
MxScript v1.3 for Fast Models
Version 9.2

Reference Manual

Copyright © 2014, 2015 ARM. All rights reserved.
ARM DUI0840C

MxScript v1.3 for Fast Models
Reference Manual
Copyright © 2014, 2015 ARM. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 31 May 2014 Non-Confidential New document for Fast Models v9.0 based on DUI0371L for v8.1.

B 30 November 2014 Non-Confidential Update for v9.1.

C 28 February 2015 Non-Confidential Update for v9.2. Note that ARM deprecates MxScript in favor of
Python Debug Script.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © [2014, 2015], ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

 MxScript v1.3 for Fast Models

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 2
Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 MxScript v1.3 for Fast Models

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3
Non-Confidential

http://www.arm.com

Contents
MxScript v1.3 for Fast Models Reference Manual

Preface
About this book 6
Feedback .. 7

Chapter 1 Introduction to MxScript
1.1 About MxScript 1-9
1.2 Syntax conventions of MxScript 1-10

Chapter 2 Common API
2.1 File input/output 2-20
2.2 Handling strings 2-23
2.3 Accessing environment variables .. 2-25
2.4 Preprocessor 2-26

Chapter 3 Model Debugger Scripting Functions
3.1 Introduction .. 3-28
3.2 Model connection and configuration .. 3-29
3.3 Model execution control 3-33
3.4 Breakpoints .. 3-38
3.5 Model resource access .. 3-42
3.6 String and print functions 3-45
3.7 Miscellaneous .. 3-46

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 4
Non-Confidential

Preface

This preface introduces the MxScript v1.3 for Fast Models Reference Manual.

It contains the following:
• About this book on page 6.
• Feedback on page 7.

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 5
Non-Confidential

 About this book
This guide describes the commands supported by the MxScript utility. This utility can be used to run
batch simulations. Note that ARM deprecates MxScript in favor of Python Debug Script.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction to MxScript
This chapter describes the syntax and usage of the MxScript language.

Chapter 2 Common API
This chapter describes the API functions that are common to batch-mode and GUI scripting
environments for Model Debugger.

Chapter 3 Model Debugger Scripting Functions
This chapter describes the MxScript commands available for use with Model Debugger.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Preface
 About this book

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 6
Non-Confidential

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:
• The title.
• The number ARM DUI0840C.
• The page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 7
Non-Confidential

mailto:errata@arm.com

Chapter 1
Introduction to MxScript

This chapter describes the syntax and usage of the MxScript language.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

It contains the following sections:
• 1.1 About MxScript on page 1-9.
• 1.2 Syntax conventions of MxScript on page 1-10.

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 1-8
Non-Confidential

1.1 About MxScript
MxScript is an interpreted language with a syntax that is similar to C.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

MxScript has these benefits:

Easy to learn
Syntax is similar to C.

Integers can contain 64-bit signed values and support all operations that C supports. There are
only integer, double, bool, and string types.

Safe
Bugs in the script file do not cause a system crash.

Strings in MxScript are safer than in C because features not required for scripting have been
removed. There is no use of pointers, structures, user defined functions, or arrays.

Flexible
No compilation is required and fast turnarounds are possible. MxScript can be used interactively
in a command-line interface.

Fast
Unlike many other scripting languages, performance was one of the main goals for MxScript.

The MxScript language can be invoked from the following initial situations:

• A single command can be issued from the Model Debugger Output window.
• A script containing multiple commands can be specified on the command line that starts Model

Debugger.
• A script containing multiple commands can be loaded into Model Debugger after it has started.

1 Introduction to MxScript
1.1 About MxScript

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 1-9
Non-Confidential

1.2 Syntax conventions of MxScript
This section describes the basic language keywords and structures.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

This section contains the following subsections:
• 1.2.1 Comments on page 1-10.
• 1.2.2 Identifiers on page 1-10.
• 1.2.3 Keywords on page 1-10.
• 1.2.4 Operators on page 1-11.
• 1.2.5 Constants on page 1-12.
• 1.2.6 Types on page 1-13.
• 1.2.7 Expressions on page 1-14.
• 1.2.8 Calling built-in functions on page 1-15.
• 1.2.9 Control statements on page 1-15.

1.2.1 Comments

MxScript supports line comments and block comments.

Line comments
These start with ‘//’ and end at the end of the current line.

Block comments
These start with ‘/*’ and end with ‘*/’.

As with C, it is not possible to nest block comments.

In the code ‘/* a /* b */ c */ …’, the part after c */ is not in a comment and probably
leads to a syntax error.

 Note

Comments cannot occur in string constants.

1.2.2 Identifiers

The rules that apply to identifiers.

• They must consist of letters and digits.
• The first character must be a letter.
• The underscore ‘_’ counts as a letter.
• Upper and lower case letters are different.
• Identifiers are distinguished on their full length.

1.2.3 Keywords

Not all C keywords are supported within MxScript, but they are, however, reserved for compatibility and
future extension.

Supported keywords

break bool continue do double else false for if int string true while

1 Introduction to MxScript
1.2 Syntax conventions of MxScript

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 1-10
Non-Confidential

Reserved keywords

asm auto case char complex const default enum extern float
goto inline long register return short signed sizeof static struct
switch typedef union unsigned void volatile wchar_t

1.2.4 Operators

The supported operators are listed in a table.

Table 1-1 MxScript operators

Category Operators Restrictions

Assignment
=

Works on all types and returns the same type.

Arithmetical
+ - * %
++ --
+= -= *= /= %=

Work on all number types (int and double) and the result of same type, except that the
increment operators ++ and -- can only be used with int values.

String
+ = += *=

Use to concatenate strings, assign to string, or append to string. The *= form is used to
concatenate multiple copies of a string back to the original string as in my_string_var *= 3.

Relationship
== !=
< > <= >=

Works on all types, including strings. Result is bool.

The <, >, <=, and >= cannot be used with bool types.

Logical
&& || !

Works on bool types. Result is bool.

Bitwise
& | ^ ~ << >>
&= |= ^= <<= >>=

Works on int. Result is int.

Shift operators are, unlike in C, well defined for shifts larger than the size of the integer type
(64 bits).

Casting
type(exp)
(type) exp

Both C and C++ forms of casts are supported in MxScript.

Pointers Unary * & Not supported in MxScript.

Structures . -> Not supported in MxScript.

The precedence and associativity of operators in MxScript are the same as for C.

Table 1-2 Associativity in expressions

Operators Associativity

() Left to right.

