
MxScript for Fast Models
v1.3

Reference Manual
Copyright © 2007-2010 ARM. All rights reserved.
ARM DUI 0371I (ID051811)

MxScript for Fast Models
Reference Manual

Copyright © 2007-2010 ARM. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM, except as otherwise stated
below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective
owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any
incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Description Issue Confidentiality Change

June 2007 A Confidential New document for SoC Designer 7.0.

February 2008 B Non Confidential Updated for System Generator 3.2 to include script functions
for Model Debugger, and HDL cosimulation. Added new cast
operations and constant types.

May 2008 C Non Confidential Updated to cover new functions for SoC Designer and System
Generator.

June 2008 D Non Confidential Updated for MxScript 1.3 as shipped with System Generator
4.0.

December 2008 E Non Confidential Updated for MxScript 1.3 as shipped with Fast Models 4.1.

March 2009 F Non-Confidential Updated for MxScript 1.3 as shipped with Fast Models 4.2.

April 2009 G Non-Confidential Updated for MxScript 1.3 as shipped with Fast Models 5.0.

September 2009 H Non-Confidential Updated for MxScript 1.3 as shipped with Fast Models 5.1.

February 2010 I Non-Confidential Updated for MxScript 1.3 as shipped with Fast Models 5.2.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. ii
ID051811 Non-Confidential

ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. iii
ID051811 Non-Confidential

Contents
MxScript for Fast Models Reference Manual

Preface
About this book .. v
Feedback ... vii

Chapter 1 Introduction and syntax conventions
1.1 Introduction to MxScript ... 1-2
1.2 Syntax conventions .. 1-3

Chapter 2 Common API
2.1 File input/output ... 2-2
2.2 Handling strings ... 2-4
2.3 Accessing environment variables .. 2-5
2.4 Preprocessor ... 2-6

Chapter 3 Model Debugger Scripting Functions
3.1 Introduction .. 3-2
3.2 Model connection and configuration .. 3-3
3.3 Model execution control ... 3-6
3.4 Breakpoints .. 3-10
3.5 Model resource access .. 3-13
3.6 String and print functions ... 3-15
3.7 Miscellaneous .. 3-16

Preface

This preface introduces the MxScript for Fast Models Reference Manual. It contains the following
sections:
• About this book on page v
• Feedback on page vii.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. iv
ID051811 Non-Confidential

Preface
About this book
This book is the reference for the MxScript language.

Intended audience

This book is written for experienced hardware and software developers to enable you to use an
MxScript file to control a debug session using Model Debugger.

Organization

This book is organized into the following chapters:

Chapter 1 Introduction and syntax conventions
Read this chapter for an introduction to the MxScript language.

Chapter 2 Common API
Read this chapter for a description of the common API provided by the MxScript
language.

Chapter 3 Model Debugger Scripting Functions
Read this chapter for a description of Model Debugger API functions that are
available for use in batch-mode scripts.

Typographical conventions

The typographical conventions are:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter
the underlined text instead of the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear in code
or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Additional reading

This section lists related publications by ARM®.

See ARM Infocenter, http://infocenter.arm.com/help/index.jsp for access to ARM
documentation.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. v
ID051811 Non-Confidential

Preface
ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:
• ARM architecture Reference Manuals, http://infocenter.arm.com/help/index.jsp
• ARM Cycle Accurate Debug Interface Developer Guide (ARM DUI 0444).

The following publication provides information about related ARM products:
• Model Debugger for Fast Models User Guide. (ARM DUI 0314).
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. vi
ID051811 Non-Confidential

Preface
Feedback
ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• the product name
• a concise explanation.

Feedback on this book

If you have any comments on this book, send an e-mail to errata@arm.com. Give:
• the title
• the number
• the relevant page number(s) to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. vii
ID051811 Non-Confidential

Chapter 1
Introduction and syntax conventions

This chapter describes the syntax and usage of the MxScript language. It contains the following
sections:
• Introduction to MxScript on page 1-2
• Syntax conventions on page 1-3.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 1-1
ID051811 Non-Confidential

Introduction and syntax conventions
1.1 Introduction to MxScript
MxScript is an interpreted language with a syntax that is similar to C. MxScript provides the
following benefits:

Easy to learn
Syntax is similar to C.
Integers can contain 64 bit signed values and support all operations that C
supports. There are only integer, double, bool, and string types.

Safe Bugs in the script file do not cause a system crash.
Strings in MxScript are safer than in C because features not required for scripting
have been removed. There is no use of pointers, structures, user defined functions,
or arrays.

Flexible No compilation is required and fast turnarounds are possible. MxScript can be
used interactively in a command-line interface.

Fast Unlike many other scripting languages, performance was one of the main goals
for MxScript.

The MxScript language can be invoked from the following initial situations:
• a single command can be issued from the Model Debugger Output window
• a script containing multiple commands can be specified on the command line that starts

Model Debugger
• a script containing multiple commands can be loaded into Model Debugger after it has

started.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 1-2
ID051811 Non-Confidential

Introduction and syntax conventions
1.2 Syntax conventions
This section describes the basic language keywords and structures.

1.2.1 Comments

Two types of comment are supported:

Line comments
These start with "//"and end at the end of the current line.

Block comments
These start with "/*"and end with "*/".
As with C, it is not possible to nest block comments.
In the code "/* a /* b */ c */ …", the part after c */ is not in a comment and
probably leads to a syntax error.

Note
 Comments cannot occur in string constants.

1.2.2 Identifiers

The following rules apply to identifiers:
• they must consist of letters and digits
• the first character must be a letter
• the underscore '_' counts as a letter
• upper and lower case letters are different
• identifiers are distinguished on their full length.

