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1 ABOUT THIS DOCUMENT 

1.1 Change Control 
1.1.1 Current Status and Anticipated Changes  
This document’s status is released.  Clarifications, extensions and minor changes should be expected. 

1.1.2 Change History 
Issue Date By Change 
00Bet3 25th November 2011 RE Beta release 
1.0 22nd May 2013 RE First public release 

1.2 References 
This document refers to, or is referred to by, the following documents. 

Ref  URL or other reference Title 

AAPCS64 This document Procedure Call Standard for the ARM 64-bit 
Architecture 

CPPABI64 IHI 0059 C++ ABI for the ARM 64-bit Architecture 

GC++ABI http://mentorembedded.github.io/cxx-abi/abi.html  Generic C++ ABI 

 

1.3 Terms and Abbreviations 
The ABI for the ARM 64-bit Architecture uses the following terms and abbreviations. 

Term Meaning 

A32 The instruction set named ARM in the ARMv7 architecture; A32 uses 32-bit fixed-length 
instructions. 

A64 The instruction set available when in AArch64 state. 

AAPCS64 Procedure Call Standard for the ARM 64-bit Architecture (AArch64) 

AArch32 The 32-bit general-purpose register width state of the ARMv8 architecture, broadly 
compatible with the ARMv7-A architecture. 

AArch64 The 64-bit general-purpose register width state of the ARMv8 architecture. 

ABI Application Binary Interface: 
1. The specifications to which an executable must conform in order to execute in a specific 

execution environment. For example, the Linux ABI for the ARM Architecture. 
2. A particular aspect of the specifications to which independently produced relocatable 

files must conform in order to be statically linkable and executable.  For example, the 
C++ ABI for the ARM Architecture, ELF for the ARM Architecture, … 

ARM-based … based on the ARM architecture … 

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0055-/�
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0059-/�
http://mentorembedded.github.io/cxx-abi/abi.html�
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Term Meaning 

Floating point Depending on context floating point means or qualifies: (a) floating-point arithmetic 
conforming to IEEE 754 2008; (b) the ARMv8 floating point instruction set; (c) the register 
set shared by (b) and the ARMv8 SIMD instruction set. 

Q-o-I Quality of Implementation – a quality, behavior, functionality, or mechanism not required by 
this standard, but which might be provided by systems conforming to it. Q-o-I is often used 
to describe the tool-chain-specific means by which a standard requirement is met. 

SIMD Single Instruction Multiple Data – A term denoting or qualifying: (a) processing several data 
items in parallel under the control of one instruction; (b) the ARM v8 SIMD instruction set: 
(c) the register set shared by (b) and the ARMv8 floating point instruction set.  

SIMD and 
floating point 

The ARM architecture’s SIMD and Floating Point architecture comprising the floating point 
instruction set, the SIMD instruction set and the register set shared by them. 

T32 The instruction set named Thumb in the ARMv7 architecture; T32 uses 16-bit and 32-bit 
instructions. 

 
This document uses the following terms and abbreviations. 

Term Meaning 

Routine, 
subroutine 

A fragment of program to which control can be transferred that, on completing its task, 
returns control to its caller at an instruction following the call.  Routine is used for clarity 
where there are nested calls: a routine is the caller and a subroutine is the callee. 

Procedure A routine that returns no result value. 

Function A routine that returns a result value.  

Activation stack, 
call-frame stack 

The stack of routine activation records (call frames). 

Activation record,  
call frame 

The memory used by a routine for saving registers and holding local variables (usually 
allocated on a stack, once per activation of the routine). 

PIC, PID Position-independent code, position-independent data. 

Argument, 
Parameter 

The terms argument and parameter are used interchangeably. They may denote a formal 
parameter of a routine given the value of the actual parameter when the routine is called, 
or an actual parameter, according to context.   

Externally visible 
[interface] 

[An interface] between separately compiled or separately assembled routines. 

Variadic routine A routine is variadic if the number of arguments it takes, and their type, is determined by 
the caller instead of the callee. 

Global register A register whose value is neither saved nor destroyed by a subroutine. The value may be 
updated, but only in a manner defined by the execution environment. 

Program state The state of the program’s memory, including values in machine registers. 

Scratch register, 
temporary 
register, Caller-
saved register 

A register used to hold an intermediate value during a calculation (usually, such values 
are not named in the program source and have a limited lifetime).  If a function needs to 
preserve the value held in such a register over a call to another function, then the calling 
function must save and restore the value. 
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Callee-saved 
register 

A register whose value must be preserved over a function call.  If the function being called 
(the callee) needs to use the register, then it is responsible for saving and restoring the 
old value. 

SVR4 System V Revision 4.  A variant of the Unix Operating System.  Although this specification 
refers to SVR4, many other operating systems, such as Linux or BSD use similar rules. 

Platform A program execution environment such as that defined by an operating system or run-
time environment. A platform defines the specific variant of the ABI and may impose 
additional constraints. Linux is a platform in this sense. 

 
More specific terminology is defined when it is first used. 

1.4 Your licence to use this specification 
IMPORTANT: THIS IS A LEGAL AGREEMENT (“LICENCE”) BETWEEN YOU (AN INDIVIDUAL OR SINGLE ENTITY WHO IS 
RECEIVING THIS DOCUMENT DIRECTLY FROM ARM LIMITED) (“LICENSEE”) AND ARM LIMITED (“ARM”) FOR THE 
SPECIFICATION DEFINED IMMEDITATELY BELOW. BY DOWNLOADING OR OTHERWISE USING IT, YOU AGREE TO 
BE BOUND BY ALL OF THE TERMS OF THIS LICENCE. IF YOU DO NOT AGREE TO THIS, DO NOT DOWNLOAD OR 
USE THIS SPECIFICATION. 

“Specification” means, and is limited to, the version of the specification for the Applications Binary Interface for the 
ARM Architecture comprised in this document. Notwithstanding the foregoing, “Specification” shall not include (i) 
the implementation of other published specifications referenced in this Specification; (ii) any enabling technologies 
that may be necessary to make or use any product or portion thereof that complies with this Specification, but are 
not themselves expressly set forth in this Specification (e.g. compiler front ends, code generators, back ends, 
libraries or other compiler, assembler or linker technologies; validation or debug software or hardware; 
applications, operating system or driver software; RISC architecture; processor microarchitecture); (iii) maskworks 
and physical layouts of integrated circuit designs; or (iv) RTL or other high level representations of integrated 
circuit designs. 
Use, copying or disclosure by the US Government is subject to the restrictions set out in subparagraph (c)(1)(ii) of 
the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and 
(2) of the Commercial Computer Software – Restricted Rights at 48 C.F.R. 52.227-19, as applicable. 
This Specification is owned by ARM or its licensors and is protected by copyright laws and international copyright 
treaties as well as other intellectual property laws and treaties. The Specification is licensed not sold. 
1. Subject to the provisions of Clauses 2 and 3, ARM hereby grants to LICENSEE, under any intellectual 

property that is (i) owned or freely licensable by ARM without payment to unaffiliated third parties and (ii) 
either embodied in the Specification or Necessary to copy or implement an applications binary interface 
compliant with this Specification, a perpetual, non-exclusive, non-transferable, fully paid, worldwide limited 
licence (without the right to sublicense) to use and copy this Specification solely for the purpose of 
developing, having developed, manufacturing, having manufactured, offering to sell, selling, supplying or 
otherwise distributing products which comply with the Specification. 

2. THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES EXPRESS, IMPLIED OR STATUTORY, 
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF SATISFACTORY QUALITY, MERCHANTABILITY, 
NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE. THE SPECIFICATION MAY INCLUDE 
ERRORS. ARM RESERVES THE RIGHT TO INCORPORATE MODIFICATIONS TO THE SPECIFICATION IN 
LATER REVISIONS OF IT, AND TO MAKE IMPROVEMENTS OR CHANGES IN THE SPECIFICATION OR THE 
PRODUCTS OR TECHNOLOGIES DESCRIBED THEREIN AT ANY TIME. 

