
Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 1 of 28

Run-time ABI for the ARM®
Architecture

Document number: ARM IHI 0043D, current through ABI release 2.10
Date of Issue: 30th November 2012, reissued 24th November 2015

Abstract
This document defines a run-time helper-function ABI for programs written in ARM-Thumb assembly language, C,
and C++.

Keywords
Run-time ABI, run-time library, helper functions

How to find the latest release of this specification or report a defect in it
Please check the ARM Information Center (http://infocenter.arm.com/) for a later release if your copy is more than one year old
(navigate to the ARM Software development tools section, ABI for the ARM Architecture subsection).

Please report defects in this specification to arm dot eabi at arm dot com.

Licence
THE TERMS OF YOUR ROYALTY FREE LIMITED LICENCE TO USE THIS ABI SPECIFICATION ARE GIVEN IN SECTION
1.4, Your licence to use this specification (ARM contract reference LEC-ELA-00081 V2.0). PLEASE READ THEM
CAREFULLY.

BY DOWNLOADING OR OTHERWISE USING THIS SPECIFICATION, YOU AGREE TO BE BOUND BY ALL OF ITS
TERMS. IF YOU DO NOT AGREE TO THIS, DO NOT DOWNLOAD OR USE THIS SPECIFICATION.

THIS ABI SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES (SEE SECTION 1.4 FOR DETAILS).

Proprietary notice
ARM, Thumb, RealView, ARM7TDMI and ARM9TDMI are registered trademarks of ARM Limited. The ARM logo
is a trademark of ARM Limited. ARM9, ARM926EJ-S, ARM946E-S, ARM1136J-S, ARM1156T2F-S, ARM1176JZ-
S, Cortex, and Neon are trademarks of ARM Limited. All other products or services mentioned herein may be
trademarks of their respective owners.

http://infocenter.arm.com/

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 2 of 28

Contents

1 ABOUT THIS DOCUMENT 4

1.1 Change control 4
1.1.1 Current status and anticipated changes 4
1.1.2 Change history 4

1.2 References 4

1.3 Terms and abbreviations 5

1.4 Your licence to use this specification 6

1.5 Acknowledgements 7

2 SCOPE 8

3 INTRODUCTION 9

3.1 References between separately built relocatable files 9

3.2 Standardized compiler helper functions 9
3.2.1 Rationale for standardizing helper functions 10

3.3 Private helper functions must be carried with the using file 10

3.4 Some private functions might nonetheless be standardized 10

3.5 Many run-time functions do not have a standard ABI 10

3.6 A run-time library is all or nothing 10

3.7 Important corollaries of this library standardization model 11

3.8 Private names for private and AEABI-specific helper functions 11

3.9 Library file organization 12

3.10 __hardfp_ name mangling 13

4 THE STANDARD COMPILER HELPER FUNCTION LIBRARY 14

4.1 Floating-point library 14
4.1.1 The floating point model 14

4.1.1.1 Base requirements on AEABI-complying FP helper functions 14
4.1.1.2 Restrictions on FP usage by ABI-complying programs 15

4.1.2 The floating-point helper functions 15

4.2 The long long helper functions 19

4.3 Other C and assembly language helper functions 20

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 3 of 28

4.3.1 Integer (32/32 → 32) division functions 20
4.3.2 Division by zero 21
4.3.3 Unaligned memory access 21
4.3.4 Memory copying, clearing, and setting 22
4.3.5 Thread-local storage (new in v2.01) 23

4.4 C++ helper functions 23
4.4.1 Pure virtual function calls 23
4.4.2 One-time construction API for (function-local) static objects 23
4.4.3 Construction and destruction of arrays 24

4.4.3.1 Helper functions defined by the generic C++ ABI 24
4.4.3.2 Helper functions defined by the C++ ABI for the ARM Architecture 25

4.4.4 Controlling object construction order 26
4.4.5 Static object finalization 26
4.4.6 Name demangling 27
4.4.7 Exception-handling support 27

4.4.7.1 Compiler helper functions 27
4.4.7.2 Personality routine helper functions 27
4.4.7.3 Auxilliary functions related to exception processing 28

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 4 of 28

1 ABOUT THIS DOCUMENT

1.1 Change control

1.1.1 Current status and anticipated changes
This document has been released publicly. Anticipated changes to this document include:

 Typographical corrections.

 Clarifications.

 Compatible extensions.

1.1.2 Change history
Issue Date By Change

1.0 30th October 2003 LS First public release.

2.0 24th March 2005 LS Second public release.

2.01 6th October 2005 LS Added specifications of __aeabi_read_tp() (§4.3.5) and
__cxa_get_exception_ptr() (§4.4.7).

2.02 23rd January 2007 LS Deprecated fneg/dneg in §4.1.2.

2.03 10th October 2007 LS In §3.8, replaced table by table shared with AAELF. Clarified §4.3.1,
integer division. Updated the ARM ARM reference to include the version
from www.arm.com.

A, r2.06 25th October 2007 LS Document renumbered (formerly GENC-003537 v2.03).

B, r2.07 10th October 2008 LS Add return value comments to __aeabi_* helper functions in §4.4.3.2.

C, r2.08 19th October 2009 LS Added §3.10 to explain legacy, deprecated __hardfp_ name mangling; in
§4.1.2, declared fneg/dneg obsolete; improved text specifying the
registers maybe affected by a call to an FP helper; added conversion
helpers between VFPv3 half-precision and float to Table 7.

D, r2.09 30th November
2012

AC In §4.1.1.1, updated [ARM ARM] reference for signaling NaNs. In §4.1.2,
removed __aeabi_dneg and __aeabi_fneg obsoleted in r2.08, and added
conversion helpers from double to VFPv3 half-precision to Table 7.

1.2 References
This document refers to, or is referred to by, the following.

Ref URL or other reference Title

AAELF ELF for the ARM Architecture.

AAPCS Procedure Call Standard for the ARM Architecture

BSABI ABI for the ARM Architecture (Base Standard)

http://www.arm.com/

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 5 of 28

Ref URL or other reference Title

CLIBABI C Library ABI for the ARM Architecture

CPPABI C++ ABI for the ARM Architecture

EHABI Exception Handling ABI for the ARM Architecture

RTABI Run-time ABI for the ARM Architecture (This document)

ADDENDA Addenda to, and Errata in, the ABI for the ARM
Architecture

ARM ARM (From http://infocenter.arm.com/help/index.jsp,
via links ARM architecture, Reference manuals)

(Registration required)

ARM DDI 0406: ARM Architecture Reference
Manual ARM v7-A and ARM v7-R edition

ARM DDI 0403C: ARMv7-M Architecture Reference
Manual

ARMv5 ARM (As for ARM ARM; no registration needed) ARM DDI 0100I: ARMv5 Architecture Reference
Manual

GC++ABI http://mentorembedded.github.com/cxx-
abi/abi.html

Generic C++ ABI

IEEE 754 http://grouper.ieee.org/groups/754/ IEEE P754 Standard for Floating-Point Arithmetic

1.3 Terms and abbreviations
The ABI for the ARM Architecture uses the following terms and abbreviations.

Term Meaning

AAPCS Procedure Call Standard for the ARM Architecture

ABI Application Binary Interface:

1. The specifications to which an executable must conform in order to execute in a specific
execution environment. For example, the Linux ABI for the ARM Architecture.

2. A particular aspect of the specifications to which independently produced relocatable
files must conform in order to be statically linkable and executable. For example, the
C++ ABI for the ARM Architecture, the Run-time ABI for the ARM Architecture, the C
Library ABI for the ARM Architecture.

AEABI (Embedded) ABI for the ARM architecture (this ABI…)

ARM-based … based on the ARM architecture …

core registers The general purpose registers visible in the ARM architecture’s programmer’s model,
typically r0-r12, SP, LR, PC, and CPSR.

EABI An ABI suited to the needs of embedded, and deeply embedded (sometimes called free
standing), applications.

