directive 7-50
SWP
 instruction 4-31
Symbols
 assembly language 3-12
 assembly language, Naming rules 3-12
Symbols, register-based 2-60

T
Thumb
 BX instruction 2-20
 conditional execution 2-22
 direct loading 2-29
 example assembly language 2-20
 instruction set 2-10
 LDM and STM instructions 2-48
 popping pc 2-45
 TTL directive 7-50

U
UEXT pseudo-instruction 4-128
Unary operators, assembly 3-26

V
Variables, assembly 3-13
 built-in 3-10
 global 7-4, 7-7
 local 7-6, 7-7
 substitution 3-14
 VFP directives and notation 6-38
 VFPASSERT SCALAR directive 6-39
 VFPASSERT VECTOR directive 6-40

W
WEAK symbol 7-63, 7-65
WEND directive 7-33
WHILE directive 7-29, 7-33

Symbols
! directive 7-47
directive 7-16
% directive 7-17
& directive 7-19
* directive 7-60
= directive 7-18
[directive 7-30
] directive 7-30
^ directive 7-15
| directive 7-30
Index