3. This Licence shall immediately terminate and shall be unavailable to LICENSEE if LICENSEE or any party 
affiliated to LICENSEE asserts any patents against ARM, ARM affiliates, third parties who have a valid 
licence from ARM for the Specification, or any customers or distributors of any of them based upon a 
claim that a LICENSEE (or LICENSEE affiliate) patent is Necessary to implement the Specification. In this 
Licence; (i) “affiliate” means any entity controlling, controlled by or under common control with a party (in 
fact or in law, via voting securities, management control or otherwise) and “affiliated” shall be construed 
accordingly; (ii) “assert” means to allege infringement in legal or administrative proceedings, or 
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proceedings before any other competent trade, arbitral or international authority; (iii) “Necessary” means 
with respect to any claims of any patent, those claims which, without the appropriate permission of the 
patent owner, will be infringed when implementing the Specification because no alternative, commercially 
reasonable, non-infringing way of implementing the Specification is known; and (iv) English law and the 
jurisdiction of the English courts shall apply to all aspects of this Licence, its interpretation and 
enforcement. The total liability of ARM and any of its suppliers and licensors under or in relation to this 
Licence shall be limited to the greater of the amount actually paid by LICENSEE for the Specification or 
US$10.00. The limitations, exclusions and disclaimers in this Licence shall apply to the maximum extent 
allowed by applicable law. 

ARM Contract reference LEC-ELA-00081 V2.0 AB/LS (9 March 2005) 
 
 

1.5 Acknowledgements 
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2 SCOPE 
The AAPCS64 defines how subroutines can be separately written, separately compiled, and separately 
assembled to work together. It describes a contract between a calling routine and a called routine, or between a 
routine and its execution environment, that defines: 
 Obligations on the caller to create a program state in which the called routine may start to execute. 
 Obligations on the called routine to preserve the program state of the caller across the call. 
 The rights of the called routine to alter the program state of its caller. 
 Obligations on all routines to preserve certain global invariants. 
This standard specifies the base for a family of Procedure Call Standard (PCS) variants generated by choices that 
reflect arbitrary, but historically important, choice among: 
 Byte order. 
 Size of long int and wchar_t and the format of half-precision floating-point values (here we define a SVR4-like 

variant and a Windows-like variant only – see sections 6 and 7 for details). 
 Whether floating-point operations use floating-point hardware resources or are implemented by calls to 

integer-only routines1

This standard is presented in four sections that, after an introduction, specify: 
. 

 The layout of data.  
 Layout of the stack and calling between functions with public interfaces. 
 Variations available for processor extensions, or when the execution environment restricts the addressing 

model. 
 The C and C++ language bindings for plain data types. 
This specification does not standardize the representation of publicly visible C++-language entities that are not 
also C language entities (these are described in CPPABI64) and it places no requirements on the representation of 
language entities that are not visible across public interfaces. 

                                                      
1 This base standard requires that AArch64 floating-point resources be used by floating-point operations and floating-point 
parameter passing. However, it is acknowledged that operating system code often prefers not to perturb the floating-point state 
of the machine and to implement its own limited use of floating-point in integer-only code: such code is permitted, but not 
conforming. 
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3 INTRODUCTION 
The AAPCS64 is the first revision of Procedure Call standard for the ARM 64-bit Architecture.  It forms part of the 
complete ABI specification for the ARM 64-bit Architecture. 

3.1 Design Goals 
The goals of the AAPCS64 are to: 
 Support efficient execution on high-performance implementations of the ARM 64-bit Architecture. 
 Clearly distinguish between mandatory requirements and implementation discretion. 

3.2 Conformance  
The AAPCS64 defines how separately compiled and separately assembled routines can work together. There is 
an externally visible interface between such routines. It is common that not all the externally visible interfaces to 
software are intended to be publicly visible or open to arbitrary use. In effect, there is a mismatch between the 
machine-level concept of external visibility—defined rigorously by an object code format—and a higher level, 
application-oriented concept of external visibility—which is system-specific or application-specific. 
Conformance to the AAPCS64 requires that1

 At all times, stack limits and basic stack alignment are observed (§
:  

5.2.2.1 Universal stack constraints). 
 At each call where the control transfer instruction is subject to a BL-type relocation at static link time, rules on 

the use of IP0 and IP1 are observed (§5.3.1.1 Use of IP0 and IP1 by the linker). 
 The routines of each publicly visible interface conform to the relevant procedure call standard variant. 
 The data elements2

                                                      
1 This definition of conformance gives maximum freedom to implementers. For example, if it is known that both sides of an 
externally visible interface will be compiled by the same compiler, and that the interface will not be publicly visible, the AAPCS64 
permits the use of private arrangements across the interface such as using additional argument registers or passing data in 
non-standard formats. Stack invariants must, nevertheless, be preserved because an AAPCS64-conforming routine elsewhere 
in the call chain might otherwise fail. Rules for use of IP0 and IP1 must be obeyed or a static linker might generate a non-
functioning executable program.  

 of each publicly visible interface conform to the data layout rules. 

Conformance at a publicly visible interface does not depend on what happens behind that interface. Thus, for example, a tree 
of non-public, non-conforming calls can conform because the root of the tree offers a publicly visible, conforming interface and 
the other constraints are satisfied. 
2 Data elements include: parameters to routines named in the interface, static data named in the interface, and all data 
addressed by pointers passed across the interface. 
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4 DATA TYPES AND ALIGNMENT 

4.1 Fundamental Data Types 
Table 1, Byte size and byte alignment of fundamental data types shows the fundamental data types (Machine 
Types) of the machine.   
 

Type Class Machine Type Byte 
size 

Natural 
Alignment 

(bytes) 
Note 

Integral  Unsigned byte 1 1 Character 

 Signed byte 1 1  

 Unsigned half-
word 2 2  

 Signed half-
word 2 2  

 Unsigned word 4 4  

 Signed word 4 4  

 Unsigned 
double-word 8 8  

 Signed double-
word 8 8  

 Unsigned quad-
word 16 16 

 
 Signed quad-

word 16 16 

Floating Point Half precision 2 2 See §4.1.1, Half-precision Floating Point. 

 Single precision  4 4 

IEEE 754-2008  Double 
precision  8 8 

 Quad precision  16 16 

Short vector 64-bit vector 8 8 
See §4.1.2, Short Vectors. 

128-bit vector 16 16 

Pointer Data pointer 8 8 
See §4.1.3, Pointers. 

 Code pointer 8 8 

Table 1, Byte size and byte alignment of fundamental data types 
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4.1.1 Half-precision Floating Point 
The architecture provides hardware support for half-precision values.  Two formats are currently supported: the 
format specified in IEEE 754-2008 and an Alternative format that provides additional range but has no NaNs or 
Infinities.  This base standard of the AAPCS64 specifies two variants: 
 The SVR4-like variant uses the IEEE 754-2008 defined format. 
 The Windows-like variant uses …[TBC] 

4.1.2 Short Vectors 
A short vector is a machine type that is composed of repeated instances of one fundamental integral or floating-
point type.  It may be 8 or 16 bytes in total size.  A short vector has a base type that is the fundamental integral or 
floating-point type from which it is composed, but its alignment is always the same as its total size.  The number of 
elements in the short vector is always such that the type is fully packed.  For example, an 8-byte short vector may 
contain 8 unsigned byte elements, 4 unsigned half-word elements, 2 single-precision floating-point elements, or 
any other combination where the product of the number of elements and the size of an individual element is equal 
to 8.  Similarly, for 16-byte short vectors the product of the number of elements and the size of the individual 
elements must be 16. 
Elements in a short vector are numbered such that the lowest numbered element (element 0) occupies the lowest 
numbered bit (bit zero) in the vector and successive elements take on progressively increasing bit positions in the 
vector.  When a short vector transferred between registers and memory it is treated as an opaque object.  That is 
a short vector is stored in memory as if it were stored with a single STR of the entire register; a short vector is 
loaded from memory using the corresponding LDR instruction. On a little-endian system this means that element 0 
will always contain the lowest addressed element of a short vector; on a big-endian system element 0 will contain 
the highest-addressed element of a short vector. 
A language binding may define extended types that map directly onto short vectors.  Short vectors are not 
otherwise created spontaneously (for example because a user has declared an aggregate consisting of eight 
consecutive byte-sized objects). 