Q-o-I Quality of Implementation – a quality, behavior, functionality, or mechanism not required by
this standard, but which might be provided by systems conforming to it. Q-o-I is often used
to describe the tool-chain-specific means by which a standard requirement is met.

http://infocenter.arm.com/help/index.jsp
http://mentorembedded.github.com/cxx-abi/abi.html
http://mentorembedded.github.com/cxx-abi/abi.html
http://grouper.ieee.org/groups/754/

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 6 of 28

Term Meaning

VFP The ARM architecture’s Floating Point architecture and instruction set. In this ABI, this
abbreviation includes all floating point variants regardless of whether or not vector (V) mode
is supported.

1.4 Your licence to use this specification
IMPORTANT: THIS IS A LEGAL AGREEMENT (“LICENCE”) BETWEEN YOU (AN INDIVIDUAL OR SINGLE ENTITY WHO IS
RECEIVING THIS DOCUMENT DIRECTLY FROM ARM LIMITED) (“LICENSEE”) AND ARM LIMITED (“ARM”) FOR THE
SPECIFICATION DEFINED IMMEDIATELY BELOW. BY DOWNLOADING OR OTHERWISE USING IT, YOU AGREE TO BE
BOUND BY ALL OF THE TERMS OF THIS LICENCE. IF YOU DO NOT AGREE TO THIS, DO NOT DOWNLOAD OR USE
THIS SPECIFICATION.

“Specification” means, and is limited to, the version of the specification for the Applications Binary Interface for the
ARM Architecture comprised in this document. Notwithstanding the foregoing, “Specification” shall not include (i)
the implementation of other published specifications referenced in this Specification; (ii) any enabling technologies
that may be necessary to make or use any product or portion thereof that complies with this Specification, but are
not themselves expressly set forth in this Specification (e.g. compiler front ends, code generators, back ends,
libraries or other compiler, assembler or linker technologies; validation or debug software or hardware;
applications, operating system or driver software; RISC architecture; processor microarchitecture); (iii) maskworks
and physical layouts of integrated circuit designs; or (iv) RTL or other high level representations of integrated
circuit designs.

Use, copying or disclosure by the US Government is subject to the restrictions set out in subparagraph (c)(1)(ii) of
the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and
(2) of the Commercial Computer Software – Restricted Rights at 48 C.F.R. 52.227-19, as applicable.

This Specification is owned by ARM or its licensors and is protected by copyright laws and international copyright
treaties as well as other intellectual property laws and treaties. The Specification is licensed not sold.

1. Subject to the provisions of Clauses 2 and 3, ARM hereby grants to LICENSEE, under any intellectual
property that is (i) owned or freely licensable by ARM without payment to unaffiliated third parties and (ii)
either embodied in the Specification or Necessary to copy or implement an applications binary interface
compliant with this Specification, a perpetual, non-exclusive, non-transferable, fully paid, worldwide limited
licence (without the right to sublicense) to use and copy this Specification solely for the purpose of
developing, having developed, manufacturing, having manufactured, offering to sell, selling, supplying or
otherwise distributing products which comply with the Specification.

2. THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES EXPRESS, IMPLIED OR STATUTORY,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF SATISFACTORY QUALITY, MERCHANTABILITY,
NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE. THE SPECIFICATION MAY INCLUDE
ERRORS. ARM RESERVES THE RIGHT TO INCORPORATE MODIFICATIONS TO THE SPECIFICATION IN
LATER REVISIONS OF IT, AND TO MAKE IMPROVEMENTS OR CHANGES IN THE SPECIFICATION OR THE
PRODUCTS OR TECHNOLOGIES DESCRIBED THEREIN AT ANY TIME.

3. This Licence shall immediately terminate and shall be unavailable to LICENSEE if LICENSEE or any party
affiliated to LICENSEE asserts any patents against ARM, ARM affiliates, third parties who have a valid
licence from ARM for the Specification, or any customers or distributors of any of them based upon a
claim that a LICENSEE (or LICENSEE affiliate) patent is Necessary to implement the Specification. In this
Licence; (i) “affiliate” means any entity controlling, controlled by or under common control with a party (in
fact or in law, via voting securities, management control or otherwise) and “affiliated” shall be construed
accordingly; (ii) “assert” means to allege infringement in legal or administrative proceedings, or
proceedings before any other competent trade, arbitral or international authority; (iii) “Necessary” means
with respect to any claims of any patent, those claims which, without the appropriate permission of the

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 7 of 28

patent owner, will be infringed when implementing the Specification because no alternative, commercially
reasonable, non-infringing way of implementing the Specification is known; and (iv) English law and the
jurisdiction of the English courts shall apply to all aspects of this Licence, its interpretation and
enforcement. The total liability of ARM and any of its suppliers and licensors under or in relation to this
Licence shall be limited to the greater of the amount actually paid by LICENSEE for the Specification or
US$10.00. The limitations, exclusions and disclaimers in this Licence shall apply to the maximum extent
allowed by applicable law.

ARM Contract reference LEC-ELA-00081 V2.0 AB/LS (9 March 2005)

1.5 Acknowledgements
This specification has been developed with the active support of the following organizations. In alphabetical order:
ARM, CodeSourcery, Intel, Metrowerks, Montavista, Nexus Electronics, PalmSource, Symbian, Texas
Instruments, and Wind River.

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 8 of 28

2 SCOPE
Conformance to the ABI for the ARM architecture is intended to support inter-operation between:

 Relocatable files generated by different tool chains.

 Executable and shared object files generated for the same execution environment by different tool chains.

This standard for run-time helper functions allows a relocatable file built by one conforming tool chain from ARM-
Thumb assembly language, C, or stand alone C++ to be compatible with the static linking environment provided
by a different conforming tool chain.

Figure 1, Inter-operation between relocatable files

R
un-tim

e library

R
un-tim

e library

Source file
Source file

“header”
“header”

<header>
<header>

<header>

<header>
<header>

<header>

Source file
Translator

#1
Translator

#2

“header”

Object
code

Private
helpers

Object
code

Private
helpers

Object
code

Private
helpers

Object
code

Private
helpers

Static
linker #2

Static
linker #1

Executable Executable

Functions
NOT

standarized
by the
AEABI

AEABI
standard
functions

Functions
NOT

standarized
by the
AEABI

AEABI
standard
functions

Platform ABI…

System headers
describe both
AEABI and non-
AEABI functions

In this model of inter-working, the standard headers used to build a relocatable file are those associated with the
tool chain building it, not those associated with the library with which the relocatable fille will, ultimately, be linked.

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 9 of 28

3 INTRODUCTION
A number of principles of inter-operation are implicit in, or compatible with, Figure 1, above. This section describes
these principles as they apply to run-time helper functions, and gives a rationale for each one. The corresponding
section (§3) of [CLIBABI] discusses the same issues as they apply to C library functions.

3.1 References between separately built relocatable files
A relocatable file can refer to functions and data defined in other relocatable files or libraries.

Application headers describe application entities

Entities defined in application relocatable files are declared in application header files (“header” in Figure 1).

 An application header file must describe the same binary interface to declared data and functions, to every
ABI-conforming compiler that reads it.

 Tool-chain-specific information in such header files must affect only the quality of implementation of the
relocatable files whose sources includes the headers, not their binary interfaces.

Rationale: A relocatable file or library is distributed with a set of header files describing its interface. Different
compilers must interpret the underlying binary interface description identically. Nevertheless, some compilers
might comprehend pragmas or pre-processor-guarded language extensions that cause better code to be
generated, or that trigger behavior that does not affect the binary compatibility of interfaces.

Standard (system) headers describe run-time libraries

In general, entities defined in run-time libraries are declared in standard (or system) header files (<header> in
Figure 1). A standard header need not be intelligible to any tool chain other than the one that provides it.

Rationale: Some language-standardized behavior cannot be securely or conveniently described in source-
language terms that all compilers implement identically (for example, va_start and va_arg from C’s stdarg.h).

So, a relocatable file must be built using the standard headers associated with the compiler building it.

3.2 Standardized compiler helper functions
Each static linking environment shall provide a set of standard helper functions defined by this ABI. See §4, for a
list of standardized helper functions.

A helper function is one that a relocatable file might refer to even though its source includes no standard headers
(or, indeed, no headers at all). A helper function usually implements some aspect of a programming language not
implemented by its standard library (for example, from C, floating-point to integer conversions).

In some cases, a helper function might implement some aspect of standard library behavior not implemented by
any of its interface functions (for example, from the C library, errno).