1.2.3 Keywords

Not all C keywords are supported within MxScript, but they are, however, reserved for
compatibility and future extension:

Supported keywords
break bool continue do double else false for if int string true while

Reserved keywords
asm auto case char complex const default enum extern float
goto inline long register return short signed sizeof static struct
switch typedef union unsigned void volatile wchar_t
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 1-3
ID051811 Non-Confidential

Introduction and syntax conventions
1.2.4 Operators

The supported operators are listed in Table 1-1:

The precedence and associativity of operators in MxScript is the same as for C. See Table 1-2:

Table 1-1 MxScript operators

Category Operators Restrictions

Assignment = Works on all types and returns the same type.

Arithmetical + - * %
++ --
+= -= *= /= %=

Work on all number types (int and double) and the result
of same type, except that the increment operators ++ and
-- can only be used with int values.

String + = += *= Use to concatenate strings, assign to string, or append to
string. The *= form is used to concatenate multiple copies
of a string back to the original string as in
my_string_var *= 3.

Relationship == !=
< > <= >=

Works on all types, including strings. Result is bool.
The <, >, <=, and >= cannot be used with bool types.

Logical && || ! Works on bool types. Result is bool

Bitwise & | ^ ~ << >>
&= |= ^= <<= >>=

Works on int. Result is int.
Shift operators are, unlike in C, well defined for shifts
larger than the size of the integer type (64 bits).

Casting type(exp)
(type) exp

Both C and C++ forms of casts are supported in MxScript
See Expressions on page 1-6.

Pointers unary * & Not supported in MxScript.

Structures . -> Not supported in MxScript.

Table 1-2 Associativity in expressions

Operators Associativity

() left to right

unary operators: !, ~, ++, --, +, -, (type), type() right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 1-4
ID051811 Non-Confidential

Introduction and syntax conventions
1.2.5 Constants

There are the following types of constant:

Integer constants
Integer constants can be in decimal, hexadecimal, octal and binary format:
• octal constant begin with a leading 0
• hexadecimal constants begin with the prefix 0x or 0X
• binary numbers begin with the prefix 0b or 0B.
• all other numbers are treated as decimal constants. Suffixes like U or L are

allowed but are ignored.

String constant
A string constant is surrounded by double quotes. Special escape sequences that
begin with a backslash \ can be used to include control characters into a string.
See Table 1-3. To put a put a backslash into a string a double backslash \\ must
be used.
Characters can also be specified using octal or hexadecimal ASCII code.

?: right to left

= += -= *= /= %= &= ^= |= <<= >>= right to left

, left to right

Table 1-2 Associativity in expressions (continued)

Operators Associativity

Table 1-3 Escape characters for string constants

Name Escape
Sequence

Newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \'

double quote \"

character by octal ASCII code ooo \ooo

character by hexadecimal ASCII code hh \xhh
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 1-5
ID051811 Non-Confidential

Introduction and syntax conventions
Boolean constants
The Boolean constants are true and false.

Double constants
A double is a floating-point number represented with 64 bits. For example: 3.14,
5.4E14, or 3E-7.

1.2.6 Types

MxScript supports the following types:

int Integers are represented as 64 bit signed values, so numbers between
-9223372036854775808 and +9223372036854775807 can be represented.

double Doubles are represented as 64 bit signed values consisting of a mantissa and
exponent. Doubles are represented as floating-point numbers.

bool Boolean variables can only have the value true or false.

string Strings are sequences of ASCII characters. String size is only limited by available
memory and can contain more characters than any practical application could
require.

Variable definitions

A variable definition consists of a type and a list of identifiers that are not already in use for the
current scope. The identifiers must not be keywords and must not be the names of functions
predefined by the MxScript environment.

The scope for a variable is either:

Local The scope is limited by a surrounding block of curly braces or by being declared
inside a for loop. A block of code uses the variable definition that is in the
innermost definition. This is the same scope as for C.

Global A variable is global if it is on the top level.

1.2.7 Expressions

An expression consists of constants, variables, and function calls that are combined with
operators.

Parentheses can be used to group expressions to alter the evaluation sequence from that defined
by the precedence:

3*(4+7)

Unlike in C, there is no automatic type casting in MxScript. The expression (3.14 *2) causes an
error because double and int types are mixed. Both C and C++ forms of casts are allowed.

A string can be multiplied by an integer to create a concatenated string:
• “hello” * 2 is equivalent to “hellohello”
• 4 * “#” is equivalent to “####”.

String/integer casts are permitted:
• (string)5 is equivalent to "5"
• string(5+77) is equivalent to "82"
• int("555") is equivalent to 555
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 1-6
ID051811 Non-Confidential

Introduction and syntax conventions
• (int)("0b"+ "111") is equivalent to 7.
• int("xfff") is equivalent to 0 because the string does not start with 0
• int("255xfff") is equivalent to 255 because the non-numbers are ignored.

The results of the different cast combinations are listed in Table 1-4.

1.2.8 Calling built-in functions

Call built-in functions by using the function name followed by a comma-separated list of
parameters in parentheses. A parameter can be a single value or an expression.

For convenience, a function that does not have parameters can be called by its name, if the name
does not match the name of any variable in the code. An empty pair of parentheses can be
appended but is not mandatory.

1.2.9 Control Statements

This sections describes the supported control statements.

if statement

The if statement is used to execute an instruction or a block of instructions depending on a
condition.