4.1.3 Pointers 
Code and data pointers are 64-bit unsigned types.  A NULL pointer is always represented by all-bits-zero. 
All 64 bits in a pointer are always significant. When tagged addressing is enabled, a tag is part of a pointer’s value 
for the purposes of pointer arithmetic.  The result of subtracting or comparing two pointers with different tags is 
unspecified. See also §5.2.1, below.  

4.2 Byte Order (“Endianness”) 
From a software perspective, memory is an array of bytes, each of which is addressable. 
This ABI supports two views of memory implemented by the underlying hardware. 
 In a little-endian view of memory the least significant byte of a data object is at the lowest byte address the 

data object occupies in memory. 
 In a big-endian view of memory the least significant byte of a data object is at the highest byte address the 

data object occupies in memory. 
The least significant bit in an object is always designated as bit 0.  
The mapping of a word-sized data object to memory is shown in  Figure 1, Memory layout of big-endian data 
object and Figure 2, Memory layout of little-endian data object. All objects are pure-endian, so the mappings may 
be scaled accordingly for larger or smaller objects1

                                                      
1 The underlying hardware may not directly support a pure-endian view of data objects that are not naturally aligned. 

.  
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Figure 2, Memory layout of little-endian data object 

4.3 Composite Types 
A Composite Type is a collection of one or more Fundamental Data Types that are handled as a single entity at 
the procedure call level. A Composite Type can be any of: 
 An aggregate, where the members are laid out sequentially in memory (possibly with inter-member padding) 
 A union, where each of the members has the same address 
 An array, which is a repeated sequence of some other type (its base type).   
The definitions are recursive; that is, each of the types may contain a Composite Type as a member. 

4.3.1 Aggregates 
 The alignment of an aggregate shall be the alignment of its most-aligned member.   
 The size of an aggregate shall be the smallest multiple of its alignment that is sufficient to hold all of its 

members. 

4.3.2 Unions 
 The alignment of a union shall be the alignment of its most-aligned member.   
 The size of a union shall be the smallest multiple of its alignment that is sufficient to hold its largest member.   

4.3.3 Arrays 
 The alignment of an array shall be the alignment of its base type. 
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 The size of an array shall be the size of the base type multiplied by the number of elements in the array. 

4.3.4 Bit-fields 
A member of an aggregate that is a Fundamental Data Type may be subdivided into bit-fields; if there are unused 
portions of such a member that are sufficient to start the following member at its Natural Alignment then the 
following member may use the unallocated portion.  For the purposes of calculating the alignment of the 
aggregate the type of the member shall be the Fundamental Data Type upon which the bit-field is based.1

4.3.5 Homogeneous Aggregates 

 The 
layout of bit-fields within an aggregate is defined by the appropriate language binding. 

An Homogeneous Aggregate is a Composite Type where all of the Fundamental Data Types of the members that 
compose the type are the same.  The test for homogeneity is applied after data layout is completed and without 
regard to access control or other source language restrictions.  Note that for short-vector types the fundamental 
types are 64-bit vector and 128-bit vector; the type of the elements in the short vector does not form part of the 
test for homogeneity.  
An Homogeneous Aggregate has a Base Type, which is the Fundamental Data Type of each Member.  The 
overall size is the size of the Base Type multiplied by the number uniquely addressable Members; its alignment 
will be the alignment of the Base Type.   

4.3.5.1 Homogeneous Floating-point Aggregates (HFA) 
An Homogeneous Floating-point Aggregate (HFA) is an Homogeneous Aggregate with a Fundamental Data Type 
that is a Floating-Point type and at most four uniquely addressable members. 

4.3.5.2 Homogeneous Short-Vector Aggregates (HVA) 
An Homogeneous Short-Vector Aggregate (HVA) is an Homogeneous Aggregate with a Fundamental Data Type 
that is a Short-Vector type and at most four uniquely addressable members.

                                                      
1 The intent is to permit the C construct struct {int a:8; char b[7];} to have size 8 and alignment 4. 



Procedure Call Standard for the ARM 64-bit Architecture  

ARM IHI 0055B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 14 of 32 

5 THE BASE PROCEDURE CALL STANDARD 
The base standard defines a machine-level calling standard for the A64 instruction set.  It assumes the availability 
of the vector registers for passing floating-point and SIMD arguments.  Application code is expected to conform to 
one of the two defined major variants of it (SVR4-like or Windows-like).  

5.1 Machine Registers 
The ARM 64-bit architecture defines two mandatory register banks: a general-purpose register bank which can be 
used for scalar integer processing and pointer arithmetic; and a SIMD and Floating-Point register bank. 

5.1.1 General-purpose Registers 
There are thirty-one, 64-bit, general-purpose (integer) registers visible to the A64 instruction set; these are labeled 
r0-r30. In a 64-bit context these registers are normally referred to using the names x0-x30; in a 32-bit context the 
registers are specified by using w0-w30.  Additionally, a stack-pointer register, SP, can be used with a restricted 
number of instructions.  Register names may appear in assembly language in either upper case or lower case. In 
this specification upper case is used when the register has a fixed role in this procedure call standard. Table 2, 
General purpose registers and AAPCS64 usage summarizes the uses of the general-purpose registers in this 
standard.  In addition to the general-purpose registers there is one status register (NZCV) that may be set and 
read by conforming code. 
 

Register Special Role in the procedure call standard 

SP  The Stack Pointer. 

r30 LR The Link Register. 

r29 FP The Frame Pointer 

r19…r28  Callee-saved registers 

r18  The Platform Register, if needed; otherwise a temporary register.  
See notes. 

r17 IP1 
The second intra-procedure-call temporary register (can be used 
by call veneers and PLT code); at other times may be used as a 
temporary register. 

r16 IP0 
The first intra-procedure-call scratch register (can be used by call 
veneers and PLT code); at other times may be used as a 
temporary register. 

r9…r15  Temporary registers 

r8  Indirect result location register 

r0…r7  Parameter/result registers 

Table 2, General purpose registers and AAPCS64 usage 
The first eight registers, r0-r7, are used to pass argument values into a subroutine and to return result values from 
a function. They may also be used to hold intermediate values within a routine (but, in general, only between 
subroutine calls).  
Registers r16 (IP0) and r17 (IP1) may be used by a linker as a scratch register between a routine and any 
subroutine it calls (for details, see §5.3.1.1, Use of IP0 and IP1 by the linker). They can also be used within a 
routine to hold intermediate values between subroutine calls.  
The role of register r18 is platform specific. If a platform ABI has need of a dedicated general purpose register to 
carry inter-procedural state (for example, the thread context) then it should use this register for that purpose.  If 
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the platform ABI has no such requirements, then it should use r18 as an additional temporary register.  The 
platform ABI specification must document the usage for this register. 

Note Software developers creating platform-independent code are advised to avoid using r18 if at all possible.  
Most compilers provide a mechanism to prevent specific registers from being used for general allocation; 
portable hand-coded assembler should avoid it entirely.  It should not be assumed that treating the 
register as callee-saved will be sufficient to satisfy the requirements of the platform.  Virtualization code 
must, of course, treat the register as they would any other resource provided to the virtual machine.   