A helper function might also implement an operation not implemented by the underlying hardware, for example,
integer division, floating-point arithmetic, or reading and writing misaligned data.

Examples of run-time helper functions include those to perform integer division, and floating-point arithmetic by
software, and those required to support the processing of C++ exceptions.

Each such function has a defined type signature, a precise (often simple) meaning, and a small set of standard
names (there may be more than one name for a helper function).

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 10 of 28

3.2.1 Rationale for standardizing helper functions
There is a mixture of convenience, opportunism, and necessity.

 Without standard helper functions, each relocatable file would have to carry all of its support functions with it,
either in ELF COMDAT groups within the relocatable file itself or in an adjunct library.

 Multiple tool chains (at least from ARM and GNU) implement essentially compatible floating-point arithmetic
functions. (Corresponding functions have identical type signatures and semantics, but different names).

 In C++, even if no system headers are included, inter-working is only possible if implementations agree on the
helpers to use in construction, destruction, and throwing exceptions.

3.3 Private helper functions must be carried with the using file
A needed helper function that is not available in all ABI-complying environments—any helper not standardized by
this ABI component—must be supplied with the relocatable file that needs it. There are two ways to do this.

 Provide the required helpers in a separate library (see §3.9) and provide the library with any relocatable file
that might refer to it.

 Include the helpers in additional sections within the relocatable file in named ELF COMDAT groups. This is the
standard way to distribute C++ constructors, destructors, out-of-line copies of inline functions, etc.

We encourage use of the second (COMDAT group) method, though the choice of method is properly a quality of
implementation concern for each tool chain provider.

3.4 Some private functions might nonetheless be standardized
The first issue of this ABI defines no functions in this class. However, new helper functions would first be added as
standardized private helper functions, until implementations of helper-function libraries caught up.

3.5 Many run-time functions do not have a standard ABI
In general, it is very hard to standardize the C++ library using the approach to library standardization outlined here
and in [CLIBABI]. The C++ standard allows an implementation to inline any of the library functions [17.4.4.3,
17.4.4.4] and to add private members to any C++ library class [17.3.2.3]. In general, implementations use this
latitude, and there is no ubiquitous standard implementation of the C++ library.

In effect, C++ library headers define an API, not an ABI. To inter-work with a particular C++ library implementation
requires that the compiler read the matching header files, breaking the model depicted in Figure 1, above.

3.6 A run-time library is all or nothing
In general, we cannot expect a helper function from vendor A's library to work with a different helper function from
vendor B's library. Although most helper functions will be independent leaf (or near leaf) functions, tangled clumps
of implementation could underlie apparently independent parts of a run-time library's public interface.

In some cases, there may be inter-dependencies between run-time libraries, the static linker, and the ultimate
execution environment. For example, the way that a program acquires its startup code (sometimes called crt0.o)
may depend on the run-time library and the static linker.

This leads to a major conclusion for statically linked executables: the static linker and the run-time libraries
must be from the same tool chain.

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 11 of 28

Accepting this constraint gives considerable scope for private arrangements (not governed by this ABI) between
these tool chain components, restricted only by the requirement to provide a well defined binary interface (ABI) to
the functions described in §4.

3.7 Important corollaries of this library standardization model
System headers can require compiler-specific functionality (e.g. for handling va_start, va_arg, etc). The resulting
binary code must conform to this ABI.

As far as this ABI is concerned, a standard library header is processed only by a matching compiler. A platform
ABI can impose further constraints that cause more compilers to match, but this ABI does not.

This ABI defines the full set of public helper functions available in every conforming execution environment.

Every tool chain's run-time library must implement the full set of public helper functions defined by this ABI.

Private helper functions can call other private helper functions, public helper functions, and language-standard-
defined library functions. A private helper function must not call any function that requires a specific
implementation of a language run-time library or helper library.

The implementation of a private helper function (and that of each private helper function it calls) must be offered in
a COMDAT group within the ELF [AAELF] relocatable file that needs it, or in a freely re-distributable library (§3.9)
provided by the tool chain as an adjunct to the relocatable file.

(Freely re-distributable means: Distributable on terms no more restrictive than those applying to any generated
relocatable file).

3.8 Private names for private and AEABI-specific helper functions
External names used in the implementation of private helper functions and private helper data must be in the
vendor-specific name space reserved by this ABI. All such names have the form __vendor-prefix_name.

The vendor prefix must be registered with the maintainers of this ABI specification. Prefixes must not contain
underscore ('_') or dollar ('$'). Prefixes starting with Anon and anon are reserved for unregistered private use.

For example (from the C++ exception handling ABI):

__aeabi_unwind_cpp_pr0 __ARM_Unwind_cpp_prcommon

The current list of registered vendor, and pseudo vendor, prefixes is given in Table 1 below.

Table 1, Registered Vendors

Name Vendor

ADI Analog Devices

acle Reserved for use by ARM C Language Extensions.

aeabi Reserved to the ABI for the ARM Architecture (EABI pseudo-vendor)

AnonXyz
anonXyz

Reserved to private experiments by the Xyz vendor.
Guaranteed not to clash with any registered vendor name.

ARM ARM Ltd (Note: the company, not the processor).

cxa C++ ABI pseudo-vendor

FSL Freescale Semiconductor Inc.

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 12 of 28

Name Vendor

ADI Analog Devices

acle Reserved for use by ARM C Language Extensions.

GHS Green Hills Systems

gnu GNU compilers and tools (Free Software Foundation)

iar IAR Systems

icc ImageCraft Creations Inc (ImageCraft C Compiler)

intel Intel Corporation

ixs Intel Xscale

llvm The LLVM/Clang projects

PSI PalmSource Inc.

RAL Rowley Associates Ltd

somn SOMNIUM Technologies Limited.

TASKING Altium Ltd.

TI TI Inc.

tls Reserved for use in thread-local storage routines.

WRS Wind River Systems.

To register a vendor prefix with ARM, please E-mail your request to arm.eabi at arm.com.

3.9 Library file organization
Libraries that must be portable between complying tool chains – such as adjunct libraries of private helper
functions (§3.3), and libraries of run-time helper functions that comply with this specification (§4) and are intended
to be used with other tool chains’ linkers – must satisfy the following conditions.

 The library file format is the ar format describe in [BSABI].

 It must not matter whether libraries are searched once or repeatedly (this is Q-o-I).

 Multiple adjunct libraries can appear in any order in the list of libraries given to the linker provided that they
precede all libraries contributing to the run-time environment.

In general, this requires accepting the following organizational constraints.

 No member of an adjunct library can refer to a member of any other library other than to an entity specified by
this ABI that contributes to the run-time environment.

 The names of adjunct members must be in a vendor-private name space (§3.8).

 If run-time environment support functions are provided in multiple libraries, and these are intended to be
usable by other ABI-conforming linkers, it must be possible to list the libraries in at least one order in which
each reference between them is from a library to one later in the order. This order must be documented.

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 13 of 28

3.10 __hardfp_ name mangling
This section describes a name-mangling convention adopted by armcc (ARM Limited’s commercial compiler) six
years before this ABI was published and three years before ABI development began. The name mangling is
unnecessary under this ABI so we now deprecate it. Obviously, compilers in service will continue to generate the
names for some time.

A goal of this ABI is to support the development of portable binary code but the lack of ubiquity of the floating-point
(FP) instruction set causes a problem if the code uses FP values in its interface functions.

 Code that makes no use of FP values can be built to the Base Procedure Call Standard [AAPCS, §5] and will
be compatible with an application built to the base standard or the VFP procedure call standard [AAPCS, §6.1].

 Portable binary code that makes heavy use of FP will surely be offered in two variants: base-standard for
environments that lack FP hardware and VFP-standard otherwise.

 Portable binary code that makes only light use of floating point might reasonably be offered in the base
standard only with its FP-using functions declared in its supporting header files as base-standard interfaces
using some Q-o-I means such as decoration with __softfp or __ATTRIBUTE((softfp))__.

The third use case causes a potential problem.

 Both the portable code and the application that uses it might refer to the same standard library function (such
as strtod() or sin()).

 The portable code will expect a base-standard interface and the application will expect a VFP-standard
interface. The variants are not call-compatible.

The scope of this problem is precisely: all non-variadic standard library functions taking floating-point parameters
or delivering floating-point results.

