SoC Designer
APB Protocol Bundle User Guide

Copyright © 2017 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Change History

<table>
<thead>
<tr>
<th>Date</th>
<th>Issue</th>
<th>Confidentiality</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 2017</td>
<td>A</td>
<td>Non-Confidential</td>
<td>Restamp release.</td>
</tr>
</tbody>
</table>

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of ARM Limited (“ARM”). No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. You must follow the ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © ARM Limited or its affiliates. All rights reserved.
ARM Limited. Company 02557590 registered in England. 110 Fulbourn Road, Cambridge, England CB1 9NJ.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Non-Confidential
Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
Table of Contents

1 Introduction .. 5

2 Requirements .. 5

3 APB Mixed-Version Compatibility Rules ... 5

4 Protocol Bundle Contents ... 5

5 Models ... 6
 APBIntCtrl .. 6
 Registers .. 6
 Parameters .. 7
 Signal Interface ... 7
 isrc Signal Slave ... 7
 “fiq” and “irq” Signal Masters .. 7
 APBMerger .. 8
 Parameters .. 8

6 Probes ... 9
 Monitor Probe .. 9
 Tracer Probe .. 10

7 CASI APB Transaction Protocol ... 12
 Master/Slave Interface Implementation ... 12
1 Introduction

This is the user guide for the SoC Designer APB Protocol Bundle. This protocol bundle contains SoC Designer components and probes for the ARM® AMBA® 3 APB transaction protocol. For more information, refer to the ARM AMBA 3 APB Protocol Specification v1.0.

2 Requirements

The APB protocol bundle requires the following:

- SoC Designer v9.0.0 or later
- Compilation tools as described in the SoC Designer Installation Guide (ARM DUI 0953)

3 APB Mixed-Version Compatibility Rules

APB transactors are described in Appendix A of the Cycle Model Studio User Manual. If your system uses transactors for multiple versions of the APB protocol, be aware of the following restrictions:

- APB4_Master can only connect to APB4_Slave, not to APB2 or APB3 slaves.
- APB4_Slave can connect to any master except APB2 masters generated with SoC Designer Plus version 7.18.0 or later.
- APB3_Slave can not connect to APB2 masters generated with SoC Designer Plus version 7.18.0 or later.
- APB2_Master connection to APB3_Slave is not recommended due to potential data integrity issues. APB3 supports a ready signal (PREADY) and a transfer failure signal (PSLVERR). If an APB3 slave port connected to an APB2 master port uses these signals to delay the transfer or indicate data error, data integrity issues could result. When both the APB3 slave and APB2 master are generated with SoC Designer Plus version 7.18.0 the connection is disallowed.

4 Protocol Bundle Contents

The APB protocol bundle contains the following components:

- APB Models - Generic APB components are included in this protocol bundle.
- APB Probes - Probes provide visibility into transactions between two components. APB-specific probes are included in this protocol bundle.
- APB Transaction Definition - APB transaction definition header files are included in this protocol bundle.
5 Models

Table 4-1 lists the APB components included in this protocol bundle.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APBIntCtrl</td>
<td>This is a generic APB interrupt controller.</td>
</tr>
<tr>
<td>APBMerger</td>
<td>APB 16x1 merger. Merges 16 APB slots to a single APB slot occupying a 64KB region.</td>
</tr>
</tbody>
</table>

Table 5-1 APB Components

APBIntCtrl

APBIntCtrl is an interrupt controller model based on the *ARM Reference Peripherals Specification*. It provides a basic interrupt mechanism for ARM-based systems. Memory mapped registers program the device and are accessed over an APB bus.

Registers

Table 5-2 describes the registers for the APBIntCtrl controller model.