A subroutine invocation must preserve the contents of the registers r19-r29 and SP. 
In all variants of the procedure call standard, registers r16, r17, r29 and r30 have special roles. In these roles they 
are labeled IP0, IP1, FP and LR when being used for holding addresses (that is, the special name implies 
accessing the register as a 64-bit entity). 

Note The special register names (IP0, IP1, FP and LR) should be used only in the context in which they are 
special.  It is recommended that disassemblers always use the architectural names for the registers. 

The NZCV register is a global condition flag register with the following properties: 
 The N, Z, C and V flags are undefined on entry to and return from a public interface. 

5.1.2 SIMD and Floating-Point Registers 
The ARM 64-bit architecture also has a further thirty-two registers, v0-v31, which can be used by SIMD and 
Floating-Point operations.  The precise name of the register will change indicating the size of the access. 

Note Unlike in AArch32, in AArch64 the 128-bit and 64-bit views of a SIMD and Floating-Point register do not 
overlap multiple registers in a narrower view, so q1, d1 and s1 all refer to the same entry in the register 
bank. 

The first eight registers, v0-v7, are used to pass argument values into a subroutine and to return result values 
from a function. They may also be used to hold intermediate values within a routine (but, in general, only between 
subroutine calls). 
Registers v8-v15 must be preserved by a callee across subroutine calls; the remaining registers (v0-v7, v16-v31) 
do not need to be preserved (or should be preserved by the caller).  Additionally, only the bottom 64-bits of each 
value stored in v8-v15 need to be preserved1

The FPSR is a status register that holds the cumulative exception bits of the floating-point unit.  It contains the 
fields IDC, IXC, UFC, OFC, DZC, IOC and QC.  These fields are not preserved across a public interface and may 
have any value on entry to a subroutine. 

; it is the responsibility of the caller to preserve larger values. 

The FPCR is used to control the behavior of the floating-point unit.  It is a global register with the following 
properties. 
 The exception-control bits (8-12), rounding mode bits (22-23) and flush-to-zero bits (24) may be modified by 

calls to specific support functions that affect the global state of the application. 
 All other bits are reserved and must not be modified.  It is not defined whether the bits read as zero or one, or 

whether they are preserved across a public interface. 

5.2 Processes, Memory and the Stack 
The AAPCS64 applies to a single thread of execution or process (hereafter referred to as a process). A process 
has a program state defined by the underlying machine registers and the contents of the memory it can access. 
The memory a process can access, without causing a run-time fault, may vary during the execution of the 
process.  
The memory of a process can normally be classified into five categories: 
 code (the program being executed), which must be readable, but need not be writable, by the process. 
 read-only static data. 
 writable static data. 

                                                      
1  This includes double-precision or smaller floating-point values and 64-bit short vector values 
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 the heap. 
 the stack. 
Writable static data may be further sub-divided into initialized, zero-initialized and uninitialized data. Except for the 
stack there is no requirement for each class of memory to occupy a single contiguous region of memory. A 
process must always have some code and a stack, but need not have any of the other categories of memory. 
The heap is an area (or areas) of memory that are managed by the process itself (for example, with the C malloc 
function). It is typically used for the creation of dynamic data objects. 
A conforming program must only execute instructions that are in areas of memory designated to contain code. 

5.2.1 Memory Addresses 
The address space may consist of one or more disjoint regions.  No region may span address zero (although one 
region may start at zero). 
The use of tagged addressing is platform specific.  When tagged addressing is disabled all 64 bits of a pointer are 
passed to the address translation system.  When tagged addressing is enabled, the top eight bits of a pointer are 
ignored for the purposes of address translation. See also §4.1.3, above. 

5.2.2 The Stack 
The stack is a contiguous area of memory that may be used for storage of local variables and for passing 
additional arguments to subroutines when there are insufficient argument registers available.  
The stack implementation is full-descending, with the current extent of the stack held in the special-purpose 
register SP. The stack will, in general, have both a base and a limit though in practice an application may not be 
able to determine the value of either.   
The stack may have a fixed size or be dynamically extendable (by adjusting the stack-limit downwards). 
The rules for maintenance of the stack are divided into two parts: a set of constraints that must be observed at all 
times, and an additional constraint that must be observed at a public interface. 

5.2.2.1 Universal stack constraints 
At all times the following basic constraints must hold: 
 Stack-limit < SP <= stack-base. The stack pointer must lie within the extent of the stack. 
 A process may only access (for reading or writing) the closed interval of the entire stack delimited by 

[SP, stack-base – 1]. 
Additionally, at any point at which memory is accessed via SP, the hardware requires that 
 SP mod 16 = 0.  The stack must be quad-word aligned. 

5.2.2.2 Stack constraints at a public interface 
The stack must also conform to the following constraint at a public interface: 
 SP mod 16 = 0. The stack must be quad-word aligned. 

5.2.3 The Frame Pointer 
Conforming code shall construct a linked list of stack-frames.  Each frame shall link to the frame of its caller by 
means of a frame record of two 64-bit values on the stack.  The frame record for the innermost frame (belonging 
to the most recent routine invocation) shall be pointed to by the Frame Pointer register (FP).  The lowest 
addressed double-word shall point to the previous frame record and the highest addressed double-word shall 
contain the value passed in LR on entry to the current function.  The end of the frame record chain is indicated by 
the address zero in the address for the previous frame. The location of the frame record within a stack frame is not 
specified.  Note: There will always be a short period during construction or destruction of each frame record during 
which the frame pointer will point to the caller’s record. 
A platform shall mandate the minimum level of conformance with respect to the maintenance of frame records.  
The options are, in decreasing level of functionality: 
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 It may require the frame pointer to address a valid frame record at all times, except that small subroutines 
which do not modify the link register may elect not to create a frame record 

 It may require the frame pointer to address a valid frame record at all times, except that any subroutine may 
elect not to create a frame record 

 It may permit the frame pointer register to be used as a general-purpose callee-saved register, but provide a 
platform-specific mechanism for external agents to reliably detect this condition  

 It may elect not to maintain a frame chain and to use the frame pointer register as a general-purpose callee-
saved register. 

 

5.3 Subroutine Calls 
The A64 instruction set contains primitive subroutine call instructions, BL and BLR, which performs a branch-with-
link operation.  The effect of executing BL is to transfer the sequentially next value of the program counter—the 
return address—into the link register (LR) and the destination address into the program counter.   The effect of 
executing BLR is similar except that the new PC value is read from the specified register. 

5.3.1.1 Use of IP0 and IP1 by the linker 
The A64 branch instructions are unable to reach every destination in the address space, so it may be necessary 
for the linker to insert a veneer between a calling routine and a called subroutine.  Veneers may also be needed to 
support dynamic linking.  Any veneer inserted must preserve the contents of all registers except IP0, IP1 (r16, r17) 
and the condition code flags; a conforming program must assume that a veneer that alters IP0 and/or IP1 may be 
inserted at any branch instruction that is exposed to a relocation that supports long branches. 
Note R_AARCH64_CALL26, and R_AARCH64_JUMP26 are the ELF relocation types with this property.   

5.4 Parameter Passing 
The base standard provides for passing arguments in general-purpose registers (r0-r7), SIMD/floating-point 
registers (v0-v7) and on the stack.  For subroutines that take a small number of small parameters, only registers 
are used. 

5.4.1 Variadic Subroutines 
A Variadic subroutine is a routine that takes a variable number of parameters.  The full parameter list is known by 
the caller, but the callee only knows a minimum number of arguments will be passed and will determine the 
additional arguments based on the values passed in other arguments.  The two classes of arguments are known 
as Named arguments (these form the minimum set) and Anonymous arguments (these are the optional additional 
arguments). 
In this standard a non-variadic subroutine can be considered to be identical to a variadic subroutine that takes no 
optional arguments. 