Implicit calls to conversion functions that arise from expressions such as double d = (double) int_val can
also cause difficulties. A call is either to a floating-point (FP) helper function (such as __aeabi_i2d, Table 8,
below]) defined by this ABI (§4.1.2) or to a private helper function. The FP helpers defined by this ABI cause no
difficulties because they always use a base-standard interface but a private helper function would suffer the same
problem as strtod() or sin() if the same tool chain were used to build the application and the portable binary
and the helper function were not forced to have a base-standard interface.

The 1999 (pre-ABI) solution to this problem (first adopted by ADS 1.0) was as follows.

 Identify those functions that would be expected to have VFP-standard interfaces when used in a VFP-
standard application (such as strtod and sin).

 Mangle the name of the VFP-standard variant of each of these functions using the prefix __hardfp.

In 1999, VFP was not widely deployed in ARM-based products so it was reasonable to load these inter-operation
costs on users of the VFP calling standard.

Today, this ABI defines a clean way for tool chains to support this functionality without resorting to encoding the
interface standard in a function’s name. The Tag_ABI_VFP_args build attribute in [ADDENDA] records the interface
intentions of a producer. In principle, this tag gives enough information to a tool chain to allow it to solve, using its
own Q-o-I means, the problem described in this section that arises from the third use case.

The problem described in this section arises in the most marginal of the three portable-code use cases described
in the bullet points at the beginning of this section so we now recommend that tool chains should not mangle the
affected names (essentially the functions described by the C library’s <math.h> and some from <stdlib.h>).

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 14 of 28

4 THE STANDARD COMPILER HELPER FUNCTION LIBRARY

4.1 Floating-point library

4.1.1 The floating point model
The floating point model is based on [IEEE 754] floating-point number representations and arithmetic. Base
requirements on helper functions and restrictions on usage by client code are listed below.

ABI-complying helper function libraries may provide more functionality than is specified here, perhaps a full
implementation of the IEEE 754 specification, but ABI-complying application code must not require more than the
specified subset (save by private contract with the execution environments).

The set of helper functions has been designed so that:

 A full IEEE implementation is a natural super-set.

 A producer can ensure that, by carefully choosing the correct helper function for the purpose, the intended
application behavior does not change inappropriately if the helper-function implementations support more than
the ABI-required, IEEE 754-specified behavior.

4.1.1.1 Base requirements on AEABI-complying FP helper functions
Helper functions must correctly process all IEEE 754 single- and double-precision numbers, including -0 and
±infinity, using the round to nearest rounding mode.

Floating-point exceptions are untrapped, so invalid operations must generate a default result.

If the implementation supports NaNs, the following requirements hold in addition to those imposed on NaN
processing by IEEE 754.

 All IEEE NaN bit patterns with the most significant bit of the significand set are quiet, and all with the most
significant bit clear are signaling (as defined by [ARM ARM], chapter A2, Application Level Programmers’
Model).

 When not otherwise specified by IEEE 754, the result on an invalid operation should be the quiet NaN bit
pattern with only the most significant bit of the significand set, and all other significand bits zero.

Dispensation – de-normal numbers

De-normal numbers may be flushed to zero in an implementation-defined way.

We permit de-normal flushing in deference to hardware implementations of floating-point, where correct IEEE 754
behavior might require supporting code that would be an unwelcome burden to an embedded system.

Implementations that flush to zero will violate the Java numerical model, but we recognize that:

 Often, higher performance and smaller code size legitimately outweigh floating-point accuracy concerns.

 High quality floating-point behavior inevitably requires application code to be aware of the floating-point
properties of its execution environment. Floating-point code that has onerous requirements (rare in embedded
applications) must advertise this.

Software-only implementations should correctly support de-normal numbers.

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 15 of 28

Dispensations relating to NaNs

An implementation need not process or generate NaNs. In this case, the result of each invalid operation is
implementation defined (and could, for example, simply be ±zero).

If NaNs are supported, it is only required to recognize, process, and convert those values with at least one bit set
in the 20 most significant bits of the mantissa. Remaining bits should be zero and can be ignored. When a quiet
NaN of one precision is converted to a quiet NaN of the other precision, the most significant 20 bits of the
mantissa must be preserved. Consequently:

 A NaN can be recognized by processing the most significant or only word of the representation. The least
significant word of a double NaN can be ignored (it should be zero).

 Each ABI-complying NaN value has a single-precision representation, and a corresponding double-precision
representation in which the least significant word is zero.

 Each ABI-complying NaN value is converted between single- and double-precision in the same way that ARM
VFP VCVT instructions convert the values.

4.1.1.2 Restrictions on FP usage by ABI-complying programs
The rounding mode is fixed as round to nearest. This is the IEEE 754 default when a program starts and the state
required by the Java numerical model. A conforming client must not change the rounding mode.

Conforming clients must not fabricate bit patterns that correspond to de-normal numbers. A de-normal number
must only be generated as a result of operating on normal numbers (for example, subtracting two very close
values). A de-normal number may be flushed to zero on input to, or on output from, a helper function.

There are no floating-point exceptions. This is the IEEE 754 default when a program starts. A conforming client
must not change the exception trap state or attempt to trap IEEE exceptions.

Conforming clients must not directly fabricate bit patterns that correspond to NaNs. A NaN can only be generated
as a result of an operation on normal numbers (for example, subtracting +infinity from +infinity or multiplying
±infinity by ±zero).

A conforming client must not rely on generating a NaN by operating on normal numbers as described above.

A NaN-using client must use only those NaN values having at least one bit set in the 20 most significant mantissa
bits, and all other mantissa bits zero.

4.1.2 The floating-point helper functions
The functions defined in this section use software floating-point (Base Procedure Call Standard [AAPCS]) calling
and result-returning conventions, even when they are implemented using floating-point hardware. That is,
parameters to and results from them are passed in integer core registers.

The functions defined in Table 2, Table 3, Table 4, and Table 5 together implement the floating-point (FP)
arithmetic operations from the FP instruction set. The functions defined in Table 6, Table 7, and Table 8
implement the floating-point (FP) conversion operations from the FP instruction set, the conversions between FP
values and {unsigned} long long, and the conversions between the VFPv3 half-precision storage-only binary
format and IEEE 754 binary32 (single precision) binary format.

Implementations of these helper functions are allowed to corrupt the integer core registers permitted to be
corrupted by the [AAPCS] (r0-r3, ip, lr, and CPSR).

If the FP instruction set is available, implementations of these functions may use it. Consequently, FP hardware-
using code that calls one of these helper functions directly, or indirectly by calling a function with a base-standard
interface, must assume that the FP parameter, result, scratch, and status registers might be altered by a call to it.

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 16 of 28

Binary functions take their arguments in source order where the order matters. For example, __aeabi_op(x, y)
computes x op y, not y op x. The exceptions are rsub, and rcmple whose very purpose is to operate the other
way round.

Table 2, Standard double precision floating-point arithmetic helper functions

Name and type signature Description

double __aeabi_dadd(double, double) double-precision addition

double __aeabi_ddiv(double n, double d) double-precision division, n / d

double __aeabi_dmul(double, double) double-precision multiplication

double __aeabi_drsub(double x, double y) double-precision reverse subtraction, y – x

double __aeabi_dsub(double x, double y) double-precision subtraction, x – y

Table 3, double precision floating-point comparison helper functions

Name and type signature Description

void __aeabi_cdcmpeq(double, double) non-excepting equality comparison [1], result in PSR ZC flags

void __aeabi_cdcmple(double, double) 3-way (<, =, ?>) compare [1], result in PSR ZC flags

void __aeabi_cdrcmple(double, double) reversed 3-way (<, =, ?>) compare [1], result in PSR ZC flags

int __aeabi_dcmpeq(double, double) result (1, 0) denotes (=, ?<>) [2], use for C == and !=

int __aeabi_dcmplt(double, double) result (1, 0) denotes (<, ?>=) [2], use for C <

int __aeabi_dcmple(double, double) result (1, 0) denotes (<=, ?>) [2], use for C <=

int __aeabi_dcmpge(double, double) result (1, 0) denotes (>=, ?<) [2], use for C >=

int __aeabi_dcmpgt(double, double) result (1, 0) denotes (>, ?<=) [2], use for C >

int __aeabi_dcmpun(double, double) result (1, 0) denotes (?, <=>) [2], use for C99 isunordered()

Notes on Table 3, above, and Table 5, below

1. The 3-way comparison functions c*cmple, c*cmpeq and c*rcmple return their results in the CPSR Z and C
flags. C is clear only if the operands are ordered and the first operand is less than the second. Z is set only
when the operands are ordered and equal.