<table>
<thead>
<tr>
<th>Name</th>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRQ Status</td>
<td>0x0</td>
<td>Read-only register used to mask the interrupt input sources. Bit value of 1 indicates the interrupt is enabled, 0 indicates the interrupt is disabled. All interrupts are disabled on reset.</td>
</tr>
<tr>
<td>IRQ Source</td>
<td>0x4</td>
<td>Read-only register showing the interrupt sources prior to masking.</td>
</tr>
<tr>
<td>IRQ Enable</td>
<td>0x8</td>
<td>Write-only register used to enable specific interrupts. Bit value of 0 has no effect, value 1 enables the interrupt.</td>
</tr>
<tr>
<td>IRQ Clear</td>
<td>0xC</td>
<td>Write-only register used to clear specific interrupts. Bit value of 0 has no effect, value 1 disables the interrupt.</td>
</tr>
<tr>
<td>IRQ Soft</td>
<td>0x10</td>
<td>Write-only register to set/clear a programmed interrupt. Bit 1 set high generates a programmed interrupt, bit 1 set low clears the interrupt.</td>
</tr>
<tr>
<td>FIQ Status</td>
<td>0x20</td>
<td>Read-only 1-bit register indicating the FIQ status. Bit value 1 indicates FIQ is enabled, value 0 indicates it is disabled.</td>
</tr>
<tr>
<td>FIQ Source</td>
<td>0x24</td>
<td>Read-only register showing the FIQ source status prior to masking.</td>
</tr>
<tr>
<td>FIQ Enable</td>
<td>0x28</td>
<td>Write-only register to enable FIQ. 1 will enable FIQ, 0 has no effect.</td>
</tr>
<tr>
<td>FIQ Clear</td>
<td>0x2C</td>
<td>Write-only register to disable FIQ. 1 will clear FIQ. 0 has no effect.</td>
</tr>
</tbody>
</table>

Table 5-2 APBIntCtrl registers
Parameters

Table 5-3 describes the APBIntCtrl model parameters.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APB Base</td>
<td>Base address of the APB interrupt controller. Memory region size is fixed at 0x1000.</td>
</tr>
</tbody>
</table>

Table 5-3 APBIntCtrl parameters

Signal Interface

isrc Signal Slave

Interrupt sources are driven onto the “isrc” port of APBIntCtrl by the CASI driveSignal() method.

```c
 driveSignal( uint32_t value, uint32_t *extValue );
```

Here, `value` indicates the interrupt line and `extValue` indicates the interrupt signal value.

“fiq” and “irq” Signal Masters

These ports drive out the FIQ and IRQ interrupts.

```c
 driveSignal( uint32_t value, uint32_t *extValue );
```

Here, `value` holds the signal value. `extValue` is not used; it is set to NULL.
APBMerger

APBMerger is an APB 16x1 component that merges 16 APB slots to a single APB slot occupying a 64 KB region. Figure 5-2 shows the component ports: apbm signal master and apbs_[0 – 15] signal slave.

Parameters

Table 5-4 describes the APBMerger model parameters.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APB Base</td>
<td>Base address of the APB interrupt controller. Memory region size is fixed at 0x1000.</td>
</tr>
<tr>
<td>Enable Debug Messages</td>
<td>Boolean value. When set to True, the model debug messages are displayed as output. Set to False by default.</td>
</tr>
</tbody>
</table>

Table 5-4 APBMerger parameters
6 Probes

Table 6-1 describes the simulation probes included in the APB Protocol Bundle. Because the interface for transaction breakpoints is the same as the CASI Mx transaction interface, breakpoint probes are not included in the APB protocol bundle. These probes are included with the Mx protocol bundle.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APB Monitor</td>
<td>Shows APB transaction details (see Section 6.1).</td>
</tr>
<tr>
<td>APB Tracer</td>
<td>Enables tracing of signals on an APB connection. Traced signals can be viewed in the SoC Designer Simulator waveform window (see Section 6.2).</td>
</tr>
</tbody>
</table>

Table 6-1 APB probes

Monitor Probe

To insert a transaction monitor, right-click on an APB connection and select Insert/Remove Monitor from the context menu. This displays the monitor window shown in Figure 6-1.

Click the History button to display transactions and transaction details (Figure 6-2).

![Figure 6-1 APB Monitor](image)

![Figure 6-2 APB Monitor History view](image)
Use the **Log transaction to a file** checkbox to dump the monitor contents to a file (Figure 6-3). Specify the output file using the **Browse** button.