Unary operators: !, ~, ++, --, +, -, (type), type() Right to left.

* / % Left to right.

+ - Left to right.

<< >> Left to right.

< <= > >= Left to right.

== != Left to right.

1 Introduction to MxScript
1.2 Syntax conventions of MxScript

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 1-11
Non-Confidential

Table 1-2 Associativity in expressions (continued)

Operators Associativity

& Left to right.

^ Left to right.

| Left to right.

&& Left to right.

|| Left to right.

?: Right to left.

= += -= *= /= %= &= ^= |= <<= >>= Right to left.

, Left to right.

Related references
1.2.7 Expressions on page 1-14.

1.2.5 Constants

The types of constant are integer, string, Boolean, and double.

Integer constants
Integer constants can be in decimal, hexadecimal, octal and binary format:
• Octal constants begin with a leading 0.
• Hexadecimal constants begin with the prefix 0x or 0X.
• Binary numbers begin with the prefix 0b or 0B.
• All other numbers are treated as decimal constants. Suffixes like U or L are permitted but are

ignored.

1 Introduction to MxScript
1.2 Syntax conventions of MxScript

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 1-12
Non-Confidential

String constants
String constants are surrounded by double quotes. Special escape sequences that begin with a
backslash \ can be used to include control characters into a string. To put a backslash into a
string a double backslash \\ must be used.

Characters can also be specified using octal or hexadecimal ASCII code.

Table 1-3 Escape characters for string constants

Name Escape sequence

Newline \n

Horizontal tab \t

Vertical tab \v

Backspace \b

Carriage return \r

Form feed \f

Alert \a

Backslash \\

Question mark \?

Single quote \'

Double quote \"

Character by octal ASCII code ooo \ooo

Character by hexadecimal ASCII code hh \xhh

Boolean constants
The Boolean constants are true and false.

Double constants
A double is a floating-point number represented with 64 bits. For example: 3.14, 5.4E14, or
3E-7.

1.2.6 Types

MxScript supports the bool, double, int and string types.

int
Integers are represented as 64 bit signed values, so numbers between -9223372036854775808
and +9223372036854775807 can be represented.

double
Doubles are represented as 64 bit signed values consisting of a mantissa and exponent. Doubles
are represented as floating-point numbers.

bool
Boolean variables can only have the value true or false.

string
Strings are sequences of ASCII characters. String size is only limited by available memory and
can contain more characters than any practical application could require.

1 Introduction to MxScript
1.2 Syntax conventions of MxScript

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 1-13
Non-Confidential

Variable definitions

A variable definition consists of a type and a list of identifiers that are not already in use for the current
scope. The identifiers must not be keywords and must not be the names of functions predefined by the
MxScript environment.

The scope for a variable is either:

Local
The scope is limited by a surrounding block of curly braces or by being declared inside a for
loop. A block of code uses the variable definition that is in the innermost definition. This is the
same scope as for C.

Global
A variable is global if it is on the top level.

1.2.7 Expressions

An expression consists of constants, variables, and function calls that are combined with operators.

Parentheses can be used to group expressions to alter the evaluation sequence from that defined by the
precedence:

3 * (4 + 7)

Unlike in C, there is no automatic type casting in MxScript. The expression (3.14 * 2) causes an error
because double and int types are mixed. Both C and C++ forms of casts are permitted.

A string can be multiplied by an integer to create a concatenated string:

• “hello” * 2 is equivalent to “hellohello”.
• 4 * “#” is equivalent to “####”.

String/integer casts are permitted:

• (string)5 is equivalent to "5".
• string(5 + 77) is equivalent to "82".
• int("555") is equivalent to 555.
• (int)("0b" + "111") is equivalent to 7.
• int("xfff") is equivalent to 0 because the string does not start with 0.
• int("255xfff") is equivalent to 255 because the non-numbers are ignored.

Table 1-4 Results of cast operations

Original type Casting to int Casting to string Casting to bool Casting to double

int Error. Convert to string
containing decimal
integer format.

false if integer is 0,
otherwise true.

Convert to double with
same value.

string Interpret string as
integer number. Prefixes
0b (binary), 0x
(hexadecimal) and 0
(octal) are recognized.

Error. Error. Interpret string as a
decimal floating-point
number in C format.

1 Introduction to MxScript
1.2 Syntax conventions of MxScript

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 1-14
Non-Confidential

Table 1-4 Results of cast operations (continued)

Original type Casting to int Casting to string Casting to bool Casting to double

bool 1 if true, 0 if false. “true” if true,
“false” if false.

Error. Error.

double Round down to a lower
integer value. Same as
floor() function in C.

Convert to string
containing decimal
floating-point format.

Error. Error.

1.2.8 Calling built-in functions

Call built-in functions by using the function name followed by a comma-separated list of parameters in
parentheses. A parameter can be a single value or an expression.

For convenience, a function that does not have parameters can be called by its name, if the name does not
match the name of any variable in the code. An empty pair of parentheses can be appended but is not
mandatory.

1.2.9 Control statements

This section describes the supported control statements.

if statement

The if statement is used to execute an instruction or a block of instructions depending on a condition.

The condition must be of bool type. If it evaluates to false, the code is not executed. If it evaluates to
true, the code is executed.

if (condition)
 statement;

or

if (condition)
 {
 statement 1;
 …
 statement n;
 }

if statements can be nested, for example:

 if (condition1)
 {
 statement1;
 if (condition2)
 {
 statement2;
 }
 }

else statement

The else statement is used to append an alternative code block to an if statement. It is executed if the
condition of the if statement is false.

if (condition)
 statement;

1 Introduction to MxScript
1.2 Syntax conventions of MxScript

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 1-15
Non-Confidential

else
 alternative statement;

if and else statements can be nested. If the relationship is ambiguous, an else always belongs to the
last if statement:

if (condition) /* 1 */
 if (condition) /* 2 */
 statement1;
 else /* belongs to if 2 */
 statement2;

It is good style, however, to remove ambiguity by using additional blocking:

if (condition) /* 1 */
 {
 if (condition) /* 2 */
 statement1;
 else /* belongs to if 2 */
 statement2;
 }

To check for multiple conditions of which only one is true, the following construct can be used (no
special elseif instruction exists):

if (condition)
{
}
else if (condition2)
{
}
else if (condition3)
{
}
else
{
}

for statement

The for keyword is followed by an initial value for an integer variable, an exit condition, a modifier
function, and a statement or a block containing statements.