This means that c*cmple is the appropriate helper to use for C language < and ≤ comparisons.

For > and ≥ comparisons, the order of operands to the comparator and the sense of the following branch
condition must both be reversed. For example, to implement if (a > b) {…} else L1, use:

__aeabi_cdcmple(b, a); BHS L1; or
__aeabi_cdrcmple(a, b); BHS L1.

The *rcmple functions may be implemented as operand swapping veneers that tail-call the corresponding
versions of cmple.

When implemented to the full IEEE specification, *le helpers potentially throw exceptions when comparing
with quiet NaNs. The *eq helpers do not. Of course, all comparisons will potentially throw exceptions when
comparing with signaling NaNs.

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 17 of 28

Minimal implementations never throw exceptions. In the absence of NaNs, c*cmpeq can be an alias for
c*cmple.

The 3-way, status-returning comparison functions preserve all core registers except ip, lr, and the CPSR

2. The six Boolean versions *cmp* return 1 or 0 in r0 to denote the truth or falsity of the IEEE predicate they test.
As in note1, all except *cmpeq and *cmpun can throw an exception when comparing a quiet NaN.

Table 4, Standard single precision floating-point arithmetic helper functions

Name and type signature Description

float __aeabi_fadd(float, float) single-precision addition

float __aeabi_fdiv(float n, float d) single-precision division, n / d

float __aeabi_fmul(float, float) single-precision multiplication

float __aeabi_frsub(float x, float y) single-precision reverse subtraction, y – x

float __aeabi_fsub(float x, float y) single-precision subtraction, x – y

Table 5, Standard single precision floating-point comparison helper functions

Name and type signature Description

void __aeabi_cfcmpeq(float, float) non-excepting equality comparison [1], result in PSR ZC flags

void __aeabi_cfcmple(float, float) 3-way (<, =, ?>) compare [1], result in PSR ZC flags

void __aeabi_cfrcmple(float, float) reversed 3-way (<, =, ?>) compare [1], result in PSR ZC flags

int __aeabi_fcmpeq(float, float) result (1, 0) denotes (=, ?<>) [2], use for C == and !=

int __aeabi_fcmplt(float, float) result (1, 0) denotes (<, ?>=) [2], use for C <

int __aeabi_fcmple(float, float) result (1, 0) denotes (<=, ?>) [2], use for C <=

int __aeabi_fcmpge(float, float) result (1, 0) denotes (>=, ?<) [2], use for C >=

int __aeabi_fcmpgt(float, float) result (1, 0) denotes (>, ?<=) [2], use for C >

int __aeabi_fcmpun(float, float) result (1, 0) denotes (?, <=>) [2], use for C99 isunordered()

Table 6, Standard floating-point to integer conversions

Name and type signature Description

int __aeabi_d2iz(double) double to integer C-style conversion [3]

unsigned __aeabi_d2uiz(double) double to unsigned C-style conversion [3]

long long __aeabi_d2lz(double) double to long long C-style conversion [3]

unsigned long long __aeabi_d2ulz(double) double to unsigned long long C-style conversion [3]

int __aeabi_f2iz(float) float (single precision) to integer C-style conversion [3]

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 18 of 28

Name and type signature Description

unsigned __aeabi_f2uiz(float) float (single precision) to unsigned C-style conversion [3]

long long __aeabi_f2lz(float) float (single precision) to long long C-style conversion [3]

unsigned long long __aeabi_f2ulz(float) float to unsigned long long C-style conversion [3]

Note on Table 6, Standard floating-point to integer conversions

3. The conversion-to-integer functions whose names end in z always round towards zero, rather than going with
the current or default rounding mode. This makes them the appropriate ones to use for C casts-to-integer,
which are required by the C standard to round towards zero.

Table 7, Standard conversions between floating types

Name and type signature Description

float __aeabi_d2f(double) double to float (single precision) conversion

double __aeabi_f2d(float) float (single precision) to double conversion

float __aeabi_h2f(short hf)
float __aeabi_h2f_alt(short hf)

IEEE 754 binary16 storage format (VFP half precision) to
binary32 (float) conversion [4, 5]; __aeabi_h2f_alt
converts from VFP alternative format [7].

short __aeabi_f2h(float f)
short __aeabi_f2h_alt(float f)

IEEE 754 binary32 (float) to binary16 storage format (VFP
half precision) conversion [4, 6]; __aeabi_f2h_alt converts
to VFP alternative format [8].

short __aeabi_d2h(double)
short __aeabi_d2h_alt(double)

IEEE 754 binary64 (double) to binary16 storage format (VFP
half precision) conversion [4, 9]; __aeabi_d2h_alt converts
to VFP alternative format [10].

Notes on Table 7, Standard conversions between floating types

4. IEEE P754 binary16 format is a storage-only format on which no floating-point operations are defined.
Loading and storing such values is supported through the integer instruction set rather than the floating-point
instruction set. Hence these functions convert between 16-bit short and 32-bit or 64-bit float. In the VFPv3
alternative format there are no NaNs or infinities and encodings with maximum exponent value encode
numbers.

5. h2f converts a 16-bit binary floating point bit pattern to the 32-bit binary floating point bit pattern representing
the same number, infinity, zero, or NaN. A NaN is converted by appending 13 0-bits to its representation.

6. f2h converts a 32-bit binary floating point bit pattern to the 16-bit binary floating point bit pattern representing
the same number, infinity, zero, or NaN. The least significant 13 bits of the representation of a NaN are lost in
conversion. Unless altered by Q-o-I means, rounding is RN, underflow flushes to zero, and overflow
generates infinity.

7. h2f_alt converts a VFPv3 alternative-format 16-bit binary floating point bit pattern to the IEEE-format 32-bit
binary floating point bit pattern that represents the same number.

8. f2h_alt converts an IEEE-format 32-bit binary floating point bit pattern to the VFPv3 alternative-format 16-bit
binary floating point bit pattern that represents the same number. Unless altered by Q-o-I means, rounding is
RN, underflow flushes to zero, and overflow generates the largest representable number.

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 19 of 28

9. d2h converts a 64-bit binary floating point bit pattern to the 16-bit binary floating point bit pattern representing
the same number, infinity, zero, or NaN. The least significant 42 bits of the representation of a NaN are lost in
conversion. Unless altered by Q-o-I means, rounding is RN, underflow flushes to zero, and overflow
generates infinity.

10. d2h_alt converts an IEEE-format 64-bit binary floating point bit pattern to the VFPv3 alternative-format 16-bit
binary floating point bit pattern that represents the same number. Unless altered by Q-o-I means, rounding is
RN, underflow flushes to zero, and overflow generates the largest representable number.

Table 8, Standard integer to floating-point conversions

Name and type signature Description

double __aeabi_i2d(int) integer to double conversion

double __aeabi_ui2d(unsigned) unsigned to double conversion

double __aeabi_l2d(long long) long long to double conversion

double __aeabi_ul2d(unsigned long long) unsigned long long to double conversion

float __aeabi_i2f(int) integer to float (single precision) conversion

float __aeabi_ui2f(unsigned) unsigned to float (single precision) conversion

float __aeabi_l2f(long long) long long to float (single precision) conversion

float __aeabi_ul2f(unsigned long long) unsigned long long to float (single precision) conversion

4.2 The long long helper functions
The long long helper functions support 64-bit integer arithmetic. They are listed in Table 9.

Most long operations can be inlined in fewer instructions than it takes to marshal arguments to, and a result from,
a function call. The difficult functions that usually need to be implemented out of line are listed in the table below.

As in §4.1.2, binary functions operate between the operands given in source text order (div(a, b) = a/b).

The division functions produce both the quotient and the remainder, an important optimization opportunity,
because the function is large and slow.

The shift functions only need to work for shift counts in 0..63. Compilers can efficiently inline constant shifts.