The condition must be of bool type. If it evaluates to false, the code is not executed. If it
evaluates to true, the code is executed.

if (condition)
 statement;

or

if (condition)
 {
 statement 1;
 …
 statement n;
 }

Table 1-4 Results of cast operation

Original
type casting to int casting to string casting to bool casting to double

int Error. Convert to string
containing decimal
integer format.

false if integer is 0,
otherwise true.

Convert to double with
same value.

string Interpret string as
integer number.
Prefixes 0b (binary), 0x
(hexadecimal) and 0
(octal) are recognized.

Error. Error. Interpret string as a
decimal floating-point
number in C format.

bool 1 if true, 0 if false. “true” if true, “false”
if false.

Error. Error.

double Round down to a lower
integer value. Same as
floor() function in C.

Convert to string
containing decimal
floating-point format.

Error. Error.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 1-7
ID051811 Non-Confidential

Introduction and syntax conventions
If statements can be nested, for example:

 if (condition1)
 {
 statement1;
 if (condition2)
 {
 statement2;
 }
 }

else statement

The else statement is used to append an alternate code block to an if statement. The alternate
block is executed if the condition of the if statement is false.

if (condition)
 statement;
else
 alternate statement;

if and else statements can be nested. If the relationship is ambiguous, an else always belongs
to the last if statement:

if (condition) /* 1 */
 if (condition) /* 2 */
 statement1;
 else /* belongs to if 2 */
 statement2;

It is good style, however, to remove ambiguity by using additional blocking:

if (condition) /* 1 */
 {
 if (condition) /* 2 */
 statement1;
 else /* belongs to if 2 */
 statement2;
 }

To check for multiple conditions of which only one is true, the following construct can be used
(no special elseif instruction exists):

if (condition)
{
}
else if (condition2)
{
}
else if (condition3)
{
}
else
{
}

for statement

The for keyword is followed by an initial value for an integer variable, an exit condition, a
modifier function, and a statement or a block containing statements.

The statements in the for loop are executed until the condition is false.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 1-8
ID051811 Non-Confidential

Introduction and syntax conventions
for (loop_var; condition; modifier)
 statement;

or

for (loop_var; condition; modifier)
{
 statement1;
 statement2;
}

For statements can be nested.

If the loop variable is declared in the for statement, its use is local to the for block:

for (int i; i<3; ++i)
{
 statement1;
 statement2;
}

while statement

The while keyword is followed by a condition (which must evaluate to an bool) and a statement
or a block containing statements. The statements in the while loop are executed until the
condition is false. If the condition is false when entering the while loop the statements are not
executed.

while(condition)
 statement;

or

while(condition)
{
 statement1;
 statement2;
}

Loop statements can be nested:

while (condition)
{
 …
 while (condition)
 {
 …
 }
 …
}

The do while form is similar to the while form except that the statements are evaluated before
the test. If the condition is false when entering the while loop the statements are executed once.

do
statement

while(condition);

or

do
{
 statement1;
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 1-9
ID051811 Non-Confidential

Introduction and syntax conventions
 statement2;
}
while(condition);

break statement

The break statement can be used to prematurely leave while, do while, or for loops. If used in
nested loops the innermost loop is exited.

while (condition)
{
 if (condition2)
 break;
 …
}

continue statement

The keyword continue can be used to jump over the remainder of a while, do while, or for loop
body and to continue with the evaluation of the condition.

while (condition)
{
 if (condition2)
 continue;
 …
}

If used in nested loops, the innermost loop is continued.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 1-10
ID051811 Non-Confidential

Chapter 2
Common API

This chapter describes the API functions that are common to batch-mode and GUI scripting
environments for Model Debugger. It contains the following sections:
• File input/output on page 2-2
• Handling strings on page 2-4
• Accessing environment variables on page 2-5
• Preprocessor on page 2-6.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 2-1
ID051811 Non-Confidential

Common API
2.1 File input/output
This section describes the functions that perform file input and output.

In MxScript, file I/O is done with functions that are similar to ANSI C file functions.

2.1.1 fopen()

int fopen(string filename, string mode)

Open a file specified by filename (the parameter filename can contain a path) with the specified
mode. Supported modes are listed in Table 2-1:

If successful, a handle to the file opened is returned which can be passed to other file I/O
functions. If unsuccessful a error message is displayed and 0 is returned.

2.1.2 fclose()

fclose(int filehandle)

Executes a standard C++ fclose(), closing the file that was opened using fopen(). No value is
returned.

2.1.3 fprintf()

int fprintf(int filehandle, string format, …)

This function writes data into a file. Most features of the ANSI C standard are supported.

2.1.4 fputs()

fputs(string s, int filehandle)

Prints the string s into the file associated with filehandle.

2.1.5 fgets()

int fgets(string s, int n, int filehandle)

Table 2-1 Mode options for fopen()

Text
mode

Binary
mode Description

r rb Open a text/binary file for reading

w wb Create a text/binary file for writing. Previous contents,
if any, are discarded.

a ab Open a text/binary file for update. Data is written at
the end of the file.

r+ r+b Open a text/binary file for reading.

w+ w+b Create a text/binary file for update. Previous contents,
if any, are discarded.

a+ a+b Open or create text/binary file for update. Data is
written at the end of the file.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 2-2
ID051811 Non-Confidential

Common API
Reads, at most, the next n-1 characters into the string s from the file being associated with
filehandle. If a newline is encountered, the newline is included in the string. The string is
terminated by "\0".

Note
 In contrast to ANSI C, fgets() returns either:
• the number of characters read
• 0 if the end of file was reached or an error associated with filehandle occurred.

2.1.6 fscanf()

int fscanf(int filehandle, string format, …)

Reads in data. Most format options of the ANSI C standard are supported.