5.4.2 Parameter Passing Rules 
Parameter passing is defined as a two-level conceptual model 
 A mapping from the type of a source language argument onto a machine type 
 The marshaling of machine types to produce the final parameter list 
The mapping from a source language type onto a machine type is specific for each language and is described 
separately (the C and C++ language bindings are described in §7, ARM C and C++ language mappings). The 
result is an ordered list of arguments that are to be passed to the subroutine.  
For a caller, sufficient stack space to hold stacked argument values is assumed to have been allocated prior to 
marshaling: in practice the amount of stack space required cannot be known until after the argument marshaling 
has been completed.  A callee is permitted to modify any stack space used for receiving parameter values from 
the caller. 
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Stage A – Initialization 
This stage is performed exactly once, before processing of the arguments commences. 

A.1 The Next General-purpose Register Number (NGRN) is set to zero. 
A.2 The Next SIMD and Floating-point Register Number (NSRN) is set to zero. 
A.3 The next stacked argument address (NSAA) is set to the current stack-pointer value (SP). 

Stage B – Pre-padding and extension of arguments 

For each argument in the list the first matching rule from the following list is applied.  If no rule matches the 
argument is used unmodified. 

B.1 If the argument type is a Composite Type whose size cannot be statically determined by both the caller 
and the callee, the argument is copied to memory and the argument is replaced by a pointer to the copy. 
(There are no such types in C/C++ but they exist in other languages or in language extensions). 

B.2 If the argument type is an HFA or an HVA, then the argument is used unmodified. 
B.3 If the argument type is a Composite Type that is larger than 16 bytes, then the argument is copied to 

memory allocated by the caller and the argument is replaced by a pointer to the copy. 
B.4 If the argument type is a Composite Type then the size of the argument is rounded up to the nearest 

multiple of 8 bytes. 

Stage C – Assignment of arguments to registers and stack 

For each argument in the list the following rules are applied in turn until the argument has been allocated. When 
an argument is assigned to a register any unused bits in the register have unspecified value. When an argument 
is assigned to a stack slot any unused padding bytes have unspecified value. 

C.1 If the argument is a Half-, Single-, Double- or Quad- precision Floating-point or Short Vector Type and 
the NSRN is less than 8, then the argument is allocated to the least significant bits of register v[NSRN].  
The NSRN is incremented by one.  The argument has now been allocated. 

C.2 If the argument is an HFA or an HVA and there are sufficient unallocated SIMD and Floating-point 
registers (NSRN + number of members ≤ 8), then the argument is allocated to SIMD and Floating-point 
Registers (with one register per member of the HFA or HVA).  The NSRN is incremented by the number 
of registers used.  The argument has now been allocated. 

C.3 If the argument is an HFA or an HVA then the NSRN is set to 8 and the size of the argument is rounded 
up to the nearest multiple of 8 bytes. 

C.4 If the argument is an HFA, an HVA, a Quad-precision Floating-point or Short Vector Type then the 
NSAA is rounded up to the larger of 8 or the Natural Alignment of the argument’s type.  

C.5 If the argument is a Half- or Single- precision Floating Point type, then the size of the argument is set to 
8 bytes.  The effect is as if the argument had been copied to the least significant bits of a 64-bit register 
and the remaining bits filled with unspecified values. 

C.6 If the argument is an HFA, an HVA, a Half-, Single-, Double- or Quad- precision Floating-point or Short 
Vector Type, then the argument is copied to memory at the adjusted NSAA.  The NSAA is incremented 
by the size of the argument.  The argument has now been allocated. 

C.7 If the argument is an Integral or Pointer Type, the size of the argument is less than or equal to 8 bytes 
and the NGRN is less than 8, the argument is copied to the least significant bits in x[NGRN].  The NGRN 
is incremented by one.  The argument has now been allocated. 

C.8 If the argument has an alignment of 16 then the NGRN is rounded up to the next even number. 
C.9 If the argument is an Integral Type, the size of the argument is equal to 16 and the NGRN is less than 7, 

the argument is copied to x[NGRN] and x[NGRN+1].  x[NGRN] shall contain the lower addressed 
double-word of the memory representation of the argument.  The NGRN is incremented by two.  The 
argument has now been allocated. 

C.10 If the argument is a Composite Type and the size in double-words of the argument is not more than 8 
minus NGRN, then the argument is copied into consecutive general-purpose registers, starting at 
x[NGRN]. The argument is passed as though it had been loaded into the registers from a double-word-
aligned address with an appropriate sequence of LDR instructions loading consecutive registers from 
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memory (the contents of any unused parts of the registers are unspecified by this standard). The NGRN 
is incremented by the number of registers used.  The argument has now been allocated. 

C.11 The NGRN is set to 8. 
C.12 The NSAA is rounded up to the larger of 8 or the Natural Alignment of the argument’s type..   
C.13 If the argument is a composite type then the argument is copied to memory at the adjusted NSAA.  The 

NSAA is incremented by the size of the argument.  The argument has now been allocated. 
C.14 If the size of the argument is less than 8 bytes then the size of the argument is set to 8 bytes. The effect 

is as if the argument was copied to the least significant bits of a 64-bit register and the remaining bits 
filled with unspecified values. 

C.15 The argument is copied to memory at the adjusted NSAA.   The NSAA is incremented by the size of the 
argument.  The argument has now been allocated. 

It should be noted that the above algorithm makes provision for languages other than C and C++ in that it provides 
for passing arrays by value and for passing arguments of dynamic size.  The rules are defined in a way that allows 
the caller to be always able to statically determine the amount of stack space that must be allocated for arguments 
that are not passed in registers, even if the routine is variadic. 
Several further observations can also be made: 
 The address of the first stacked argument is defined to be the initial value of SP.  Therefore, the total amount 

of stack space needed by the caller for argument passing cannot be determined until all the arguments in the 
list have been processed. 

 Floating-point and short vector types are passed in SIMD and Floating-point registers or on the stack; never in 
general-purpose registers (except when they form part of a small structure that is neither an HFA nor an 
HVA). 

 Unlike in the 32-bit AAPCS, named integral values must be narrowed by the callee rather than the caller. 
 Unlike in the 32-bit AAPCS, half-precision floating-point values can be passed directly (and HFAs of half-

precision floats are also permitted).  
 Any part of a register or a stack slot that is not used for an argument (padding bits) has unspecified content at 

the callee entry point. 
 The rules here do not require narrow arguments to subroutines to be widened.  However a language may 

require widening in some or all circumstances (for example, in C, unprototyped and variadic functions require 
single-precision values to be converted to double-precision and char and short values to be converted to int.  

 HFAs and HVAs are special cases of a composite type.  If they are passed as parameters in registers then 
each uniquely addressable element goes in its own register.  However, if they are not allocated to registers 
then they are always passed on the stack (never in general-purpose registers) and they are laid out in exactly 
the same way as any other composite. 

 Both before and after the layout of each argument, then NSAA will have a minimum alignment of 8. 

5.5 Result Return 
The manner in which a result is returned from a function is determined by the type of that result: 
 If the type, T, of the result of a function is such that  
 void func(T arg) 

would require that arg be passed as a value in a register (or set of registers) according to the rules in §5.4 
Parameter Passing, then the result is returned in the same registers as would be used for such an argument. 

 Otherwise, the caller shall reserve a block of memory of sufficient size and alignment to hold the result.  The 
address of the memory block shall be passed as an additional argument to the function in x8.  The callee may 
modify the result memory block at any point during the execution of the subroutine (there is no requirement for 
the callee to preserve the value stored in x8). 

5.6 Interworking 
Interworking between the 32-bit AAPCS and the AAPCS64 is not supported within a single process. (In AArch64, 
all inter-operation between 32-bit and 64-bit machine states takes place across a change of exception level). 
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6 THE STANDARD VARIANTS 

6.1 Half-precision Format Compatibility 
The set of values that can be represented in Alternative format differs from the set that can be represented in 
IEEE754-2008 format rendering code built to use either format incompatible with code that uses the other.  Never-
the-less, most code will make no use of either format and will therefore be compatible with both variants. 