Table 9, Long long functions

Name and type signature Description

long long __aeabi_lmul(long long, long long) multiplication [1]

__value_in_regs lldiv_t __aeabi_ldivmod(
 long long n, long long d)

signed long long division and
remainder, {q, r} = n / d [2]

__value_in_regs ulldiv_t __aeabi_uldivmod(
 unsigned long long n, unsigned long long d)

unsigned signed ll division, remainder,
{q, r} = n / d [2]

long long __aeabi_llsl(long long, int) logical shift left [1]

long long __aeabi_llsr(long long, int) logical shift right [1]

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 20 of 28

Name and type signature Description

long long __aeabi_lasr(long long, int) arithmetic shift right [1]

int __aeabi_lcmp(long long, long long) signed long long comparison [3]

int __aeabi_ulcmp(unsigned long long, unsigned long long) unsigned long long comparison [3]

Notes on Table 9, Long long functions, above

1. Because of 2’s complement number representation, these functions work identically with long long replaced
uniformly by unsigned long long. Each returns its result in {r0, r1}, as specified by the [AAPCS].

2. A pair of (unsigned) long longs is returned in {{r0, r1}, {r2, r3}}, the quotient in {r0, r1}, and the remainder in
{r2, r3}. The description above is written using ARM-specific function prototype notation, though no prototype
need be read by any compiler. (In the table above, think of __value_in_regs as a structured comment).

3. The comparison functions return negative, zero, or a positive integer according to whether the comparison
result is <, ==, or >, respectively (like strcmp). In practice, compilers can inline all comparisons using SUBS,
SBCS (the test for equality needs 3 Thumb instructions).

Implementations of ldivmod and uldivmod have full [AAPCS] privileges and may corrupt any register permitted to
be corrupted by an AAPCS-conforming call. Thus, for example, an implementation may use a co-processor that
has a division, or division-step, operation. The effect that such use has on the co-processor state is documented
in a co-processor supplement.

Otherwise, implementations of the long long helper functions are allowed to corrupt only the integer core registers
permitted to be corrupted by the AAPCS (r0-r3, ip, lr, and CPSR).

4.3 Other C and assembly language helper functions
Other helper functions include 32-bit (32/32 → 32) integer division (§4.3.1), unaligned data access functions
(§4.3.3) and functions to copy, move, clear, and set memory (§4.3.4).

4.3.1 Integer (32/32 → 32) division functions
The 32-bit integer division functions return the quotient in r0 or both quotient and remainder in {r0, r1}. Below the
2-value-returning functions are described using ARM-specific prototype notation, though it is clear that no
prototype need be read by any compiler (think of __value_in_regs as a structured comment).

int __aeabi_idiv(int numerator, int denominator);
unsigned __aeabi_uidiv(unsigned numerator, unsigned denominator);

typedef struct { int quot; int rem; } idiv_return;
typedef struct { unsigned quot; unsigned rem; } uidiv_return;

__value_in_regs idiv_return __aeabi_idivmod(int numerator, int denominator);
__value_in_regs uidiv_return __aeabi_uidivmod(unsigned numerator, unsigned denominator);

(Aside: Separate modulo functions would have little value because modulo on its own is rare. Division by a constant and
constant modulo can be inlined efficiently using (64-bit) multiplication. For implementations in C, __value_in_regs can be
emulated by tail-calling an assembler function that receives the values to be returned as arguments and, itself, returns
immediately. End aside).

Implementations of idiv, uidiv, idivmod, and uidivmod have full [AAPCS] privileges and may corrupt any register an
AAPCS-conforming call may corrupt. Thus, for example, an implementation may use a co-processor that has a

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 21 of 28

division, or division-step, operation. The effect that such use has on co-processor state is documented in a
separate co-processor supplement.

The division functions take the numerator and denominator in that order, and produce the quotient in r0 or the
quotient and the remainder in {r0, r1} respectively.

Integer division truncates towards zero and the following identities hold if the quotient can be represented.

(numerator / denominator) = –(numerator / -denominator)
(numerator / denominator) * denominator + (numerator % denominator) = numerator

The quotient can be represented for all input values except the following.

 denominator = 0 (discussed in §4.3.2).

 numerator = -2147483648 (bit pattern 0x80000000), denominator = -1.
 (the number 2147483648 has no representation as a signed int).

In the second case an implementation is may return any convenient value, possibly the original numerator.

4.3.2 Division by zero
If an integer or long long division helper function is called upon to divide by 0, it should return as quotient the value
returned by a call to __aeabi_idiv0 or __aeabi_ldiv0, respectively. A *divmod helper should return as remainder
either 0 or the original numerator.

(Aside: Ideally, a *divmod function should return {infinity, 0} or {0, numerator}, where infinity is an approximation. End aside).

The *div0 functions:

 Return the value passed to them as a parameter.

 Or, return a fixed value defined by the execution environment (such as 0).

 Or, raise a signal (often SIGFPE) or throw an exception, and do not return.

int __aeabi_idiv0(int return_value);
long long __aeabi_ldiv0(long long return_value);

An application may provide its own implementations of the *div0 functions to force a particular behavior from *div
and *divmod functions called out of line. Implementations of *div0 have full [AAPCS] privileges just like the *div and
*divmod functions.

The *div and *divmod functions may be inlined by a tool chain. It is Q-o-I whether an inlined version calls *div0 out
of line or returns the values that would have been returned by a particular value-returning version of *div0.

Out of line implementations of the *div and *divmod functions call *div0 with the following parameter values.

 0 if the numerator is 0.

 The largest value of the type manipulated by the calling division function if the numerator is positive.

 The least value of the type manipulated by the calling division function if the numerator is negative.

4.3.3 Unaligned memory access
These functions read and write 4-byte and 8-byte values at arbitrarily aligned addresses. An unaligned 2-byte
value can always be read or written more efficiently using inline code.

int __aeabi_uread4(void *address);
int __aeabi_uwrite4(int value, void *address);
long long __aeabi_uread8(void *address);
long long __aeabi_uwrite8(long long value, void *address);

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 22 of 28

We expect unaligned floating-point values to be read and written as integer bit patterns (if at all).

Write functions return the value written, read functions the value read.

Implementations of these functions are allowed to corrupt only the integer core registers permitted to be corrupted
by the [AAPCS] (r0-r3, ip, lr, and CPSR).

4.3.4 Memory copying, clearing, and setting

Memory copying

Memcpy-like helper functions are needed to implement structure assignment. We define three functions providing
various levels of service, in addition to the normal ANSI C memcpy, and three variants of memmove.

void __aeabi_memcpy8(void *dest, const void *src, size_t n);
void __aeabi_memcpy4(void *dest, const void *src, size_t n);
void __aeabi_memcpy(void *dest, const void *src, size_t n);

void __aeabi_memmove8(void *dest, const void *src, size_t n);
void __aeabi_memmove4(void *dest, const void *src, size_t n);
void __aeabi_memmove(void *dest, const void *src, size_t n);

These functions work like the ANSI C memcpy and memmove functions. However, __aeabi_memcpy8 may
assume that both of its arguments are 8-byte aligned, __aeabi_memcpy4 that both of its arguments are 4-byte
aligned. None of the three functions is required to return anything in r0.

Each of these functions can be smaller or faster than the general memcpy or each can be an alias for memcpy
itself, similarly for memmove.

Compilers can replace calls to memcpy with calls to one of these functions if they can deduce that the constraints
are satisfied. For example, any memcpy whose return value is ignored can be replaced with __aeabi_memcpy. If
the copy is between 4-byte-aligned pointers it can be replaced with __aeabi_memcpy4, and so on.

The size_t argument does not need to be a multiple of 4 for the 4/8-byte aligned versions, which allows copies
with a non-constant size to be specialized according to source and destination alignment.

Small aligned copies are likely to be inlined by compilers, so these functions should be optimized for larger copies.

Memory clearing and setting

In similar deference to run-time efficiency we define reduced forms of memset and memclr.

void __aeabi_memset8(void *dest, size_t n, int c);
void __aeabi_memset4(void *dest, size_t n, int c);
void __aeabi_memset(void *dest, size_t n, int c);

void __aeabi_memclr8(void *dest, size_t n);
void __aeabi_memclr4(void *dest, size_t n);
void __aeabi_memclr(void *dest, size_t n);

Note that relative to ANSI memset, __aeabi_memset has the order of its second and third arguments reversed.
This allows __aeabi_memclr to tail-call __aeabi_memset.