The statements in the for loop are executed until the condition is false.

for (loop_var; condition; modifier)
 statement;

or

for (loop_var; condition; modifier)
{
 statement1;
 statement2;
}

for statements can be nested.

If the loop variable is declared in the for statement, its use is local to the for block:

for (int i; i<3; ++i)
{
 statement1;
 statement2;
}

1 Introduction to MxScript
1.2 Syntax conventions of MxScript

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 1-16
Non-Confidential

while statement

The while keyword is followed by a condition (which must evaluate to a bool) and a statement or a
block containing statements. The statements in the while loop are executed until the condition is false.
If the condition is false when entering the while loop the statements are not executed.

while(condition)
 statement;

or

while(condition)
{
 statement1;
 statement2;
}

Loop statements can be nested:

while (condition)
{
 …
 while (condition)
 {
 …
 }
 …
}

The do while form is similar to the while form except that the statements are evaluated before the test.
If the condition is false when entering the while loop the statements are executed once.

do
statement
while(condition);

or

do
{
 statement1;
 statement2;
}
while(condition);

break statement

The break statement can be used to prematurely leave while, do while, or for loops. If used in nested
loops the innermost loop is exited.

while (condition)
{
 if (condition2)
 break;
 …
}

continue statement

The keyword continue can be used to jump over the remainder of a while, do while, or for loop body
and to continue with the evaluation of the condition.

while (condition)
{
 if (condition2)
 continue;
 …
}

1 Introduction to MxScript
1.2 Syntax conventions of MxScript

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 1-17
Non-Confidential

If used in nested loops, the innermost loop is continued.

1 Introduction to MxScript
1.2 Syntax conventions of MxScript

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 1-18
Non-Confidential

Chapter 2
Common API

This chapter describes the API functions that are common to batch-mode and GUI scripting
environments for Model Debugger.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

It contains the following sections:
• 2.1 File input/output on page 2-20.
• 2.2 Handling strings on page 2-23.
• 2.3 Accessing environment variables on page 2-25.
• 2.4 Preprocessor on page 2-26.

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 2-19
Non-Confidential

2.1 File input/output
This section describes the functions that perform file input and output.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

In MxScript, file I/O is done with functions that are similar to ANSI C file functions.

This section contains the following subsections:
• 2.1.1 fopen() on page 2-20.
• 2.1.2 fclose() on page 2-20.
• 2.1.3 fprintf() on page 2-21.
• 2.1.4 fputs() on page 2-21.
• 2.1.5 fgets() on page 2-21.
• 2.1.6 fscanf() on page 2-21.
• 2.1.7 ftell() on page 2-21.
• 2.1.8 fflush() on page 2-21.
• 2.1.9 fseek() on page 2-22.

2.1.1 fopen()

int fopen(string filename, string mode)

Open a file specified by filename (the parameter filename can contain a path) with the specified mode.

Table 2-1 Mode options for fopen()

Text mode Binary mode Description

r rb Open a text/binary file for reading.

w wb Create a text/binary file for writing. Previous contents, if any, are discarded.

a ab Open a text/binary file for update. Data are written at the end of the file.

r+ r+b Open a text/binary file for reading.

w+ w+b Create a text/binary file for update. Previous contents, if any, are discarded.

a+ a+b Open or create text/binary file for update. Data are written at the end of the file.

If successful, a handle to the file opened is returned which can be passed to other file I/O functions. If
unsuccessful an error message is displayed and 0 is returned.

2.1.2 fclose()

fclose(int filehandle)

Executes a standard C++ fclose(), closing the file that was opened using fopen(). No value is
returned.

2 Common API
2.1 File input/output

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 2-20
Non-Confidential

2.1.3 fprintf()

int fprintf(int filehandle, string format, …)

This function writes data into a file. Most features of the ANSI C standard are supported.

2.1.4 fputs()

fputs(string s, int filehandle)

Prints the string s into the file associated with filehandle.

2.1.5 fgets()

int fgets(string s, int n, int filehandle)

Reads, at most, the next n - 1 characters into the string s from the file being associated with
filehandle. If a newline is encountered, the newline is included in the string. The string is terminated
by "\0".

 Note

In contrast to ANSI C, fgets() returns either:
• The number of characters read.
• 0 if the end of file was reached or an error associated with filehandle occurred.

2.1.6 fscanf()

int fscanf(int filehandle, string format, …)

Reads in data. Most format options of the ANSI C standard are supported.
 Note

Because of the absence of pointers, variables of type int or string are provided directly rather than
pointers as in ANSI C.

2.1.7 ftell()

int ftell(int filehandle)

Returns the value, in bytes, of the file position pointer for the file associated with filehandle.

2.1.8 fflush()

void fflush(int filehandle)

Commits any pending writes to for the file associated with filehandle.

2 Common API
2.1 File input/output

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 2-21
Non-Confidential

2.1.9 fseek()

void fseek(int filehandle, int offset, int whence=SEEK_END)

Move the file position pointer by offset bytes for the file associated with filehandle.

The starting point for the move is determined by the whence parameter:

SEEK_SET
The new position is offset. The movement was relative to the start of the file.

SEEK_CUR
The new position is the current position plus offset.

SEEK_END
The new position is the end of file plus offset. The movement is relative to the start of the file.
To move backwards from the end of file, a negative value must be supplied for offset.

2 Common API
2.1 File input/output

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 2-22
Non-Confidential

2.2 Handling strings
This section describes functions related to string handling.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

This section contains the following subsections:
• 2.2.1 sscanf() on page 2-23.
• 2.2.2 sprintf() on page 2-23.
• 2.2.3 substr() on page 2-23.
• 2.2.4 gets() on page 2-23.
• 2.2.5 ascii2int() on page 2-24.

2.2.1 sscanf()

int sscanf(string str, string format, …)

Reads in data from a string. Most format options of the ANSI C standard are supported.
 Note

In contrast to ANSI C, sscanf() returns either:
• The number of characters read.
• 0 if the end of file was reached or an error associated with filehandle occurred.

2.2.2 sprintf()

int sprintf(string buf, string format, …)

Formats data (according to format) and assigns the result to the string buf. Most format options of the
ANSI C standard are supported.

2.2.3 substr()

string substr(string s, int pos, int length)

Returns a substring of string s by copying length characters starting at position pos.

2.2.4 gets()

string gets()

Reads the next input line from the input console and returns a string. The newline character ”\n" is
replaced with "\0".