6.2 Sizeof(long), sizeof(wchar_t) 
See section 7.1.1.
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7 ARM C AND C++ LANGUAGE MAPPINGS 
This section describes how ARM compilers map C language features onto the machine-level standard. To the 
extent that C++ is a superset of the C language it also describes the mapping of C++ language features. 

7.1 Data Types 
7.1.1 Arithmetic Types 
The mapping of C arithmetic types to Fundamental Data Types is shown in Table 3, Mapping of C & C++ built-in 
data types. 

C/C++ Type Machine Type Notes 

char unsigned byte  

unsigned char unsigned byte  

signed char signed byte  

[signed] short signed halfword  

unsigned short unsigned halfword  

[signed] int signed word  

unsigned int unsigned word  

[signed] long signed word or signed double-
word see text 

unsigned long unsigned word or unsigned 
double-word see text 

[signed] long long signed double-word C99 Only 

unsigned long long unsigned double-word C99 Only 

__int128 signed quad-word ARM extension (used for LDXP/STXP) 

__uint128 unsigned quad-word ARM extension (used for LDXP/STXP) 

__fp16 half precision (IEEE754-2008 
format or Alternative Format) ARM extension.   

float single precision (IEEE 754)  

double double precision (IEEE 754)  

long double quad precision (IEEE 754-
2008)  

float _Imaginary single precision (IEEE 754) C99 Only 

double _Imaginary double precision (IEEE 754) C99 Only 

long double 
_Imaginary 

quad precision (IEEE 754-
2008) C99 Only 
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C/C++ Type Machine Type Notes 

float _Complex 2 single precision (IEEE 754) 
C99 Only.  Layout is  
struct {float re; 
        float im;}; 

double _Complex 2 double precision (IEEE 754) 
C99 Only.  Layout is  
struct {double re;  
        double im;}; 

long double _Complex 2 quad precision (IEEE 754-
2008) 

C99 Only.  Layout is  
struct {long double re; 
        long double im;}; 

_Bool/bool unsigned byte C99/C++ Only.  False has value 0 and 
True has value 1. 

wchar_t unsigned short or unsigned int built-in in C++, typedef in C, type is 
platform specific; see text 

Table 3, Mapping of C & C++ built-in data types 

In the SVR4-like variant of this standard the type of wchar_t is unsigned int and the machine types of long and 
unsigned long are double-word and unsigned double-word respectively (LP64 model). 
In the Windows-like variant of this standard the type of wchar_t is unsigned short and the machine types of long 
and unsigned long are word and unsigned word respectively (LLP64 model). 
A platform ABI may specify a different combination of primitive variants but we discourage this. 
 

7.1.2 Pointer Types 
The container types for pointer types are shown in Table 4, Pointer and reference types.  A C++ reference type is 
implemented as a pointer to the type. 

Pointer Type Machine Type Notes 

T * data pointer any data type T 

T (*F)() code pointer any function type F 

T& data pointer C++ reference 

Table 4, Pointer and reference types 

7.1.3 Enumerated Types 
The type of the storage container for an enumerated type is a word (int or unsigned int) for all enumeration 
types. The container type shall be unsigned int unless that is unable to represent all the declared values in the 
enumerated type.  
If the set of values in an enumerated type cannot be represented using either int or unsigned int as a 
container type, and the language permits extended enumeration sets, then a long long or unsigned long 
long container may be used. If all values in the enumeration are in the range of unsigned long long, then 
the container type is unsigned long long, otherwise the container type is long long. 
The size and alignment of an enumeration type shall be the size and alignment of the container type. 
If a negative number is assigned to an unsigned container the behavior is undefined. 
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7.1.4 Additional Types 
Both C and C++ require that a system provide additional type definitions that are defined in terms of the base 
types.  Normally these types are defined by inclusion of the appropriate header file.  However, in C++ the 
underlying type of size_t can be exposed without the use of any header files simply by using 
::operator new(), and the definition of va_list has implications for the internal implementation in the 
compiler. An AAPCS64 conforming object must use the definitions shown in Table 5, Additional data types. 
 

Typedef Base type Notes 

size_t unsigned long or 
unsigned long long 

For consistent C++ mangling of ::operator new().  On 
systems with a 32-bit long, the Base type shall be unsigned 
long long. 

va_list 

struct __va_list { 
  void *__stack;  
  void *__gr_top;  
  void *__vr_top;  
  int   __gr_offs;  
  int   __vr_offs; 
} 

A va_list may address any object in a parameter list.  In 
C++, __va_list is in namespace std. See Appendix B 
Variable Argument Lists.   

Table 5, Additional data types 

7.1.5 Volatile Data Types 
A data type declaration may be qualified with the volatile type qualifier.  The compiler may not remove any 
access to a volatile data type unless it can prove that the code containing the access will never be executed; 
however, a compiler may ignore a volatile qualification of an automatic variable whose address is never taken 
unless the function calls setjmp().  A volatile qualification on a structure or union shall be interpreted as 
applying the qualification recursively to each of the fundamental data types of which it is composed.  Access to a 
volatile-qualified fundamental data type must always be made by accessing the whole type. 
The behavior of assigning to or from an entire structure or union that contains volatile-qualified members is 
undefined.  Likewise, the behavior is undefined if a cast is used to change either the qualification or the size of the 
type. 
The memory system underlying the processor may have a restricted bus width to some or all of memory.  The 
only guarantee applying to volatile types in these circumstances are that each byte of the type shall be accessed 
exactly once for each access mandated above, and that any bytes containing volatile data that lie outside the type 
shall not be accessed.  Nevertheless, a compiler shall use an instruction that will access the type exactly. 

7.1.6 Structure, Union and Class Layout 
Structures and unions are laid out according to the Fundamental Data Types of which they are composed (see 
§4.3, Composite Types).  All members are laid out in declaration order.  Additional rules applying to C++ non-POD 
class layout are described in CPPABI64. 

7.1.7 Bit-fields 
A bit-field may have any integral type (including enumerated and bool types).   
A sequence of bit-fields is laid out in the order declared using the rules below. 
For each bit-field, the type of its container is: 
 Its declared type if its size is no larger than the size of its declared type. 
 The largest integral type no larger than its size if its size is larger than the size of its declared type (see 

§7.1.7.3, Over-sized bit-fields). 
The container type contributes to the alignment of the containing aggregate in the same way a plain (not bit-field) 
member of that type would, without exception for zero-sized or anonymous bit-fields. 



Procedure Call Standard for the ARM 64-bit Architecture  

ARM IHI 0055B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 24 of 32 

Note The C++ standard states that an anonymous bit-field is not a member, so it is unclear whether or not an 
anonymous bit-field of non-zero size should contribute to an aggregate’s alignment. Under this ABI it 
does. 

The content of each bit-field is contained by exactly one instance of its container type. 
Initially, we define the layout of fields that are no bigger than their container types. 

7.1.7.1 Bit-fields no larger than their container 
Let F be a bit-field whose address we wish to determine. We define the container address, CA(F), to be the byte 
address 
 CA(F) = &(container(F)); 

This address will always be at the Natural Alignment of the container type, that is 
 CA(F) % sizeof(container(F)) == 0. 