![Figure 6-3 Dump to File](image)

Tracer Probe

This probe allows tracing of APB signals. Use the SoC Designer Waveform window to see the traced signals. Refer to the *SoC Designer Plus User Guide* (ARM DUI 0956) for instructions on adding a tracer probe and displaying the Tracer Properties dialog (Figure 6-4).

![Figure 6-4 Tracer Properties](image)
By default, all signals are traced. To disable tracing of certain signals, use the checkboxes located on the left side of the signal.

Note: AXI4 tracer properties show all AMBA4 AXI signals including the ACE channel signals regardless of whether or not the additional signals are used by the components. Disable unused signals or channels by deselecting the check-boxes next to the Channel/Signal name in the Tracer Properties dialog.
7 CASI APB Transaction Protocol

To view the type defines for CASI APB transactions, open APB_Transaction.h in the SoC Designer installation directory ($MAXSIM_PROTOCOLS/APB/include/).

Master/Slave Interface Implementation

APB transactions use the synchronous read/write methods of CASITransactionIF as follows:

```c
CASIStatus read( uint64_t addr, uint32_t *value, uint32_t *ctrl );
CASIStatus write( uint64_t addr, uint32_t *value, uint32_t *ctrl );
```

where `ctrl` is an array that embeds the APB phases. You can use APB_CTRL_IDX (see the APB generic transaction definition below) to index into `ctrl`. For example:

- `ctrl [APB_IDX_CYCLE]` is used to access the APB phase, which is either:
 - APB_CYCLE_ADDR (equivalent to APB SETUP phase), or
 - APB_CYCLE_DATA (equivalent to APB ACCESS phase).

- `ctrl [APB_IDX_PSTRB]` = APB4 pstrb value (ignored for APB2, APB3)
- `ctrl [APB_IDX_PPROT]` = APB4 pprot value (ignored for APB2, APB3)

The SoC Designer generic transactor implements the APB master/slave interface using CASITransactionIF as follows:

APB read setup phase():
```c
read() with
  ctrl[APB_IDX_CYCLE] == APB_CYCLE_ADDR
  ctrl [APB_IDX_PSTRB] = <pstrb>
  ctrl [APB_IDX_PPROT] = <pprot>
```

APB write setup phase():
```c
write() with
  ctrl[APB_IDX_CYCLE] == APB_CYCLE_ADDR
  ctrl [APB_IDX_PSTRB] = <pstrb>
  ctrl [APB_IDX_PPROT] = <pprot>
```

APB read access phase():
```c
read() with
  ctrl[APB_IDX_CYCLE] == APB_CYCLE_DATA
  addr => read address
  *value => used to return read data
  return value:
    CASI_STATUS_WAIT -> APB3 PREADY=0 delay
    CASI_STATUS_ERROR -> APB3 PSLVERR=1 (read transfer failed)
    CASI_STATUS_OK -> read transfer completed (with read data returned)
```

APB write access phase():
```c
write() with
  ctrl[APB_IDX_CYCLE] == APB_CYCLE_DATA
  addr => write address
  *value => write data passed from APB master
  return value:
    CASI_STATUS_WAIT -> APB3 PREADY=0 delay
    CASI_STATUS_ERROR -> APB3 PSLVERR=1 (write transfer failed)
    CASI_STATUS_OK -> write transfer completed
```
The return value of the read/write methods indicates the transaction status; these are described in Table 7-1.

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASI_STATUS_WAIT</td>
<td>Use this return status to extend a transaction in the APB_ENABLE cycle. This is applicable for AMBA3 APB components. Analogous to setting AMBA3 APB PREADY low.</td>
</tr>
<tr>
<td>CASI_STATUS_ERROR</td>
<td>An error response. Analogous to AMBA3 APB PSLVERR.</td>
</tr>
<tr>
<td>CASI_STATUS_OK</td>
<td>Request completed without errors.</td>
</tr>
</tbody>
</table>

Table 7-1 APB transaction status