Note
 Due to the absence of pointers, variables of type int or string are provided directly rather than
pointers as in ANSI C.

2.1.7 ftell()

int ftell(int filehandle)

Returns the value, in bytes, of the file position pointer for the file associated with filehandle.

2.1.8 fflush()

void fflush(int filehandle)

Commits any pending writes to for the file associated with filehandle.

2.1.9 fseek()

void fseek(int filehandle, int offset, int whence=SEEK_END)

Move the file position pointer by offset bytes for the file associated with filehandle.

The starting point for the move is determined by the whence parameter:

SEEK_SET The new position is offset. The movement was relative to the start of the file.

SEEK_CUR The new position is the current position plus offset.

SEEK_END The new position is the end of file plus offset. The movement is relative to the
start of the file. To move backwards from the end of file, a negative value must
be supplied for offset.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 2-3
ID051811 Non-Confidential

Common API
2.2 Handling strings
This section describes functions related to string handling.

2.2.1 sscanf()

int sscanf(string str, string format, …)

Reads in data from a string. Most format options of the ANSI C standard are supported.

Note
 In contrast to ANSI C, sscanf() returns either:
• the number of characters read
• 0 if the end of file was reached or an error associated with filehandle occurred.

2.2.2 sprintf()

int sprintf(string buf, string format, …)

Formats data (according to format) and assigns the result to the string buf. Most format options
of the ANSI C standard are supported.

2.2.3 substr()

string substr(string s, int pos, int length)

Returns a substring of string s by copying length number of characters starting at position pos.

2.2.4 gets()

string gets()

Reads the next input line from the input console and returns a string. The newline character ”\n"
is replaced with "\0".

2.2.5 ascii2int()

int ascii2int(string s)

Reads the first character of string s, that is s[0], and interprets it as ASCII character and returns
the appropriate integer value.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 2-4
ID051811 Non-Confidential

Common API
2.3 Accessing environment variables
Access of environments variable is done with functions that are similar to the standard C
versions.

2.3.1 getenv()

string getenv(string env_varname)

Returns the value of the environment variable with name varname. If no such environment
variable exists, an empty string is returned.

2.3.2 putenv()

int putenv(string putenv_string)

Adds a new environment variable or alters the value of an existing one.

The parameter putenv_string must have the form “env_varname=value”. If the setting of the
environment variable was successful 0 is returned. If an error occurs, the value –1 is returned.

Note
 This function only alters the environment of the current process. It cannot be used to alter the
environment of the parent process, therefore it cannot be used to pass back information to a
calling process.

2.3.3 system()

int system(string cmd_str)

system() synchronously passes the string cmd_str to the environment (host operating system) for
execution. Because the call is synchronous, the script does not return from this function until the
command in cmd_str has completed.

If cmd_str is "" (empty string) and there is a command processor, system() returns a non-zero
value.

If cmd_str is not "" (empty string), the return value is implementation-dependent.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 2-5
ID051811 Non-Confidential

Common API
2.4 Preprocessor
The MxScript interpreter contains a preprocessor. Use the #include directive to include C header
files. This enables sharing #define preprocessor statements between MxScript files and C
projects.

Note
 The preprocessor is currently only available with component scripting. Batch-mode scripting
does not support preprocessor commands.

2.4.1 #include

Include C header files containing preprocessor definitions. For example, to include the header.h
file, use:

#include “header.h”

2.4.2 #define

Preprocessor define directive. For example, to replace any occurrence of "base" with "0x1234"
in all MxScript source that is parsed after the define, use:

#define base 0x1234
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 2-6
ID051811 Non-Confidential

Chapter 3
Model Debugger Scripting Functions

This chapter describes the MxScript commands available for use with Model Debugger. It contains
the following sections:
• Introduction on page 3-2
• Model connection and configuration on page 3-3
• Model execution control on page 3-6
• Breakpoints on page 3-10
• Model resource access on page 3-13
• String and print functions on page 3-15
• Miscellaneous on page 3-16.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-1
ID051811 Non-Confidential

Model Debugger Scripting Functions
3.1 Introduction
This section describes how to use MxScript commands with Model Debugger.

MxScript commands can be executed by Model Debugger in the following ways:

Executing a single command from Model Debugger
Some execution and debugging features of Model Debugger can be controlled by
entering an MxScript command in the Output window. Enter the command text
into the command line, located to the right of the cmd> button, and click cmd>.

Executing a script from Model Debugger
To run a script file after Model Debugger has started, enter
loadScript(“filename”) in the Output window command line.

Specifying a script file at Model Debugger startup
Enter one of the following options on the command line to execute a script file in
Model Debugger:
• modeldebugger --script filename

• modeldebugger -s filename.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-2
ID051811 Non-Confidential

Model Debugger Scripting Functions
3.2 Model connection and configuration
This section describes the commands for connecting to a model.

3.2.1 loadModel()

void loadModel(string pathAndFileName, bool hostLevelDebugger,
 string targetInstanceName)

Load a model library file from the location specified by pathAndFileName.

The model shared library file must be supplied. The file extensions for shared libraries can be
.cadi, .so (Unix), .dll (Windows), or .mxdi.

Note
 The option hostLevelDebugger is deprecated. Setting this parameter has no effect on the function.

If a model contains multiple targets, targetInstanceName is used to select one target. The default
is to take the first target. Use getTargetList() to identify all available targets.

3.2.2 closeModel()

void closeModel()

Close the currently loaded model.

3.2.3 connectToModel()

void connectToModel(string port:inst)

Connect to a model.