2 Common API
2.2 Handling strings

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 2-23
Non-Confidential

2.2.5 ascii2int()

int ascii2int(string s)

Reads the first character of string s, that is s[0], interprets it as an ASCII character, and returns the
appropriate integer value.

2 Common API
2.2 Handling strings

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 2-24
Non-Confidential

2.3 Accessing environment variables
Access of environments variable is done with functions that are similar to the standard C versions.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

This section contains the following subsections:
• 2.3.1 getenv() on page 2-25.
• 2.3.2 putenv() on page 2-25.
• 2.3.3 system() on page 2-25.

2.3.1 getenv()

string getenv(string env_varname)

Returns the value of the environment variable with name varname. If no such environment variable
exists, an empty string is returned.

2.3.2 putenv()

int putenv(string putenv_string)

Adds a new environment variable or alters the value of an existing one.

The parameter putenv_string must have the form “env_varname=value”. If the setting of the
environment variable was successful 0 is returned. If an error occurs, the value –1 is returned.

 Note

This function only alters the environment of the current process. It cannot be used to alter the
environment of the parent process, therefore it cannot be used to pass back information to a calling
process.

2.3.3 system()

int system(string cmd_str)

system() synchronously passes the string cmd_str to the environment (host operating system) for
execution. Because the call is synchronous, the script does not return from this function until the
command in cmd_str has completed.

If cmd_str is "" (empty string) and there is a command processor, system() returns a nonzero value.

If cmd_str is not "" (empty string), the return value is implementation dependent.

2 Common API
2.3 Accessing environment variables

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 2-25
Non-Confidential

2.4 Preprocessor
The MxScript interpreter contains a preprocessor.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

Use the #include directive to include C header files. This enables sharing #define preprocessor
statements between MxScript files and C projects.

 Note

The preprocessor is only available with component scripting. Batch-mode scripting does not support
preprocessor commands.

This section contains the following subsections:
• 2.4.1 #include on page 2-26.
• 2.4.2 #define on page 2-26.

2.4.1 #include

Include C header files containing preprocessor definitions. For example, to include the header.h file,
use:

#include “header.h”

2.4.2 #define

Preprocessor define directive. For example, to replace any occurrence of "base" with "0x1234" in all
MxScript source that is parsed after the define, use:

#define base 0x1234

2 Common API
2.4 Preprocessor

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 2-26
Non-Confidential

Chapter 3
Model Debugger Scripting Functions

This chapter describes the MxScript commands available for use with Model Debugger.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

It contains the following sections:
• 3.1 Introduction on page 3-28.
• 3.2 Model connection and configuration on page 3-29.
• 3.3 Model execution control on page 3-33.
• 3.4 Breakpoints on page 3-38.
• 3.5 Model resource access on page 3-42.
• 3.6 String and print functions on page 3-45.
• 3.7 Miscellaneous on page 3-46.

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-27
Non-Confidential

3.1 Introduction
This section describes how to use MxScript commands with Model Debugger.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

MxScript commands can be executed by Model Debugger in the following ways:

Executing a single command from Model Debugger
Some execution and debugging features of Model Debugger can be controlled by entering an
MxScript command in the Output window. Enter the command text into the command line,
located to the right of the cmd> button, and click cmd>.

Executing a script from Model Debugger
To run a script file after Model Debugger has started, enter loadScript(“filename”) in the
Output window command line.

Specifying a script file at Model Debugger startup
Enter one of the following options on the command line to execute a script file in Model
Debugger:
• modeldebugger --script filename

• modeldebugger -s filename

3 Model Debugger Scripting Functions
3.1 Introduction

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-28
Non-Confidential

3.2 Model connection and configuration
This section describes the commands for connecting to a model.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

This section contains the following subsections:
• 3.2.1 loadModel() on page 3-29.
• 3.2.2 closeModel() on page 3-29.
• 3.2.3 connectToModel() on page 3-30.
• 3.2.4 debugIsim() on page 3-30.
• 3.2.5 debugSystemC() on page 3-30.
• 3.2.6 getParameter() on page 3-30.
• 3.2.7 setParameter() on page 3-30.
• 3.2.8 getTargetList() on page 3-31.
• 3.2.9 getTargetName() on page 3-31.
• 3.2.10 selectTarget() on page 3-31.
• 3.2.11 loadApp() on page 3-31.
• 3.2.12 saveState() on page 3-31.
• 3.2.13 restoreState() on page 3-32.
• 3.2.14 saveSession() on page 3-32.
• 3.2.15 openSession() on page 3-32.
• 3.2.16 setStateFile() on page 3-32.

3.2.1 loadModel()

void loadModel(string pathAndFileName, bool hostLevelDebugger,
 string targetInstanceName)

Load a model library file from the location specified by pathAndFileName.

The model shared library file must be supplied. The file extensions for shared libraries can be .cadi, .so
(Unix), .dll (Windows), or .mxdi.

 Note

The option hostLevelDebugger is deprecated. Setting this parameter has no effect on the function.

If a model contains multiple targets, targetInstanceName is used to select one target. The default is to
take the first target. Use getTargetList() to identify all available targets.

3.2.2 closeModel()

void closeModel()

Close the currently loaded model.

3 Model Debugger Scripting Functions
3.2 Model connection and configuration

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-29
Non-Confidential

3.2.3 connectToModel()

void connectToModel(string port:inst)

Connect to a model.

3.2.4 debugIsim()

void debugIsim(string isimSystem, string parameterFile)

Run isimSystem and connect automatically. Define parameters for the system in the parameterFile.
The parameter file is optional.

 Note

If the system or parameter file does not exist, then a run-time error occurs.

3.2.5 debugSystemC()

void debugSystemC(string systemCSimulation, string application)

Run systemCSimulation and connect automatically. Defining an application is optional. It might be
necessary depending on the SystemC simulation you are debugging.

 Note

If the simulation or application file does not exist, then a run-time error occurs.

3.2.6 getParameter()

string getParameter(string parameterName)

Get a model parameter value for parameterName. Returns the value as a string.
 Note

If a parameter with the specified name does not exist, then a run-time error occurs.

3.2.7 setParameter()

void setParameter(string parameterName, string value)

Assign the string representation of the value in value to the model parameter specified by
parameterName.

 Note

If a parameter with the specified name does not exist, then a run-time error occurs.

3 Model Debugger Scripting Functions
3.2 Model connection and configuration

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-30
Non-Confidential

3.2.8 getTargetList()

void getTargetList(string modelName)

Print a list of the available target instances of the specified model.