The memclr functions simplify a very common special case of memset, namely the one in which c = 0 and the
memory is being cleared to all zeroes.

The size_t argument does not need to be a multiple of 4 for the 4/8-byte aligned versions, which allows clears and
sets with a non-constant size to be specialized according to the destination alignment.

In general, implementations of these functions are allowed to corrupt only the integer core registers permitted to
be corrupted by the [AAPCS] (r0-r3, ip, lr, and CPSR).

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 23 of 28

If there is an attached device with efficient memory copying or clearing operations (such as a DMA engine), its
device supplement specifies whether it may be used in implementations of these functions and what effect such
use has on the device’s state.

4.3.5 Thread-local storage (new in v2.01)
In §3.3.2, Linux for ARM static (initial exec) model, of [ADDENDA] the description of thread-local storage
addressing refers to the thread pointer denoted by $tp but does not specify how to obtain its value.

void *__aeabi_read_tp(void); /* return the value of $tp */

Implementations of this function should corrupt only the result register (r0) and the non-parameter integer core
registers allowed to be corrupted by the [AAPCS] (ip, lr, and CPSR). Registers r1-r3 must be preserved.

4.4 C++ helper functions
The C++ helper functions defined by this ABI closely follow those defined by the Generic C++ ABI (see
[GC++ABI]). In this section, we list the required helper functions with references to their generic definitions and
explain where the ARM C++ ABI diverges from the generic one.

4.4.1 Pure virtual function calls
See GC++ABI, §3.2.6, Pure Virtual Function API. This ABI specification follows the generic ABI exactly.

The v-table entry for a pure virtual function must be initialized to __cxa_pure_virtual. The effect of calling a pure
virtual function is not defined by the C++ standard. This ABI requires that the pure virtual helper function shall be
called which takes an abnormal termination action defined by, and appropriate to, the execution environment.

Table 10, The pure virtual helper function

Name and type signature Description

void __cxa_pure_virtual(void) The initial value of a pure virtual function.
Called if a not overridden pure virtual function is called.

4.4.2 One-time construction API for (function-local) static objects
See GC++ABI, §3.3.2, One-time Construction API, and [CPPABI] §3.2.3, Guard variables and the one-time
construction API.

This ABI specification diverges from the Itanium ABI by using 32-bit guard variables and specifying the use of the
least significant two bits of a guard variable rather than first byte of it.

A static object must be guarded against being constructed more than once. In a threaded environment, the guard
variable must also act as a semaphore or a handle for a semaphore. Typically, only the construction of function-
local static objects needs to be guarded this way.

A guard variable is a 32-bit, 4-byte aligned, static data value (described in Table 11, below, as int). The least
significant 2 bits must be statically initialized to zero. The least significant bit (20) is set to 1 when the guarded
object has been successfully constructed. The next most significant bit (21) may be used by the guard acquisition
and release helper functions. The value and meaning of other bits is unspecified.

http://mentorembedded.github.com/cxx-abi/abi.html#vcall
http://mentorembedded.github.com/cxx-abi/abi.html#once-ctor

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 24 of 28

Table 11, One-time construction API

Name and type signature Description

Guard variable A 32-bit, 4-byte-aligned static data value. The least significant 2 bits
must be statically initialized to 0.

int __cxa_guard_acquire(int *gv) If *gv guards an object under construction, wait for construction to
complete (guard released) or abort (guard aborted).
Then, if *gv guards a not-yet-constructed object, acquire the guard
and return non-0.
Otherwise, if *gv guards a constructed object, return 0.

void __cxa_guard_release(int *gv) Pre-condition: *gv acquired, guarded object constructed.
Post-condition: ((*gv & 1) = 1), *gv released.

void __cxa_guard_abort(int *gv) Pre-condition: *gv acquired, guarded object not constructed.
Post-condition: ((*gv & 3) = 0), *gv released.

The one-time construction API functions may corrupt only the integer core registers permitted to be corrupted by
the [AAPCS] (r0-r3, ip, lr, and CPSR).

The one-time construction API is expected to be used in the following way.

if ((obj_guard & 1) == 0) {
 if (__cxa_guard_acquire(&obj_guard)) {
 ... initialize the object ...;
 ... queue object destructor with __cxa_atexit(); // See §4.4.5.
 __cxa_guard_release(&obj_guard);
 // Assert: (obj_guard & 1) == 1
 }
}

If the object constructor throws an exception, cleanup code can call __cxa_guard_abort to release the guard and
reset its state to the initial state.

4.4.3 Construction and destruction of arrays
See GC++ABI, §3.3.3, Array Construction and Destruction API, and [CPPABI] §3.2.2, Array construction and
destruction.

4.4.3.1 Helper functions defined by the generic C++ ABI
This ABI follows the generic ABI closely. Differences from the generic ABI are as follows.

 This ABI gives __cxa_vec_ctor and __cxa_vec_cctor a void * return type (highlighted in yellow below) instead
of void. The value returned is the same as the first parameter – a pointer to the array being constructed

 This ABI specifies the same array cookie format whenever an array cookie is needed. The cookie occupies 8
bytes, 8-byte aligned. It contains two 4-byte fields, the element size followed by the element count.

Below we list the functions and their arguments. For details see the references cited at the start of §4.4.3.

void *__cxa_vec_new(
 size_t count, size_t element_size, size_t cookie_size,
 void (*ctor)(void *), void (dtor)(void *));

void *__cxa_vec_new2(
 size_t count, size_t element_size, size_t cookie_size,

http://mentorembedded.github.com/cxx-abi/abi.html#array-ctor

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 25 of 28

 void (*ctor)(void *this), void (*dtor)(void *this),
 void *(*alloc)(size_t size), void (*dealloc)(void *object));

void *__cxa_vec_new3(
 size_t count, size_t element_size, size_t cookie_size,
 void (*ctor)(void *this), void (*dtor)(void *this),
 void *(*alloc)(size_t size), void (*dealloc)(void *object, size_t size));

void *__cxa_vec_ctor(
 void *vector, size_t count, size_t element_size,
 void (*ctor)(void *this), void (*dtor)(void *this));

void __cxa_vec_dtor(
 void *vector, size_t count, size_t element_size,
 void (*dtor)(void *this));

void __cxa_vec_cleanup(
 void *vector, size_t count, size_t element_size,
 void (*dtor)(void *this));

void __cxa_vec_delete(
 void *vector, size_t element_size, size_t cookie_size,
 void (*dtor)(void *this));

void __cxa_vec_delete2(
 void *vector, size_t element_size, size_t cookie_size,
 void (*dtor)(void *this),
 void (*dealloc)(void *object));

void __cxa_vec_delete3(
 void *vector, size_t element_size, size_t cookie_size,
 void (*dtor)(void *this),
 void (*dealloc)(void *object, size_t size));

void *__cxa_vec_cctor(
 void *destination, void *source, size_t count, size_t element_size,
 void (*copy_ctor)(void *this, void *source),
 void (*dtor)(void *this));

4.4.3.2 Helper functions defined by the C++ ABI for the ARM Architecture
This ABI define the following new helpers which can be called more efficiently.

 __aeabi_vec_ctor_nocookie_nodtor
 __aeabi_vec_ctor_cookie_nodtor
 __aeabi_vec_cctor_nocookie_nodtor
 __aeabi_vec_new_cookie_noctor
 __aeabi_vec_new_nocookie
 __aeabi_vec_new_cookie_nodtor
 __aeabi_vec_new_cookie
 __aeabi_vec_dtor
 __aeabi_vec_dtor_cookie
 __aeabi_vec_delete
 __aeabi_vec_delete3
 __aeabi_vec_delete3_nodtor
 __aeabi_atexit

Compilers are not required to use these functions but runtime libraries complying with this ABI must supply them.
Below we list the functions and their arguments. For details see [CPPABI] §3.2.2, Array construction and
destruction. Each function is declared extern “C”.