3.2.4 debugIsim()

void debugIsim(string isimSystem, string parameterFile)

Run isimSystem and connect automatically. Define parameters for the system in the
parameterFile. The parameter file is optional.

Note
 If the system or parameter file does not exist, then a run-time error occurs.

3.2.5 debugSystemC()

void debugSystemC(string systemCSimulation, string application)

Run systemCSimulation and connect automatically. Defining an application is optional. It might
be necessary depending on the SystemC simulation you are debugging.

Note
 If the simulation or application file does not exist, then a run-time error occurs.

3.2.6 getParameter()

string getParameter(string parameterName)
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-3
ID051811 Non-Confidential

Model Debugger Scripting Functions
Get a model parameter value for parameterName. Returns the value as a string.

Note
 If a parameter with the specified name does not exist, then a run-time error occurs.

3.2.7 setParameter()

void setParameter(string parameterName, string value)

Assign the string representation of the value in value to the model parameter specified by
parameterName.

Note
 If a parameter with the specified name does not exist, then a run-time error occurs.

3.2.8 getTargetList()

void getTargetList(string modelName)

Print a list of the available target instances of the specified model.

3.2.9 getTargetName()

string getTargetName()

Return the qualified name of the currently selected target.

3.2.10 selectTarget()

void selectTarget(string targetName)

Set the target for all subsequent scripting commands. targetName is the qualified target name and
must be in the same format as used in the Model Debugger Select Target dialog.

The function can be used in a script or in the command line of the Model Debugger Output
window:

• If used in a nested script, the target is set for all subsequent scripts.

• If used on the command line of the Model Debugger Output window, the function only
sets the target for the Model Debugger window where it was used.

3.2.11 loadApp()

void loadApp(string pathAndFileName, bool debugInfoOnly)

Load the application file or*.elf file specified by pathAndFileName. For ARM cores, the
application file is typically a .axf file (axf is ELF compatible).

You can also load .hex (Intel), S-record, or COFF files, but there is reduced, or no, debug
information.

DebugInfoOnly can be either false or true. The default is false. If true, only the debug information
is loaded into the debugger and the code to be executed must have been already loaded.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-4
ID051811 Non-Confidential

Model Debugger Scripting Functions
3.2.12 saveState()

void saveState(string modelStateFileName)

Save a state of a model currently being debugged to the .model_state file specified by
modelStateFileName.

3.2.13 restoreState()

void restoreState(string modelStateFileName)

Restore a model from the previously saved .model_state file specified by modelStateFileName
and continue debugging.

3.2.14 saveSession()

void saveSession(string sessionFileName, bool saveModelState)

Save a Model Debugger session to the file specified by saveModelState. All the session data,
including, model, application, breakpoints, and model parameters, is saved. If you set
saveModelState to true, the current model state is also saved.

3.2.15 openSession()

void openSession(string sessionFileName)

Restore a Model Debugger session from a previously saved file.

Note
 It is not possible to open a session in GUI mode if it was saved in non-GUI mode.

3.2.16 setStateFile()

void setStateFile(string stateFileName)

Specify the .model_state file that is saved with your Model Debugger session. This state is used
if you use the saveSession() command with the saveModelState parameter equal to true. By
default, the session name is used.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-5
ID051811 Non-Confidential

Model Debugger Scripting Functions
3.3 Model execution control
This section describes the script commands related to model execution.

3.3.1 run()

void run()

Run the simulation until a breakpoint is hit or an exception, such as simulation halt, occurs.

3.3.2 runUntil()

void runUntil(int address)

Run the simulation until the pc address specified in address is reached.

3.3.3 runToLine()

void runToLine(string filename, int lineNumber)

Run the simulation until the source code line specified in the lineNumber of the file specified in
filename is reached.

3.3.4 stop()

void stop()

Stop the execution of the model being debugged. This command is not supported in batch mode.

3.3.5 getCurrentSourceFile()

string getCurrentSourceFile()

Return the name of the source file that matches the current simulation cycle. An empty string is
returned if there is no current source file.

3.3.6 getCurrentSourceLine()

int getCurrentSourceLine()

Return the line number in the source that matches the current simulation cycle. Returns –1 if
there is no current source file.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-6
ID051811 Non-Confidential

Model Debugger Scripting Functions
3.3.7 getCurrentSourceColumn()

int getCurrentSourceColumn()

Return the position in the source line that matches the current simulation cycle. Returns –1 if
there is no current source file.

3.3.8 hardReset()

void hardReset()

Execute a reset of the target model without reloading the application.

3.3.9 reset()

void reset()

Execute a reset of the target model and reload the application.

3.3.10 pause()

void pause()

Pause the current high-level simulation step command such as source-level step over.

3.3.11 cont()

void cont()

Continue the current high-level simulation step command such as, for example source-level step
over.

High level simulation-control commands can be interrupted by breakpoints before completion.
The control commands can be completed by cont(). This is not supported for batch mode.

3.3.12 getStopCond()

string getStopCond()

Return a message string that describes the reason for the last stop condition if the simulator is
currently in the stopped state. The string format depends on the reason for the stop condition:

• For a PC breakpoint, the string describes the stop condition, the source file, and the line
number such as, for example:
Disassembly breakpoint is hit - address: 0x00008018

• General stop conditions might return one of NORMAL USER STOP, TERMINATE, HALT, EXCEPTION,
ERROR, or INVALID OPCODE.