3.2.9 getTargetName()

string getTargetName()

Return the qualified name of the selected target.

3.2.10 selectTarget()

void selectTarget(string targetName)

Set the target for all subsequent scripting commands. targetName is the qualified target name and must
be in the same format as used in the Model Debugger Select Target dialog.

The function can be used in a script or in the command line of the Model Debugger Output window:

• If used in a nested script, the target is set for all subsequent scripts.
• If used on the command line of the Model Debugger Output window, the function only sets the target

for the Model Debugger window where it was used.

3.2.11 loadApp()

void loadApp(string pathAndFileName, bool debugInfoOnly)

Load the application file or*.elf file specified by pathAndFileName. For ARM processors, the
application file is typically an .axf file (axf is ELF compatible).

You can also load .hex (Intel), S-record, or COFF files, but there is reduced, or no, debug information.

DebugInfoOnly can be either false or true. The default is false. If true, only the debug information
is loaded into the debugger and the code to be executed must have been already loaded.

3.2.12 saveState()

void saveState(string modelStateFileName)

Save a state of a model currently being debugged to the .model_state file specified by
modelStateFileName.

 Note

Fast Models does not support this function.

3 Model Debugger Scripting Functions
3.2 Model connection and configuration

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-31
Non-Confidential

3.2.13 restoreState()

void restoreState(string modelStateFileName)

Restore a model from the previously saved .model_state file specified by modelStateFileName and
continue debugging.

 Note

Fast Models does not support this function.

3.2.14 saveSession()

void saveSession(string sessionFileName, bool saveModelState)

Save a Model Debugger session to the file specified by saveModelState. All the session data, including,
model, application, breakpoints, and model parameters, is saved. If you set saveModelState to true, the
current model state is also saved.

3.2.15 openSession()

void openSession(string sessionFileName)

Restore a Model Debugger session from a previously saved file.
 Note

It is not possible to open a session in GUI mode if it was saved in non-GUI mode.

3.2.16 setStateFile()

void setStateFile(string stateFileName)

Specify the .model_state file that is saved with your Model Debugger session. This state is used if you
use the saveSession() command with the saveModelState parameter equal to true. By default, the
session name is used.

3 Model Debugger Scripting Functions
3.2 Model connection and configuration

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-32
Non-Confidential

3.3 Model execution control
This section describes the script commands related to model execution.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

This section contains the following subsections:
• 3.3.1 run() on page 3-33.
• 3.3.2 runUntil() on page 3-33.
• 3.3.3 runToLine() on page 3-34.
• 3.3.4 stop() on page 3-34.
• 3.3.5 getCurrentSourceFile() on page 3-34.
• 3.3.6 getCurrentSourceLine() on page 3-34.
• 3.3.7 getCurrentSourceColumn() on page 3-34.
• 3.3.8 hardReset() on page 3-34.
• 3.3.9 reset() on page 3-34.
• 3.3.10 pause() on page 3-35.
• 3.3.11 cont() on page 3-35.
• 3.3.12 getStopCond() on page 3-35.
• 3.3.13 isSimStopped() on page 3-35.
• 3.3.14 restart() on page 3-35.
• 3.3.15 goToMain() on page 3-36.
• 3.3.16 step() on page 3-36.
• 3.3.17 stepOver() on page 3-36.
• 3.3.18 stepOut() on page 3-36.
• 3.3.19 istep() on page 3-36.
• 3.3.20 getInstCount() on page 3-36.
• 3.3.21 cycleStep() on page 3-36.
• 3.3.22 enableStepBack() on page 3-37.
• 3.3.23 sleep() on page 3-37.
• 3.3.24 msleep() on page 3-37.
• 3.3.25 getCycleCount() on page 3-37.

3.3.1 run()

void run()

Run the simulation until a breakpoint is hit or an exception, such as simulation halt, occurs.

3.3.2 runUntil()

void runUntil(int address)

Run the simulation until the pc address specified in address is reached.

3 Model Debugger Scripting Functions
3.3 Model execution control

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-33
Non-Confidential

3.3.3 runToLine()

void runToLine(string filename, int lineNumber)

Run the simulation until the source code line specified in the lineNumber of the file specified in
filename is reached.

3.3.4 stop()

void stop()

Stop the execution of the model being debugged. This command is not supported in batch mode.

3.3.5 getCurrentSourceFile()

string getCurrentSourceFile()

Return the name of the source file that matches the current simulation cycle. An empty string is returned
if there is no current source file.

3.3.6 getCurrentSourceLine()

int getCurrentSourceLine()

Return the line number in the source that matches the current simulation cycle. Returns –1 if there is no
current source file.

3.3.7 getCurrentSourceColumn()

int getCurrentSourceColumn()

Return the position in the source line that matches the current simulation cycle. Returns –1 if there is no
current source file.

3.3.8 hardReset()

void hardReset()

Execute a reset of the target model without reloading the application.

3.3.9 reset()

void reset()

Execute a reset of the target model and reload the application.

3 Model Debugger Scripting Functions
3.3 Model execution control

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-34
Non-Confidential

3.3.10 pause()

void pause()

Pause the current high-level simulation step command such as source-level step over.

3.3.11 cont()

void cont()

Continue the current high-level simulation step command such as, for example source-level step over.

High level simulation-control commands can be interrupted by breakpoints before completion. The
control commands can be completed by cont(). This is not supported for batch mode.

3.3.12 getStopCond()

string getStopCond()

Return a message string that describes the reason for the last stop condition if the simulator is currently
in the stopped state. The string format depends on the reason for the stop condition:
• For a PC breakpoint, the string describes the stop condition, the source file, and the line number:

Disassembly breakpoint is hit - address: 0x00008018

• General stop conditions might return one of NORMAL USER STOP, TERMINATE, HALT, EXCEPTION,
ERROR, or INVALID OPCODE.

3.3.13 isSimStopped()

int isSimStopped(string stopCondition)

Return True if the simulator is currently in stopped state or False if the simulator is running.

stopCondition is an optional parameter to enable more detailed checking:

• To check for a exact stop condition such as a breakpoint at a specific address, the string must be
constructed exactly like the string returned by getStopCondition().

• To check for a general stop condition, the string can be one of TERMINATE, HALT, BREAKPOINT, BP,
EXCEPTION, ERROR, INVALID OPCODE or NORMAL USER STOP. (BP is a short for BREAKPOINT and both
strings can be used interchangeably.)