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 26 of 28

void* __aeabi_vec_ctor_nocookie_nodtor(
 void* user_array, void* (*constructor)(void*),
 size_t element_size, size_t element_count); // Returns: user_array

void* __aeabi_vec_ctor_cookie_nodtor(// Returns:
 array_cookie* cookie, void*(*constructor)(void*), // (cookie==NULL) ? NULL :
 size_t element_size, size_t element_count); // array associated with cookie

void* __aeabi_vec_cctor_nocookie_nodtor(// Returns: user_array_dest
 void* user_array_dest, void* user_array_src,
 size_t element_size, size_t element_count, void* (*copy_constructor)(void*, void*));

void* __aeabi_vec_new_cookie_noctor(
 size_t element_size, size_t element_count); // Returns: new array

void* __aeabi_vec_new_nocookie(// Returns: new array
 size_t element_size, size_t element_count, void* (*constructor)(void*));

void* __aeabi_vec_new_cookie_nodtor(// Returns: new array
 size_t element_size, size_t element_count, void* (*constructor)(void*));

void* __aeabi_vec_new_cookie(// Returns: new array
 size_t element_size, size_t element_count,
 void* (*constructor)(void*), void* (*destructor)(void*));

void* __aeabi_vec_dtor(// Returns:
 void* user_array, void* (*destructor)(void*), // cookie associated with user_array
 size_t element_size, size_t element_count); // (if there is one)

void* __aeabi_vec_dtor_cookie(// Returns:
 void* user_array, void* (*destructor)(void*)); // cookie associated with user_array

void __aeabi_vec_delete(
 void* user_array, void* (*destructor)(void*));

void __aeabi_vec_delete3(
 void* user_array, void* (*destructor)(void*), void (*dealloc)(void*, size_t));

void __aeabi_vec_delete3_nodtor(
 void* user_array, void (*dealloc)(void*, size_t));

int __aeabi_atexit(// Returns: 0 => OK; non-0 => failed
 void* object, void (*destroyer)(void*), void* dso_handle);

4.4.4 Controlling object construction order
See GC++ABI, §3.3.4, Controlling Object Construction Order.

This ABI currently defines no helper functions to control object construction order.

4.4.5 Static object finalization
See GC++ABI, §3.3.5, DSO Object Destruction API, and [CPPABI] §3.2.4, Static object construction and
destruction.

The generic C++ ABI and this ABI both define the destruction protocol for static objects created by dynamically
linked shared objects in separate platform supplements. Here we define only the interface used to destroy static
objects in the correct order.

When a static object is created that will require destruction on program exit, its destructor and a pointer to the
object must be registered with the run-time system by calling __aeabi_atexit (which calls __cxa_atexit).

http://mentorembedded.github.com/cxx-abi/abi.html#ctor-order
http://mentorembedded.github.com/cxx-abi/abi.html#dso-dtor

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 27 of 28

 int __aeabi_atexit(void *object, void (*dtor)(void *this), void *handle);
 int __cxa_atexit(void (*dtor)(void *this), void *object, void *handle);

(It is slightly more efficient for the caller to call __aeabi_exit, and calling this function supports static allocation of
memory for the list of destructions – see [CPPABI] §3.2.4, subsection Static object destruction).

The handle argument should be NULL unless the object was created by a dynamically loaded shared library (DSO
or DLL). On exit, dtor(object) is called in the correct order relative to other static object destructors.

When a user function F is registered by calling the C/C++ library function atexit, it must be registered by calling
__aeabi_exit(NULL, F, NULL) or __cxa_atexit(F, NULL, NULL).

The handle argument and the dynamically loaded shared object (DSOor DLL) finalization function __cxa_finalize
(listed below) are relevant only in the presence of DSOs or DLLs. The handle is the value passed to
__cxa_finalize. See the relevant platform supplement or the generic C++ ABI for further information.

 void __cxa_finalize(void *handle); // Not used in the absence of DLLs/DSOs

When a DSO is involved, handle must be an address that uniquely identifies the DSO. Conventionally, handle =
&__dso_handle, where __dso_handle is a label defined while statically linking the DSO.

4.4.6 Name demangling
See GC++ABI, §3.4, Demangler API. This API is not supported by this ABI.

In particular, it is likely that bare metal environments neither need, nor want the overhead of, this functionality.

Separate (virtual) platform supplements may require support for name demangling, and where they do, this ABI
follows the generic C++ ABI precisely.

4.4.7 Exception-handling support
For details see [EHABI], §8.4, ABI routines. Here we merely list the required helper functions and their type
signatures (each function is declared extern “C”).

4.4.7.1 Compiler helper functions
void *__cxa_allocate_exception(size_t size);
void __cxa_free_exception(void *p);
void __cxa_throw(void *, const std::type_info *, void (*dtor)(void *));
void __cxa_rethrow(void);
void *__cxa_begin_catch(void *);
void *__cxa_get_exception_ptr(_Unwind_Control_Block *);
 /* new in EHABI v2.02, ABI r2.02 */
void __cxa_end_catch(void);
void __cxa_end_cleanup(void);
bool __cxa_begin_cleanup(_Unwind_Control_Block *ucbp)
void __cxa_call_unexpected(_Unwind_Control_Block *ucbp)

For details see [EHABI], §8.4, ABI routines.

4.4.7.2 Personality routine helper functions
bool __cxa_begin_cleanup(_Unwind_Control_Block *ucbp)
__cxa_type_match_result __cxa_type_match(
 _Unwind_Control_Block *ucbp,
 const std::type_info *rttip, bool is_ref_type, void **matched_object)
void __cxa_call_terminate(_Unwind_Control_Block *ucbp)
void __cxa_call_unexpected(_Unwind_Control_Block *ucbp)

http://mentorembedded.github.com/cxx-abi/abi.html#demangler

Run-time ABI for the ARM architecture

ARM IHI 0043D Copyright © 2003-2005, 2007-2009, 2012 ARM Limited. All rights reserved. Page 28 of 28

For details see [EHABI], §8.4, ABI routines.

4.4.7.3 Auxilliary functions related to exception processing
void __cxa_bad_cast(); // Throw a bad cast exception
void __cxa_bad_typeid(); // Throw a bad typeid exception

struct __cxa_eh_globals *__cxa_get_globals(void);
 // Get a pointer to the implementation-defined, per-thread EH state
const std::type_info *__cxa_current_exception_type(void);

For details see [EHABI], §8.4, ABI routines.

	1 About this document
	1.1 Change control
	1.1.1 Current status and anticipated changes
	1.1.2 Change history

	1.2 References
	1.3 Terms and abbreviations
	1.4 Your licence to use this specification
	1.5 Acknowledgements

	2 Scope
	3 Introduction
	3.1 References between separately built relocatable files
	3.2 Standardized compiler helper functions
	3.2.1 Rationale for standardizing helper functions

	3.3 Private helper functions must be carried with the using file
	3.4 Some private functions might nonetheless be standardized
	3.5 Many run-time functions do not have a standard ABI
	3.6 A run-time library is all or nothing
	3.7 Important corollaries of this library standardization model
	3.8 Private names for private and AEABI-specific helper functions
	3.9 Library file organization
	3.10 __hardfp_ name mangling

	4 The Standard Compiler Helper Function Library
	4.1 Floating-point library
	4.1.1 The floating point model
	4.1.1.1 Base requirements on AEABI-complying FP helper functions
	4.1.1.2 Restrictions on FP usage by ABI-complying programs

	4.1.2 The floating-point helper functions

	4.2 The long long helper functions
	4.3 Other C and assembly language helper functions
	4.3.1 Integer (32/32 (32) division functions
	4.3.2 Division by zero
	4.3.3 Unaligned memory access
	4.3.4 Memory copying, clearing, and setting
	4.3.5 Thread-local storage (new in v2.01)

	4.4 C++ helper functions
	4.4.1 Pure virtual function calls
	4.4.2 One-time construction API for (function-local) static objects
	4.4.3 Construction and destruction of arrays
	4.4.3.1 Helper functions defined by the generic C++ ABI
	4.4.3.2 Helper functions defined by the C++ ABI for the ARM Architecture

	4.4.4 Controlling object construction order
	4.4.5 Static object finalization
	4.4.6 Name demangling
	4.4.7 Exception-handling support
	4.4.7.1 Compiler helper functions
	4.4.7.2 Personality routine helper functions
	4.4.7.3 Auxilliary functions related to exception processing