The bit-offset of F within the container, K(F), is defined in an endian-dependent manner: 
 For big-endian data types K(F) is the offset from the most significant bit of the container to the most 

significant bit of the bit-field. 
 For little-endian data types K(F) is the offset from the least significant bit of the container to the least 

significant bit of the bit-field. 
A bit-field can be extracted by loading its container, shifting and masking by amounts that depend on the byte 
order, K(F), the container size, and the field width, then sign extending if needed. 
The bit-address of F, BA(F), can now be defined as: 
 BA(F) = CA(F) * 8 + K(F) 

For a bit address BA falling in a container of width C and alignment A (≤ C) (both expressed in bits), define the 
unallocated container bits (UCB) to be: 
 UCB(BA, C, A) = C - (BA % A) 

We further define the truncation function 
 TRUNCATE(X,Y) = Y * X/Y 

That is, the largest integral multiple of Y that is no larger than X. 
We can now define the next container bit address (NCBA) which will be used when there is insufficient space in the 
current container to hold the next bit-field as 
 NCBA(BA, A) = TRUNCATE(BA + A – 1, A) 

At each stage in the laying out of a sequence of bit-fields there is: 
 A current bit address (CBA) 
 A container size, C,  and alignment, A, determined by the type of the field about to be laid out (8, 16, 32, …) 
 A field width, W (≤ C). 
For each bit-field, F, in declaration order the layout is determined by 
1 If the field width, W, is zero, set CBA = NCBA(CBA, A) 
2 If W > UCB(CBA, C, A), set CBA = NCBA(CBA, A) 
3 Assign BA(F) = CBA 
4 Set CBA = CBA + W. 

Note The AAPCS64 does not allow exported interfaces to contain packed structures or bit-fields.  However a 
scheme for laying out packed bit-fields can be achieved by reducing the alignment, A, in the above rules 
to below that of the natural container type.  ARMCC uses an alignment of A=8 in these cases, but GCC 
uses an alignment of A=1. 

7.1.7.2 Bit-field extraction expressions 
To access a field, F, of width W and container width C at the bit-address BA(F): 
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 Load the (naturally aligned) container at byte address TRUNCATE(BA(F), C) / 8 into a 64-bit register R 
 Set Q = MAX(64, C) 
 Little-endian, set R = (R << ((Q – W) – (BA MOD C))) >> (Q – W). 
 Big-endian, set R = (R << (Q – C +(BA MOD C))) >> (Q – W). 
see §7.1.7.5, Volatile bit-fieldspreserving number and width of container accesses for volatile bit-fields. 

7.1.7.3 Over-sized bit-fields 
C++ permits the width specification of a bit-field to exceed the container size and the rules for allocation are given 
in [GC++ABI].  Using the notation described above, the allocation of an over-sized bit-field of width W, for a 
container of width C and alignment A is achieved by: 
 Selecting a new container width C’ which is the width of the fundamental integer data type with the largest 

size less than or equal to W.  The alignment of this container will be A’.  Note that C’ >= C and A’ >= A. 
 If C’ > UCB(CBA, C’, A’) setting CBA = NCBA(CBA, A’).  This ensures that the bit-field will be placed 

at the start of the next container type. 
 Allocating a normal (undersized) bit-field using the values (C, C’, A’) for (W, C, A). 
 Setting CBA = CBA + W – C. 
Each segment of an oversized bit-field can be accessed simply by accessing its container type. 

7.1.7.4 Combining bit-field and non-bit-field members 
A bit-field container may overlap a non-bit-field member.  For the purposes of determining the layout of bit-field 
members the CBA will be the address of the first unallocated bit after the preceding non-bit-field type. 

Note Any tail-padding added to a structure that immediately precedes a bit-field member is part of the structure 
and must be taken into account when determining the CBA. 

When a non-bit-field member follows a bit-field it is placed at the lowest acceptable address following the allocated 
bit-field. 

Note When laying out fundamental data types it is possible to consider them all to be bit-fields with a width 
equal to the container size.  The rules in §7.1.7.1, Bit-fields no larger than their container can then be 
applied to determine the precise address within a structure. 

7.1.7.5 Volatile bit-fieldspreserving number and width of container accesses 
When a volatile bit-field is read, its container must be read exactly once using the access width appropriate to the 
type of the container. 
When a volatile bit-field is written, its container must be read exactly once and written exactly once using the 
access width appropriate to the type of the container.  The two accesses are not atomic. 
Multiple accesses to the same volatile bit-field, or to additional volatile bit-fields within the same container may not 
be merged.  For example, an increment of a volatile bit-field must always be implemented as two reads and a 
write. 

Note Note the volatile access rules apply even when the width and alignment of the bit-field imply that the 
access could be achieved more efficiently using a narrower type.  For a write operation the read must 
always occur even if the entire contents of the container will be replaced. 

If the containers of two volatile bit-fields overlap then access to one bit-field will cause an access to the other.  For 
example, in struct S {volatile int a:8; volatile char b:2}; an access to a will also cause an 
access to b, but not vice-versa. 
If the container of a non-volatile bit-field overlaps a volatile bit-field then it is undefined whether access to the non-
volatile field will cause the volatile field to be accessed. 

7.2 Argument Passing Conventions 
The argument list for a subroutine call is formed by taking the user arguments in the order in which they are 
specified.   
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 For C++, an implicit this parameter is passed as an extra argument that immediately precedes the first user 
argument. Other rules for marshaling C++ arguments are described in CPPABI64. 

 For unprototyped (i.e. pre-ANSI or K&R C) and variadic functions, in addition to the normal conversions and 
promotions, arguments of type __fp16 are converted to type double. 

The argument list is then processed according to the standard rules for procedure calls (see §5.4, Parameter 
Passing) or the appropriate variant. 
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APPENDIX A C AND C++ SUPPORT FOR SIMD EXTENSIONS 
The AARCH64 architecture supports a number of short-vector operations.  To facilitate accessing these types 
from C and C++ a number of extended types need to be added to the language.   
Following the conventions used for adding types to C99 a number of additional types (internal types) are defined 
unconditionally.  To facilitate use in applications a header file is also defined (arm_neon.h) that maps these 
internal types onto more user-friendly names.  These types are listed in Table 6: Short vector extended types.  
The header file arm_neon.h also defines a number of intrinsic functions that can be used with the types defined 
below.  The list of intrinsic functions and their specification is beyond the scope of this document. 
 

Internal type arm_neon.h type Base Type Elements 

__Int8x8_t int8x8_t signed byte 8 

__Int16x4_t int16x4_t signed half-word 4 

__Int32x2_t int32x2_t signed word 2 

__Uint8x8_t uint8x8_t unsigned byte 8 

__Uint16x4_t uint16x4_t unsigned half-word 4 

__Uint32x2_t uint32x2_t unsigned word 2 

__Float16x4_t float16x4_t half-precision float 4 

__Float32x2_t float32x2_t single-precision float 2 

__Poly8x8_t poly8x8_t unsigned byte 8 

__Poly16x4_t poly16x4_t unsigned half-word 4 

__Int8x16_t int8x16_t signed byte 16 

__Int16x8_t int16x8_t signed half-word 8 

__Int32x4_t int32x4_t signed word 4 

__Int64x2_t int64x2_t signed double-word 2 

__Uint8x16_t uint8x16_t unsigned byte 16 

__Uint16x8_t uint16x8_t unsigned half-word 8 

__Uint32x4_t uint32x4_t unsigned word 4 

__Uint64x2_t uint64x2_t unsigned double-word 2 

__Float16x8_t float16x8_t half-precision float 8 

__Float32x4_t float32x4_t single-precision float 4 

__Float64x2_t float64x2_t double-precision float 2 

__Poly8x16_t poly8x16_t unsigned byte 16 

__Poly16x8_t poly16x8_t unsigned half-word 8 

__Poly64x2_t poly64x2_t unsigned double-word 2 
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Table 6: Short vector extended types 

A.1 C++ Mangling 
For C++ mangling purposes the user-friendly names are treated as though the equivalent internal name was 
specified.  Thus the function 
 void f(int8x8_t) 

is mangled as 
 _Z1fu10__Int8x8_t 
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APPENDIX B VARIABLE ARGUMENT LISTS 
Languages such as C and C++ permit routines that take a variable number of arguments (that is, the number of 
parameters is controlled by the caller rather than the callee).  Furthermore, they may then pass some or even all 
of these parameters as a block to further subroutines to process the list.  If a routine shares any of its optional 
arguments with other routines then a parameter control block needs to be created as specified in §7.1.4 Additional 
Types.  The remainder of this appendix is informative. 