3.3.14 restart()

void restart()

Execute a restart of the target model. This is a reset plus reload of the application code.

3 Model Debugger Scripting Functions
3.3 Model execution control

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-35
Non-Confidential

3.3.15 goToMain()

void goToMain()

Execute a reset of the target model and run until the main function (label) of the application source code
is reached.

 Note

This command is only available if a main() function can be found in the debug information of the
application file.

3.3.16 step()

void step()

Execute the simulation until a different source line is reached. This is a source-level execution control
command.

3.3.17 stepOver()

void stepOver()

Step over function calls. This is a source-level execution control command.

3.3.18 stepOut()

void stepOut()

Leave the current function. This is a source-level execution control command.

3.3.19 istep()

void istep(int numberOfInstructions)

Advance the simulation by executing as many instructions as specified in the numberOfInstructions
parameter. One step is assumed if numberOfSteps is omitted.

3.3.20 getInstCount()

int getInstCount()

Return the number of totally counted instructions since last reset.

3.3.21 cycleStep()

void cycleStep(int numberOfCycles)

3 Model Debugger Scripting Functions
3.3 Model execution control

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-36
Non-Confidential

Advance the simulation by the number of cycles specified in numberOfCycles. If numberOfCycles is
positive, the simulation is stepped forward.

If numberOfCycles is negative, the simulation is stepped backward.

 Note

A negative parameter value causes a run-time error if stepping back is not enabled.

3.3.22 enableStepBack()

void enableStepBack(bool enable)

Enable the use of negative values in cycleStep() to step back in the simulation cycles.
 Note

This command is not supported by all model targets. This command causes a run-time error if the target
does not support Step Back.

3.3.23 sleep()

void sleep(int numberOfSeconds)

Wait for the number of seconds specified in the parameter. One second is assumed if numberOfSeconds
is omitted.

3.3.24 msleep()

void msleep(int numberOfMilliseconds)

Wait for the number of milliseconds specified in the parameter. One millisecond is assumed if
numberOfMilliseconds is omitted.

3.3.25 getCycleCount()

int getCycleCount()

Return the cycle the simulation is in.

3 Model Debugger Scripting Functions
3.3 Model execution control

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-37
Non-Confidential

3.4 Breakpoints
This section describes the script commands related to breakpoints.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

This section contains the following subsections:
• 3.4.1 bpAdd(address, memspace) on page 3-38.
• 3.4.2 bpAdd(filename, lineNumber) on page 3-38.
• 3.4.3 bpAddReg(regName) on page 3-38.
• 3.4.4 bpAddReg(id) on page 3-39.
• 3.4.5 bpAddMem(address, memspace) on page 3-39.
• 3.4.6 bpAddMem(address, id) on page 3-39.
• 3.4.7 bpRemove() on page 3-39.
• 3.4.8 bpRemoveAll() on page 3-39.
• 3.4.9 bpEnable() on page 3-40.
• 3.4.10 bpEnableAll() on page 3-40.
• 3.4.11 bpDisable() on page 3-40.
• 3.4.12 bpDisableAll() on page 3-40.
• 3.4.13 bpList() on page 3-40.
• 3.4.14 bpSetTriggerType() on page 3-40.
• 3.4.15 bpSetIgnoreCount() on page 3-41.
• 3.4.16 bpSetCond() on page 3-41.
• 3.4.17 bpIsHit() on page 3-41.

3.4.1 bpAdd(address, memspace)

int bpAdd (int address, string memspace)

Add a breakpoint at the specified program counter address using the specified memory space.

The parameter memspace is optional. If omitted the first program memory space is used. Valid values for
this parameter are “Normal” and “Secure”.

If the specified memory space does not exist a run-time error occurs.

Returns the id number of the new breakpoint.

3.4.2 bpAdd(filename, lineNumber)

int bpAdd (string filename,int lineNumber)

Add a breakpoint at the source code line specified in lineNumber of the file specified in filename.

Returns the id number of the new breakpoint.

3.4.3 bpAddReg(regName)

int bpAddReg (string regName)

3 Model Debugger Scripting Functions
3.4 Breakpoints

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-38
Non-Confidential

Add a breakpoint at the register specified in regName. If the register does not exist, a run-time error
occurs.

A hierarchical name is required for the parameter if register names are not unique. You must specify the
register group. Compound registers must include the name of the parent. The format for hierarchical
items uses dots to separate the names. For example:

REGGROUP0.reg0.compound0

Returns the id number of the new breakpoint.

3.4.4 bpAddReg(id)

int bpAddReg(int id)

Add a breakpoint at the register specified in id. If the register does not exist, a run-time error occurs.

Returns the id number of the new breakpoint.

3.4.5 bpAddMem(address, memspace)

int bpAddMem(int address, string memspace)

Add a breakpoint at the address specified in address of the memory space specified in memspace. If the
address is out of range or the memory space does not exist, a run-time error occurs.

Valid values for the memspace parameter are “Normal” and “Secure”.

Returns the id number of the new breakpoint.

3.4.6 bpAddMem(address, id)

int bpAddMem(int address, int id)

Add a breakpoint at the address specified in address of the memory space specified in id. If the address
is out of range or the memory space does not exist, a run-time error occurs.

Returns the id number of the new breakpoint.

3.4.7 bpRemove()

void bpRemove(int id)

Remove the breakpoint with the specified id.

3.4.8 bpRemoveAll()

void bpRemoveAll()

Remove all existing breakpoints.

3 Model Debugger Scripting Functions
3.4 Breakpoints

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-39
Non-Confidential

3.4.9 bpEnable()

void bpEnable(int id)

Enable the breakpoint specified by id.
 Note

This command can cause a run-time error.

3.4.10 bpEnableAll()

void bpEnableAll()

Enable all existing breakpoints.

3.4.11 bpDisable()

void bpDisable(int id)

Disable the breakpoint specified by id.
 Note

This command can cause a run-time error.

3.4.12 bpDisableAll()

void bpDisableAll()

Disable all existing breakpoints.

3.4.13 bpList()

void bpList()

Print a list of all existing breakpoints with locations, details, and conditions.

3.4.14 bpSetTriggerType()

void bpSetTriggerType(int breakpoint_id, string triggerType)

Trigger the breakpoint specified in breakpoint_id only if the breakpoint type specified in triggerType
occurs. The type can be “READ” , “WRITE”, “MODIFY”, or combinations of the types separated by '|' .