3.3.13 isSimStopped()

int isSimStopped(string stopCondition)

Return True if the simulator is currently in stopped state or False if the simulator is running.

stopCondition is an optional parameter to enable more detailed checking:

• To check for a exact stop condition such as a breakpoint at a specific address, the string
must be constructed exactly like the string returned by getStopCondition().
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-7
ID051811 Non-Confidential

Model Debugger Scripting Functions
• To check for a general stop condition, the string can be one of TERMINATE, HALT, BREAKPOINT,
BP, EXCEPTION, ERROR, INVALID OPCODE or NORMAL USER STOP. (BP is a short for BREAKPOINT and
both strings can be used interchangeably.)

3.3.14 restart()

void restart()

Execute a restart of the target model. This is a reset plus reload of the application code.

3.3.15 goToMain()

void goToMain()

Execute a reset of the target model and run until the main function (label) of the application
source code is reached.

Note
 This command is only available if a main() function can be found in the debug information of
the application file.

3.3.16 step()

void step()

Execute the simulation until a different source line is reached. This is a source-level execution
control command.

3.3.17 stepOver()

void stepOver()

Step over function calls. This is a source-level execution control command.

3.3.18 stepOut()

void stepOut()

Leave the current function. This is a source-level execution control command.

3.3.19 istep()

void istep(int numberOfInstructions)

Advance the simulation by executing as many instructions as specified in the
numberOfInstructions parameter. One step is assumed if numberOfSteps is omitted.

3.3.20 getInstCount()

int getInstCount()

Return the number of totally counted instructions since last reset.

3.3.21 cycleStep()

void cycleStep(int numberOfCycles)
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-8
ID051811 Non-Confidential

Model Debugger Scripting Functions
Advance the simulation by the number of cycles specified in numberOfCycles. If numberOfCycles
is positive, the simulation is stepped forward.

If numberOfCycles is negative, the simulation is stepped backward.

Note
 A negative parameter value causes a run-time error if stepping back is not enabled.

3.3.22 enableStepBack()

void enableStepBack(bool enable)

Enable the use of negative values in cyleStep() to step back in the simulation cycles.

Note
 This command is not supported by all model targets. This command causes a run-time error if
the target does not support Step Back.

3.3.23 sleep()

void sleep(int numberOfSeconds)

Wait for the number of seconds specified in the parameter. One second is assumed if
numberOfSeconds is omitted.

3.3.24 msleep()

void msleep(int numberOfMilliseconds)

Wait for the number of milliseconds specified in the parameter. One millisecond is assumed if
numberOfMilliseconds is omitted.

3.3.25 getCycleCount()

int getCycleCount()

Return the cycle the simulation is in.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-9
ID051811 Non-Confidential

Model Debugger Scripting Functions
3.4 Breakpoints
This section describes the script commands related to breakpoints.

3.4.1 bpAdd ()

int bpAdd (int address, string memspace)

Add a breakpoint at the specified program counter address using the specified memory space.

The parameter memspace is optional. If omitted the first program memory space is used. Valid
values for this parameter are “Normal” and “Secure”.

If the specified memory space does not exist a run-time error occurs.

Returns the id number of the new breakpoint.

3.4.2 bpAdd()

int bpAdd (string filename,int lineNumber)

Add a breakpoint at the source code line specified in lineNumber of the file specified in filename.

Returns the id number of the new breakpoint.

3.4.3 bpAddReg()

int bpAddReg (string regName)

Add a breakpoint at the register specified in regName. If the register does not exist, a run-time
error occurs.

A hierarchical name is required for the parameter if register names are not unique. You must
specify the register group. Compound registers must include the name of the parent. The format
for hierarchical items uses dots to separate the names. For example:

REGGROUP0.reg0.compound0

Returns the id number of the new breakpoint.

3.4.4 bpAddReg()

int bpAddReg (int id)

Add a breakpoint at the register specified in id. If the register does not exist, a run-time error
occurs.

Returns the id number of the new breakpoint.

3.4.5 bpAddMem()

int bpAddMem(int address, string memspace)

Add a breakpoint at the address specified in address of the memory space specified in memspace.
If the address is out of range or the memory space does not exist, a run-time error occurs.

Valid values for the memspace parameter are “Normal” and “Secure”.

Returns the id number of the new breakpoint.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-10
ID051811 Non-Confidential

Model Debugger Scripting Functions
3.4.6 bpAddMem()

int bpAddMem(int address, int id)

Add a breakpoint at the address specified in address of the memory space specified in id. If the
address is out of range or the memory space does not exist, a run-time error occurs.

Returns the id number of the new breakpoint.

3.4.7 bpRemove ()

void bpRemove (int id)

Remove the breakpoint with the specified id.

3.4.8 bpRemoveAll()

void bpRemoveAll()

Remove all existing breakpoints.

3.4.9 bpEnable ()

void bpEnable (int id)

Enable the breakpoint specified by id.

Note
 This command can cause a run-time error.

3.4.10 bpEnableAll()

void bpEnableAll()

Enable all existing breakpoints.

3.4.11 bpDisable()

void bpDisable(int id)

Disable the breakpoint specified by id.

Note
 This command can cause a run-time error.

3.4.12 bpDisableAll()

void bpDisableAll()

Disable all existing breakpoints.

3.4.13 bpList()

void bpList()

Print a list of all existing breakpoints with locations, details and conditions.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-11
ID051811 Non-Confidential

Model Debugger Scripting Functions
3.4.14 bpSetTriggerType()

void bpSetTriggerType (int breakpoint_id, string triggerType)

Trigger the breakpoint specified in breakpoint_id only if the breakpoint type specified in
triggerType occurs. The type can be “READ” , “WRITE”, “MODIFY”, or combinations of the types
separated by '|' .

3.4.15 bpSetIgnoreCount()

void bpSetIgnoreCount (int breakpoint id, int numberOfCounts)

Stop the simulation run only if the breakpoint specified in breakpoint_id has been hit
numberOfCounts times.