B.1 Register Save Areas 
The prologue of a function which accepts a variable argument list and which invokes the va_start macro is 
expected to save the incoming argument registers to two register save areas within its own stack frame: one area 
to hold the 64-bit general registers xn-x7, the other to hold the 128-bit FP/SIMD registers vn-v7. Only parameter 
registers beyond those which hold the named parameters need be saved, and if a function is known never to 
accept parameters in registers of that class, then that register save area may be omitted altogether.  In each area 
the registers are saved in ascending order.  The memory format of FP/SIMD registers save area must be as if 
each register were saved using the integer str instruction for the entire (ie Q) register. 

B.2 The va_list type 
The va_list type may refer to any parameter in a parameter list, which depending on its type and position in the 
argument list may be in one of three memory locations: the current function’s general register argument save 
area, its FP/SIMD register argument save area, or the calling function’s outgoing stack argument area. 
 

typedef struct __va_list { 
void *__stack;  // next stack param  
void *__gr_top;  // end of GP arg reg save area 
void *__vr_top;  // end of FP/SIMD arg reg save area 
int   __gr_offs;  // offset from __gr_top to next GP register arg 
int   __vr_offs;  // offset from __vr_top to next FP/SIMD register arg 

} va_list; 

B.3 The va_start() macro 
The va_start macro shall initialize the fields of its va_list argument as follows, where named_gr represents 
the number of general registers known to hold named incoming arguments and named_vr the number of 
FP/SIMD registers known to hold named incoming arguments. 
 __stack: set to the address following the last (highest addressed) named incoming argument on the stack, 

rounded upwards to a multiple of 8 bytes, or if there are no named arguments on the stack, then the value of 
the stack pointer when the function was entered. 

 __gr_top: set to the address of the byte immediately following the general register argument save area, the 
end of the save area being aligned to a 16 byte boundary. 

 __vr_top: set to the address of the byte immediately following the FP/SIMD register argument save area, 
the end of the save area being aligned to a 16  byte boundary. 

 __gr_offs: set to 0 – ((8 – named_gr) * 8). 
 __vr_offs: set to 0 – ((8 – named_vr) * 16).  
If it is known that a va_list structure is never used to access arguments that could be passed in the FP/SIMD 
argument registers, then no FP/SIMD argument registers need to be saved, and the __vr_top and __vr_offs 
fields initialised to zero. Furthermore, if in this case the general register argument save area is located 
immediately below the value of the stack pointer on entry, then the __stack field may set to the address of the 
anonymous argument in the general register argument save area and the __gr_top and __gr_offs fields also 
set to zero, permitting a simplified implementation of va_arg which simply advances the __stack pointer 
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through the argument save area and into the incoming stacked arguments. This simplification may not be used in 
the reverse case where anonymous arguments are known to be in FP/SIMD registers but not in general registers. 
Although this standard does not mandate a particular stack frame organisation beyond what is required to meet 
the stack constraints described in §5.2.2 The Stack, Figure 3, Example stack frame layout illustrates one possible 
stack layout for a variadic routine which invokes the va_start macro. 

 
Figure 3, Example stack frame layout 

Focussing on just the top of callee’s stack frame, Figure 4, The va_list illustrates graphically how the __va_list 
structure might be initialised by va_start to identify the three potential locations of the next anonymous 
argument. 

 
Figure 4, The va_list 

 

B.4 The va_arg() macro  
The algorithm to implement the generic va_arg(ap,type) macro is then most easily described using a C-like 
“pseudocode”, as follows: 
 type va_arg (va_list ap, type) 
{ 
    int nreg, offs; 
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    if (type passed in general registers) { 
        offs = ap.__gr_offs; 
 if (offs >= 0)  
     goto on_stack;   // reg save area empty 
        if (alignof(type) > 8) 
           offs = (offs + 15) & -16; // round up 
        nreg = (sizeof(type) + 7) / 8; 
        ap.__gr_offs = offs + (nreg * 8); 
        if (ap.__gr_offs > 0) 
            goto on_stack;  // overflowed reg save area 
#ifdef BIG_ENDIAN 
        if (classof(type) != “aggregate” && sizeof(type) < 8) 
            offs += 8 - sizeof(type); 
#endif 
        return *(type *)(ap.__gr_top + offs);  
    } else if (type is an HFA or an HVA) { 
 type ha;   // treat as “struct {ftype field[n];}” 
        offs = ap.__vr_offs; 
 if (offs >= 0)  
     goto on_stack;   // reg save area empty 
        nreg = sizeof(type) / sizeof(ftype); 
        ap.__vr_offs = offs + (nreg * 16); 
        if (ap.__vr_offs > 0) 
            goto on_stack;  // overflowed reg save area 
#ifdef BIG_ENDIAN 
        if (sizeof(ftype) < 16) 
            offs += 16 - sizeof(ftype); 
#endif 
        for (i = 0; i < nreg; i++, offs += 16) 
           ha.field[i] = *((ftype *)(ap.__vr_top + offs));  
 return ha; 
    } else if (type passed in fp/simd registers) { 
        offs = ap.__vr_offs; 
  if (offs >= 0)  
     goto on_stack;   // reg save area empty 
        nreg = (sizeof(type) + 15) / 16; 
        ap__vr_offs = offs + (nreg * 16); 
        if (ap.__vr_offs > 0) 
            goto on_stack;  // overflowed reg save area 
#ifdef BIG_ENDIAN 
        if (classof(type) != “aggregate” && sizeof(type) < 16) 
            offs += 16 - sizeof(type); 
#endif 
        return *(type *)(ap.__vr_top + offs);  
    } 
             
on_stack: 
    intptr_t arg = ap.__stack; 
    if (alignof(type) > 8) 
        arg = (arg + 15) & -16; 
    ap.__stack = (void *)((arg + sizeof(type) + 7) & -8); 
#ifdef BIG_ENDIAN 
    if (classof(type) != “aggregate” && sizeof(type) < 8) 
        arg += 8 - sizeof(type);                   
#endif 
    return *(type *)arg;  
} 
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It is expected that the implementation of the va_arg macro will be specialized by the compiler for the type, size 
and alignment of the type. By way of example the following sample code illustrates one possible expansion of 
va_arg(ap,int), where register x0 holds a pointer to va_list ap, and the argument is returned in register 
w1. Further optimizations are possible. 

Review note: The above pseudo code does not currently handle composite types that are passed by 
value, and where a copy is made and reference created to the copy.  This will be corrected in a future 
revision of this standard. 

  
 ldr     w1, [x0, #__gr_offs]    // get register offset 
 tbz     w1, #31, stack          // reg save area empty? 
 adds    w2, w1, #8              // advance to next register offset 
        str     w2, [x0, #__gr_offs]    // save next register offset 
        bgt     on_stack             // just overflowed reg save area? 
        ldr     x2, [x0, #__gr_top]     // get top of save area 
#ifdef BIG_ENDIAN 
        add     w1, w1, #4              // adjust offset to low 32 bits 
#endif 
        ldr     w1, [x2, w1, sxtw]   // load arg 
        b       done 
on_stack: 
        ldr     x2, [x0, #__stack]      // get stack slot pointer 
#ifdef BIG_ENDIAN 
        ldr     w1, [x2, #4]            // load low 32 bits 
        add     x2, #8                  // advance to next stack slot  
#else 
        ldr     w1, [x2], #8            // load low 32 bits and advance stack slot  
#endif 
        str     x2, [x0, #__stack]      // save next stack slot pointer 
done: 
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