3 Model Debugger Scripting Functions
3.4 Breakpoints

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-40
Non-Confidential

3.4.15 bpSetIgnoreCount()

void bpSetIgnoreCount(int breakpoint id, int numberOfCounts)

Stop the simulation run only if the breakpoint specified in breakpoint_id has been hit numberOfCounts
times.

3.4.16 bpSetCond()

void bpSetCond(int breakpoint_id, string conditionOperator, int comparisonValue)

Trigger the breakpoint specified in breakpoint_id only if the condition specified by comparisonValue
and conditionOperator is true.

conditionOperator can be one of “ANY”, “EQ” , “NE”, “GT”, “LT”, “LE”, or “GE” .

3.4.17 bpIsHit()

bool bpIsHit(int breakpoint_id)

This function returns true if the breakpoint specified by id is hit.
 Note

If the breakpoint specified by breakpoint_id does not exist, a run-time error occurs.

3 Model Debugger Scripting Functions
3.4 Breakpoints

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-41
Non-Confidential

3.5 Model resource access
This section describes the script commands related to accessing model memory or register resources. The
CADI interface is always used to perform the call.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

This section contains the following subsections:
• 3.5.1 regWrite() on page 3-42.
• 3.5.2 regRead() on page 3-42.
• 3.5.3 memWrite() on page 3-43.
• 3.5.4 memRead() on page 3-43.
• 3.5.5 disassemble() on page 3-43.
• 3.5.6 memStoreToFile() on page 3-43.
• 3.5.7 memLoadFromFile() on page 3-44.

3.5.1 regWrite()

void regWrite(string registerName, value)

Write a value to the specified register.

A hierarchical name is required for the parameter if register names are not unique. You must specify the
register group. Compound registers must include the name of the parent. The format for hierarchical
items uses periods to separate the names. For example:

REGGROUP0.reg0.compound0

 Note

If the register does not exist, a run-time error occurs.

3.5.2 regRead()

int regRead(string registerName)

Read a value from the specified register.

A hierarchical name is required for the parameter if register names are not unique. You must specify the
register group. Compound registers must include the name of the parent. The format for hierarchical
items uses periods to separate the names. For example:

REGGROUP0.reg0.compound0

 Note

If the register does not exist, a run-time error occurs.

3 Model Debugger Scripting Functions
3.5 Model resource access

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-42
Non-Confidential

3.5.3 memWrite()

void memWrite(string memspace, int address, int value,int numberOfMAU=1)

Valid values for the memspace parameter are “Normal” and “Secure”.

Write a value in the specified memory space at the address specified in address. Value can be of type
string or integer. The size of the access depends on the Minimum Addressable Unit (MAU) size which is
the size of one word defined for that memory space.

Use the optional parameter numberOfMAU to specify how many MAUs are written in a single call. The
default size for numberOfMAU is 1.

 Note

This command can cause a run-time error.

The function can only write 64 bits (8 bytes) at a time. To prevent a run-time error, the value of
numberOfMAU * bytePerMAU must be less than 8.

3.5.4 memRead()

int memRead(string memspace, int address,int numberOfMAU=1)

Valid values for the memspace parameter are “Normal” and “Secure”.

Read a value from the specified memory space at the address specified in address. Returns the integer
value. The size of the access depends on the Minimum Addressable Unit (MAU) size which is the size of
one word defined for that memory space.

Use the optional parameter numberOfMAU to specify how many MAUs are read in a single call. The
default size for numberOfMAU is 1.

 Note

This command can cause a run-time error.

The function can only read 64 bits (8 bytes) at a time. To prevent a run-time error, the value of
numberOfMAU * bytePerMAU must be less than 8.

3.5.5 disassemble()

string disassemble(int address, int memory_space_id, int disassembly_mode)

Return the assembler string representation of the code at address in the memory area specified by
memory_space_id. The disassembly_mode parameter selects the architecture used to determine the
disassembly.

3.5.6 memStoreToFile()

int memStoreToFile(string filename, bool isASCIIMode, string memspace,
 int startAddress, int endAddress)

3 Model Debugger Scripting Functions
3.5 Model resource access

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-43
Non-Confidential

Read data from the memory space memspace starting at address startAddress and stop when address
endAddress is reached. The data that is read is stored in the file filename. The file format can be either
binary or ASCII. The value of isASCIIMode must be set to true for ASCII file format and false for
binary.

If no memory space with the name memspace exists, a run-time error occurs. The size of the access is
determined by the Minimum Addressable Unit (MAU) size defined for that memory space. The MAU is
the size of one memory word.

Valid values for the memspace parameter are “Normal” and “Secure”.

3.5.7 memLoadFromFile()

int memLoadFromFile(string filename, bool isASCIIMode, string memspace,
 int startAddress, int endAddress)

Read data from the file filename and write to memory space memspace starting at address
startAddress and stop when address endAddress or the end of the file is reached. The parameter
endAddress is optional, if omitted the memory space max address is used. The file format can be either
binary or ASCII. The value of isASCIIMode must be true for ASCII file format and false for binary.

If no memory space with the name memspace exists, then a run-time error occurs. The size of the access
is determined by the Minimum Addressable Unit (MAU) size defined for that memory space. The MAU
is the size of one memory word.

Valid values for the memspace parameter are “Normal” and “Secure”.

3 Model Debugger Scripting Functions
3.5 Model resource access

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-44
Non-Confidential

3.6 String and print functions
This section describes the script commands related to string output.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

This section contains the following subsections:
• 3.6.1 printf() on page 3-45.
• 3.6.2 puts() on page 3-45.

3.6.1 printf()

int printf(string format, …)

Print a string to the output window. Most format options of the ANSI C standard are supported. The
return value is the number of characters printed.

3.6.2 puts()

void puts(string s)

Write a string to the output window.

3 Model Debugger Scripting Functions
3.6 String and print functions

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-45
Non-Confidential

3.7 Miscellaneous
This section describes the script commands that do not fit into the other categories.

 Note

ARM deprecates MxScript in favor of Python Debug Script.

This section contains the following subsections:
• 3.7.1 CADIXfaceBypass() on page 3-46.
• 3.7.2 exit() on page 3-46.
• 3.7.3 getMxScriptVersion() on page 3-47.
• 3.7.4 help() on page 3-47.
• 3.7.5 ld() on page 3-47.
• 3.7.6 loadScript() on page 3-47.
• 3.7.7 printReg() on page 3-47.
• 3.7.8 rand() on page 3-47.
• 3.7.9 eval() on page 3-48.