3.4.16 bpSetCond()

void bpSetCond (int breakpoint_id, string conditionOperator,
 int comparisonValue)

Trigger the breakpoint specified in breakpoint_id only if the condition specified by
comparisonValue and conditionOperator is true.

conditionOperator can be one of “ANY”, “EQ” , “NE”, “GT”, “LT”, “LE”, or “GE” .

3.4.17 bool bpIsHit ()

bool bpIsHit (int breakpoint_id)

This function returns true if the breakpoint specified by id is currently hit.

Note
 If the breakpoint specified by breakpoint_id does not exist, a run-time error occurs.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-12
ID051811 Non-Confidential

Model Debugger Scripting Functions
3.5 Model resource access
This section describes the script commands related to accessing model memory or register
resources. The CADI interface is always used to perform the call.

3.5.1 regWrite()

void regWrite (string registerName, value)

Write a value to the specified register.

A hierarchical name is required for the parameter if register names are not unique. You must
specify the register group. Compound registers must include the name of the parent. The format
for hierarchical items uses periods to separate the names. For example:

REGGROUP0.reg0.compound0

Note
 If the register does not exist, a run-time error occurs.

3.5.2 regRead()

int regRead (string registerName)

Read a value from the specified register.

A hierarchical name is required for the parameter if register names are not unique. You must
specify the register group. Compound registers must include the name of the parent. The format
for hierarchical items uses periods to separate the names. For example:

REGGROUP0.reg0.compound0

Note
 If the register does not exist, a run-time error occurs.

3.5.3 memWrite()

void memWrite(string memspace, int address, int value,int numberOfMAU=1)

Valid values for the memspace parameter are “Normal” and “Secure”.

Write a value in the specified memory space at the address specified in address. Value can be of
type string or integer. The size of the access depends on the Minimum Addressable Unit (MAU)
size which is the size of one word defined for that memory space.

Use the optional parameter numberOfMAU to specify how many MAUs are written in a single call.
The default size for numberOfMAU is 1.

Note
 This command can cause a run-time error.

The function can only write 64 bits (8 bytes) at a time. To prevent a run-time error, the value of
numberOfMAU * bytePerMAU must be less than 8.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-13
ID051811 Non-Confidential

Model Debugger Scripting Functions
3.5.4 memRead()

int memRead(string memspace, int address,int numberOfMAU=1)

Valid values for the memspace parameter are “Normal” and “Secure”.

Read a value from the specified memory space at the address specified in address. Returns the
integer value. The size of the access depends on the Minimum Addressable Unit (MAU) size
which is the size of one word defined for that memory space.

Use the optional parameter numberOfMAU to specify how many MAUs are read in a single call.
The default size for numberOfMAU is 1.

Note
 This command can cause a run-time error.

The function can only read 64 bits (8 bytes) at a time. To prevent a run-time error, the value of
numberOfMAU * bytePerMAU must be less than 8.

3.5.5 disassemble()

string disassemble(int address, int memory_space_id, int disassembly_mode)

Return the assembler string representation of the code at address in the memory area specified
by memory_space_id. The dissassembly_mode parameter selects the architecture used to determine
the disassembly.

3.5.6 memStoreToFile()

int memStoreToFile(string filename, bool isASCIIMode, string memspace,
 int startAddress, int endAddress)

Read data from the memory space memspace starting at address startAddress and stop when
address endAddress is reached. The data that is read is stored in the file filename. The file format
can be either binary or ASCII. The value of isASCIIMode must be set to true for ASCII file format
and false for binary.

If no memory space with the name memspace exists, a run-time error occurs. The size of the
access is determined by the Minimum Addressable Unit (MAU) size defined for that memory
space. The MAU is the size of one memory word.

Valid values for the memspace parameter are “Normal” and “Secure”.

3.5.7 memLoadFromFile()

int memLoadFromFile(string filename, bool isASCIIMode, string memspace,
 int startAddress, int endAddress)

Read data from the file filename and write to memory space memspace starting at address
startAddress and stop when address endAddress or the end of the file is reached. The parameter
endAddress is optional, if omitted the memory space max address is used. The file format can be
either binary or ASCII. The value of isASCIIMode must be True for ASCII file format and False
for binary.

If no memory space with the name memspace exists, then a run-time error occurs. The size of the
access is determined by the Minimum Addressable Unit (MAU) size defined for that memory
space. The MAU is the size of one memory word.

Valid values for the memspace parameter are “Normal” and “Secure”.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-14
ID051811 Non-Confidential

Model Debugger Scripting Functions
3.6 String and print functions
This section describes the script commands related to string output.

3.6.1 printf()

int printf(string format, …)

Print a string to the output window. Most format options of the ANSI C standard are supported.
The return value is the number of characters printed.

3.6.2 puts()

void puts(string s)

Write a string to the output window.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-15
ID051811 Non-Confidential

Model Debugger Scripting Functions
3.7 Miscellaneous
This section describes the miscellaneous script commands that do not fit into the other
categories.

3.7.1 CADIXfaceBypass()

int CADIXfaceBypass(string Command, string result)

Call the CADI bypass function for the model with the command passed in command. The result
argument contains the result, if any, as a string.

Return values and their meaning are listed in Table 3-1.

3.7.2 exit()

void exit()

Exit Model Debugger.

3.7.3 getMxScriptVersion()

string getMxScriptVersion()

This function returns a string containing the version of MxScript.

3.7.4 help()

void help(string command)

Show a help list for:
• all commands if the parameter command is omitted.
• a detailed description for command specified in command.