3.7.1 CADIXfaceBypass()

int CADIXfaceBypass(string Command, string result)

Call the CADI bypass function for the model with the command passed in command. The result
argument contains the result, if any, as a string.

Table 3-1 CADIXfaceBypass return values

Returned value Status

0 OK. Command was successful.

1 General error.

2 Unknown command error.

3 Illegal argument error.

4 Command not supported error.

5 Argument not supported error.

6 Insufficient resources error.

7 Target not responding error.

8 Target busy error.

3.7.2 exit()

void exit()

Exit Model Debugger.

3 Model Debugger Scripting Functions
3.7 Miscellaneous

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-46
Non-Confidential

3.7.3 getMxScriptVersion()

string getMxScriptVersion()

This function returns a string containing the version of MxScript.

3.7.4 help()

void help(string command)

Show a help list for:
• All commands if the parameter command is omitted.
• A detailed description for the command specified by command.

3.7.5 ld()

int ld(int arg)

The binary logarithm function returns the bit position of the most significant bit of the arg that is set to
one.

 Note

Values of arg smaller than or equal to zero result in a run-time error.

3.7.6 loadScript()

void loadScript(string scriptFileName)

Load a Model Debugger script file that contains commands to execute. This can be used instead of using
the -script switch when starting Model Debugger.

 Note

This command can only be nested once in a script file.

If the loadScript() command is entered in the command line, the command cannot be nested at all.

3.7.7 printReg()

void printReg(string regname)

Print the contents of the register. For example, printReg(“R0”) outputs R0=0x1234567.

3.7.8 rand()

int rand(int min, int max)

3 Model Debugger Scripting Functions
3.7 Miscellaneous

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-47
Non-Confidential

Return a random value from min to max (inclusive).

3.7.9 eval()

string eval(string expression)

Evaluate expression and return the value as a string. This has the same functionality as evaluations
done in the Watch window.

3 Model Debugger Scripting Functions
3.7 Miscellaneous

ARM DUI0840C Copyright © 2014, 2015 ARM. All rights reserved. 3-48
Non-Confidential

	MxScript v1.3 for Fast Models Reference Manual
	Contents
	Preface
	About this book
	Using this book
	Typographic conventions

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction to MxScript
	1.1 : About MxScript
	1.2 : Syntax conventions of MxScript
	1.2.1 : Comments
	1.2.2 : Identifiers
	1.2.3 : Keywords
	1.2.4 : Operators
	1.2.5 : Constants
	1.2.6 : Types
	1.2.7 : Expressions
	1.2.8 : Calling built-in functions
	1.2.9 : Control statements

	2 : Common API
	2.1 : File input/output
	2.1.1 : fopen()
	2.1.2 : fclose()
	2.1.3 : fprintf()
	2.1.4 : fputs()
	2.1.5 : fgets()
	2.1.6 : fscanf()
	2.1.7 : ftell()
	2.1.8 : fflush()
	2.1.9 : fseek()

	2.2 : Handling strings
	2.2.1 : sscanf()
	2.2.2 : sprintf()
	2.2.3 : substr()
	2.2.4 : gets()
	2.2.5 : ascii2int()

	2.3 : Accessing environment variables
	2.3.1 : getenv()
	2.3.2 : putenv()
	2.3.3 : system()

	2.4 : Preprocessor
	2.4.1 : #include
	2.4.2 : #define

	3 : Model Debugger Scripting Functions
	3.1 : Introduction
	3.2 : Model connection and configuration
	3.2.1 : loadModel()
	3.2.2 : closeModel()
	3.2.3 : connectToModel()
	3.2.4 : debugIsim()
	3.2.5 : debugSystemC()
	3.2.6 : getParameter()
	3.2.7 : setParameter()
	3.2.8 : getTargetList()
	3.2.9 : getTargetName()
	3.2.10 : selectTarget()
	3.2.11 : loadApp()
	3.2.12 : saveState()
	3.2.13 : restoreState()
	3.2.14 : saveSession()
	3.2.15 : openSession()
	3.2.16 : setStateFile()

	3.3 : Model execution control
	3.3.1 : run()
	3.3.2 : runUntil()
	3.3.3 : runToLine()
	3.3.4 : stop()
	3.3.5 : getCurrentSourceFile()
	3.3.6 : getCurrentSourceLine()
	3.3.7 : getCurrentSourceColumn()
	3.3.8 : hardReset()
	3.3.9 : reset()
	3.3.10 : pause()
	3.3.11 : cont()
	3.3.12 : getStopCond()
	3.3.13 : isSimStopped()
	3.3.14 : restart()
	3.3.15 : goToMain()
	3.3.16 : step()
	3.3.17 : stepOver()
	3.3.18 : stepOut()
	3.3.19 : istep()
	3.3.20 : getInstCount()
	3.3.21 : cycleStep()
	3.3.22 : enableStepBack()
	3.3.23 : sleep()
	3.3.24 : msleep()
	3.3.25 : getCycleCount()

	3.4 : Breakpoints
	3.4.1 : bpAdd(address, memspace)
	3.4.2 : bpAdd(filename, lineNumber)
	3.4.3 : bpAddReg(regName)
	3.4.4 : bpAddReg(id)
	3.4.5 : bpAddMem(address, memspace)
	3.4.6 : bpAddMem(address, id)
	3.4.7 : bpRemove()
	3.4.8 : bpRemoveAll()
	3.4.9 : bpEnable()
	3.4.10 : bpEnableAll()
	3.4.11 : bpDisable()
	3.4.12 : bpDisableAll()
	3.4.13 : bpList()
	3.4.14 : bpSetTriggerType()
	3.4.15 : bpSetIgnoreCount()
	3.4.16 : bpSetCond()
	3.4.17 : bpIsHit()

	3.5 : Model resource access
	3.5.1 : regWrite()
	3.5.2 : regRead()
	3.5.3 : memWrite()
	3.5.4 : memRead()
	3.5.5 : disassemble()
	3.5.6 : memStoreToFile()
	3.5.7 : memLoadFromFile()

	3.6 : String and print functions
	3.6.1 : printf()
	3.6.2 : puts()

	3.7 : Miscellaneous
	3.7.1 : CADIXfaceBypass()
	3.7.2 : exit()
	3.7.3 : getMxScriptVersion()
	3.7.4 : help()
	3.7.5 : ld()
	3.7.6 : loadScript()
	3.7.7 : printReg()
	3.7.8 : rand()
	3.7.9 : eval()