3.7.5 ld()

int ld(int arg)

Table 3-1 CADIXfaceBypass return values

Returned
value Status

0 OK. Command was successful.

1 General error

2 Unknown command error

3 Illegal argument error

4 Command not supported error

5 Argument not supported error

6 Insufficient resources error

7 Target not responding error

8 Target busy error
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-16
ID051811 Non-Confidential

Model Debugger Scripting Functions
The binary logarithm function returns the bit position of the most significant bit of the arg that
is set to one.

Note
 Values of arg smaller than or equal to zero result in a run-time error.

3.7.6 loadScript()

void loadScript(string scriptFileName)

Load a Model Debugger script file that contains commands to execute. This can be used instead
of using the -script switch when starting Model Debugger.

Note
 This command can only be nested once in a script file.

If the loadScript() command is entered in the command line, the command cannot be nested at
all.

3.7.7 printReg()

void printReg(string regname)

Print the contents of the register. For example, printReg(“R0”) outputs R0=0x1234567.

3.7.8 rand()

int rand(int min, int max)

Return a random value from min to max (inclusive).
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-17
ID051811 Non-Confidential

Model Debugger Scripting Functions
3.7.9 string eval()

string eval(string expression)

Evaluate expression and return the value as a string. This has the same functionality as
evaluations done in the Watch window.
ARM DUI 0371I Copyright © 2007-2010 ARM. All rights reserved. 3-18
ID051811 Non-Confidential

	MxScript for Fast Models Reference Manual
	Contents
	Preface
	About this book
	Intended audience
	Organization
	Additional reading

	Feedback
	Feedback on this product
	Feedback on this book

	Introduction and syntax conventions
	1.1 Introduction to MxScript
	1.2 Syntax conventions
	1.2.1 Comments
	1.2.2 Identifiers
	1.2.3 Keywords
	1.2.4 Operators
	1.2.5 Constants
	1.2.6 Types
	1.2.7 Expressions
	1.2.8 Calling built-in functions
	1.2.9 Control Statements

	Common API
	2.1 File input/output
	2.1.1 fopen()
	2.1.2 fclose()
	2.1.3 fprintf()
	2.1.4 fputs()
	2.1.5 fgets()
	2.1.6 fscanf()
	2.1.7 ftell()
	2.1.8 fflush()
	2.1.9 fseek()

	2.2 Handling strings
	2.2.1 sscanf()
	2.2.2 sprintf()
	2.2.3 substr()
	2.2.4 gets()
	2.2.5 ascii2int()

	2.3 Accessing environment variables
	2.3.1 getenv()
	2.3.2 putenv()
	2.3.3 system()

	2.4 Preprocessor
	2.4.1 #include
	2.4.2 #define

	Model Debugger Scripting Functions
	3.1 Introduction
	3.2 Model connection and configuration
	3.2.1 loadModel()
	3.2.2 closeModel()
	3.2.3 connectToModel()
	3.2.4 debugIsim()
	3.2.5 debugSystemC()
	3.2.6 getParameter()
	3.2.7 setParameter()
	3.2.8 getTargetList()
	3.2.9 getTargetName()
	3.2.10 selectTarget()
	3.2.11 loadApp()
	3.2.12 saveState()
	3.2.13 restoreState()
	3.2.14 saveSession()
	3.2.15 openSession()
	3.2.16 setStateFile()

	3.3 Model execution control
	3.3.1 run()
	3.3.2 runUntil()
	3.3.3 runToLine()
	3.3.4 stop()
	3.3.5 getCurrentSourceFile()
	3.3.6 getCurrentSourceLine()
	3.3.7 getCurrentSourceColumn()
	3.3.8 hardReset()
	3.3.9 reset()
	3.3.10 pause()
	3.3.11 cont()
	3.3.12 getStopCond()
	3.3.13 isSimStopped()
	3.3.14 restart()
	3.3.15 goToMain()
	3.3.16 step()
	3.3.17 stepOver()
	3.3.18 stepOut()
	3.3.19 istep()
	3.3.20 getInstCount()
	3.3.21 cycleStep()
	3.3.22 enableStepBack()
	3.3.23 sleep()
	3.3.24 msleep()
	3.3.25 getCycleCount()

	3.4 Breakpoints
	3.4.1 bpAdd ()
	3.4.2 bpAdd()
	3.4.3 bpAddReg()
	3.4.4 bpAddReg()
	3.4.5 bpAddMem()
	3.4.6 bpAddMem()
	3.4.7 bpRemove ()
	3.4.8 bpRemoveAll()
	3.4.9 bpEnable ()
	3.4.10 bpEnableAll()
	3.4.11 bpDisable()
	3.4.12 bpDisableAll()
	3.4.13 bpList()
	3.4.14 bpSetTriggerType()
	3.4.15 bpSetIgnoreCount()
	3.4.16 bpSetCond()
	3.4.17 bool bpIsHit ()

	3.5 Model resource access
	3.5.1 regWrite()
	3.5.2 regRead()
	3.5.3 memWrite()
	3.5.4 memRead()
	3.5.5 disassemble()
	3.5.6 memStoreToFile()
	3.5.7 memLoadFromFile()

	3.6 String and print functions
	3.6.1 printf()
	3.6.2 puts()

	3.7 Miscellaneous
	3.7.1 CADIXfaceBypass()
	3.7.2 exit()
	3.7.3 getMxScriptVersion()
	3.7.4 help()
	3.7.5 ld()
	3.7.6 loadScript()
	3.7.7 printReg()
	3.7.8 rand()
	3.7.9 string eval()

